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Abstract—The columnwise Khatri-Rao product of two matrices
is an important matrix type, reprising its role as a structured
sensing matrix in many fundamental linear inverse problems.
Robust signal recovery in such inverse problems is often con-
tingent on proving the restricted isometry property (RIP) of a
certain system matrix expressible as a Khatri-Rao product of
two matrices. In this work, we analyze the RIP of a generic
columnwise Khatri-Rao product by deriving two upper bounds
for its k™M order Restricted Isometry Constant (k-RIC) for
different values of k. The first RIC bound is computed in terms
of the individual RICs of the input matrices participating in the
Khatri-Rao product. The second RIC bound is probabilistic in
nature, and is specified in terms of the input matrix dimensions.
We show that the Khatri-Rao product of a pair of m x n
sized random matrices comprising independent and identically
distributed subgaussian entries satisfies £-RIP with arbitrarily
high probability, provided m exceeds O(Vk log®/? n). This is
a substantially milder condition compared to O(klogn) rows
needed to guarantee k-RIP of the input subgaussian random
matrices participating in the Khatri-Rao product. Our results
confirm that the Khatri-Rao product exhibits stronger restricted
isometry compared to its constituent matrices for the same
RIP order. The proposed RIC bounds are potentially useful in
obtaining improved performance guarantees in several sparse
signal recovery and tensor decomposition problems.

Index Terms—Khatri-Rao product, Kronecker product, com-
pressive sensing, Restricted isometry property, covariance matrix
estimation, multiple measurement vectors, PARAFAC, CANDE-
COMP, tensor decomposition, direction of arrival estimation.

I. INTRODUCTION

The Khatri-Rao product, denoted by the symbol ©, is
a columnwise Kronecker product, which was originally in-
troduced by Khatri and Rao in [1]]. For any two matrices
A =Jaj,ay...,a,] and B = [by,by...,b,] of sizes m x p
and n X p, respectively, the columnwise Khatri-Rao product
A © B is a matrix of dimension mn x p defined as

ap®bp} ) (D

where a ® b denotes the Kronecker product [2] between
vectors a and b. That is, each column of A ® B is the
Kronecker product between the respective columns of the
two input matrices A and B. In this article, we shall refer
to the columnwise Khatri-Rao product as simply the Khatri-
Rao product or the KR product. Since the Kronecker product
A ®B comprises all pairwise Kronecker product combinations
of the columns of the input matrices, it can be shown that
A ®B = (A ®B)J, where J is a p?> x p selection matrix
with columns as a subset of the standard basis in RP’ [131.
Khatri-Rao product matrices are encountered in several
linear inverse problems of fundamental importance. Recent

A@B:[a1®b1 a2®b2

examples include compressive sensing [4], [5]], covariance
matrix estimation [6], [7]], direction of arrival estimation [8]
and tensor decomposition [9]. In each of these examples,
the KR product A ® B, for certain m x n sized system
matrices A and B, plays the role of the sensing matrix used to
generate linear measurements y of an unknown signal vector
x according to

y=(AoB)x+w, 2)

where w represents the additive measurement noise. It is now
well established in the sparse signal recovery literature [[10]-
[12]] that, if the signal of interest, x, is a k-sparseE] vector in
R™, it can be stably recoverez)d from its noisy underdetermined
linear observations y € R™ (m? < n) in a computationally
efficient manner provided that the sensing matrix (here, A©®B)
satisfies the restricted isometry property defined next.

A matrix ® € R™*" is said to satisfy the Restricted
Isometry Property (RIP) [13] of order k, if there exists a
constant 0x(®) € (0,1), such that for all k-sparse vectors
z € R™,

(1 - 61(®))ll2l]3 < [|®2]]3 < (1 +61(®))l[2l13. (3

The smallest constant d(®) for which (@) holds for all k-
sparse z is called the k" order restricted isometry constant or
the k-RIC of ®. Matrices with small £-RICs are good encoders
for storing/sketching high dimensional vectors with k or fewer
nonzero entries [14]. For example, §x(A ® B) < 0.307 is a
sufficient condition for a unique k-sparse solution to (2) in the
noiseless case, and its perfect recovery via the ; minimization
technique [15]]. As pointed out earlier, in many structured
signal recovery problems, the main sensing matrix can be
expressed as a columnwise Khatri-Rao product between two
matrices. Thus, from a practitioner’s viewpoint, it is pertinent
to study the restricted isometry property of a columnwise
Khatri-Rao product matrix, which is the focus of this work.

A. Applications involving Khatri-Rao matrices

We briefly describe some examples where it is required to
show the restricted isometry property of a KR product matrix.

1) Support recovery of joint sparse vectors from underde-
termined linear measurements: Suppose Xi,Xs,...,X, are
unknown joint sparse signals in R™ with a common k-sized
support denoted by an index set S. A canonical problem in
multi-sensor signal processing is concerned with the recovery
of the common support S of the unknown signals from their

A vector is said to be k-sparse if at most k of its entries are nonzero.



noisy underdetermined linear measurements y1,ys, ...,y €
R™ generated according to
yj =Ax;+w;, 1<j<L, 4)

where A € R™*"(m < n) is a known measurement matrix,
and w; € R™ models the noise in the measurements. This
problem arises in many practical applications such as MIMO
channel estimation, cooperative wideband spectrum sensing in
cognitive radio networks, target localization, and direction of
arrival estimation. In [[16]], the support set S is recovered as
the support of 4, the solution to the Co-LASSO problem:

2
Co-LASSO: min ||vec(Ryy) - (A@A)fsz—i—/\H'yHl, )
Y=

where Ryy = % Z§=1 yjij. From compressive sensing
theory [11]], the RIP of A ® A (also called the self Khatri-Rao
product of A) determines the stability of the sparse solution in
the Co-LASSO problem. In M-SBL [[17]], a different support
recovery algorithm, A ® A satisfying 2k-RIP can guarantee
exact recovery of S from multiple measurements [[18].

2) Vandermonde decomposition of Toeplitz matrices:
According to a classical result by Carathéodory and Fejér [[19],
any nxn positive semidefinite Toeplitz matrix T of rank r < n
admits the following decomposition

T = APAT, (6)

where P is an m X n positive semidefinite diagonal matrix
with an r-sparse diagonal, and A is an n x n Vandermonde
matrix with uniformly sampled complex sinusoids of differ-
ent frequencies as its columns. This Toeplitz decomposition
underpins subspace based spectrum estimation methods such
as MUItiple Slgnal Classification (MuSiC) and EStimation
of Parameters by Rotationally Invariant Techniques (ESPRIT)
[20], [21]. By replacing T with a data covariance matrix,
the r-sparse support of diag(P) in (6) corresponds to the
r-dimensional signal subspace of the data. Estimation of
p = diag(P) is tantamount to finding an 7-sparse solution
to the vectorized form of (6), i.e., vec(T) = (A ® A)p. Here
again, the recovery of a unique r-sparse solution for p can be
guaranteed if A ® A satisfies the RIP of order 2r.

3) PARAFAC model for low-rank three-way arrays:
Consider an I x J x K tensor X of rank r. We can
express X as the sum of r rank-one three way arrays as
X = Z:Zl a; ob; oc;, where a;, b;, c; are loading vectors of
dimension I, J, K, respectively, and o denotes the vector outer
product. The tensor X itself can be arranged into a matrix
as X = [vec(Xy),vec(Xz),...,vec(Xg)]. In the parallel
factor analysis (PARAFAC) model [22], the matrix X can be
approximated as

X ~ (A ®B)CT, (7

where A,B and C are the loading matrices with columns
as the loading vectors a;, b; and c;, respectively. In many
problems such as direction of arrival estimation using a 2D-
antenna array, the loading matrix C turns out to be row-
sparse matrix [23]. In such cases, the uniqueness of the
PARAFAC model shown in depends on the restricted
isometry property of the Khatri-Rao product A © B.

Finding the exact kth order RIC of any matrix entails
searching for the smallest and largest eigenvalues among all
possible k-column submatrices of the matrix, which is, in
general, an NP hard task [24]. In this work, we follow an
alternative approach to analyzing the RIP of a KR product
matrix. We seek to derive tight upper bounds for its RICs.

B. Related Work

Perhaps the most straightforward way to analyze the RICs
of the KR product matrix is to use the eigenvalue interlacing
theorem [25]], which relates the singular values of any k-
column submatrix of the KR product to the singular values of
the Kronecker product. This is possible because any k£ columns
of the KR product can together be interpreted as a submatrix
of the Kronecker product. However, barring the maximum and
minimum singular values of the Kronecker product, there is
no explicit characterization of its non-extremal singular values
available, that can be used to obtain tight bounds the £-RIC of
the KR product. Bounding the RIC using the extreme singular
values of the Kronecker product matrix turns out to be too
loose to be useful. In this context, we note that an upper bound
for the k-RIC of the Kronecker product matrix is derived in
terms of the k-RICs of the input matrices in [4], [26]. However,
the k-RIC of the KR product matrix is yet to be analyzed.

Recently, [27]], [28|] gave probabilistic lower bounds for
the minimum singular value of the columnwise KR product
between two or more matrices. These bounds are limited to
randomly constructed input matrices, and are polynomial in
the matrix size. In [29]], it is shown that for any two matrices
A and B, the Kruskal—rankE] of A ® B has a lower bound in
terms of K-rank(A) and K-rank(B). In fact, Krank(A © B)
is at least as high as max (K-rank(A), K-rank(B)), thereby
suggesting that A © B satisfies a stronger restricted isometry
property than both A and B. The RIC bounds presented in
this work ratify this fact.

A closely related yet weaker notion of restricted isometry
constant is the 7-robust K-rank, denoted by K-rank.. For a
given matrix ®, the K-rank, (®) is defined as the largest k for
which every n x k submatrix of ® has its smallest singular
value larger than 1/7. In [27], it is shown that the 7-robust K-
rank is super-additive, implying that the K-rank, of the Khatri-
Rao product is strictly larger than individual K-rank;s of the
input matrices. We show a similar result for the restricted
isometry constants of the KR product matrix.

Our work is perhaps closest to [7], which provides a
polynomially tight probabilistic upper bound for the k-RIC
(defined using ¢;-norm in (3)) of the Khatri-Rao product
A ©® B, when the input matrices A and B are the adjacency
matrices of two independent uniformly random J-left regular
bipartite graphs. This work instead assumes A and B to be
random matrices with independent subgaussian elements.

C. Our Contributions
We derive two upper bounds on the k-RIC of the column-
wise KR product of two m x n sized matrices A and B. The

2The Kruskal rank of any matrix A is the largest integer 7 such that any
r columns of A are linearly independent.



bounds are listed below.

1) A deterministic upper bound for the k-RIC of A ® B in
terms of the k-RICs of the input matrices A and B. The
bound is valid for £k < m, and for input matrices with
unit ¢>-norm columns.

A probabilistic upper bound for the k-RIC of A ® B
in terms of k£ and the input matrix dimensions (m,n),
for A;B as random matrices with i.i.d. subgaussian
elements. The probabilistic bound is polynomially tight
with respect to the input matrix dimension n. The bound
is valid for k < n.

A probabilistic upper bound for the k-RIC of the self
KR product A ® A in terms of m,n, and k, for A as a
random matrix with i.i.d. subgaussian elements. Although
the RIC bounds for the self KR product and the general
KR product with distinct input matrices are of similar
form, the derivation of former RIC bound is slightly more
intricate as it involves showing sharp concentration for
functions of dependent random variables.

2a)

2b)

A key idea in the RIC analysis is to use the fact (stated
formally as Proposition that for any two matrices A and
B, the Gram matrix of their KR product (A®B)” (A®B) can
be interpreted as the Hadamard product (element wise multi-
plication) between AT A and BT B. The Hadamard product
form is more analytically tractable than columnwise Kronecker
product form of the KR matrix.

Lately, in several machine learning problems, the necessary
and sufficient conditions for successful signal recovery have
been reported in terms of the RICs of a certain Khatri-Rao
product matrix serving as a pseudo sensing matrix [8]], [16].
In light of this, our proposed RIC bounds are quite timely,
and pave the way towards obtaining order-wise tight sample
complexity bounds in several fundamental learning problems.

The rest of this article is organized as follows. In Secs.
and we present our main results: deterministic and prob-
abilistic RIC bounds, respectively, for a generic columnwise
KR product matrix. Sec. |[Ilj also discusses about the RIP of the
self Khatri-Rao product of a matrix with itself, an important
matrix type encountered in the sparse diagonal covariance
matrix estimation problem. In Secs. and we provide
some background concepts needed in proving the proposed
RIC bounds. Secs. [V| and provide the detailed proofs of
the deterministic and probabilistic RIC bounds, respectively.
Final conclusions are presented in Sec. [VIII}

Notation: In this work, bold lowercase letters are used for
representing both scalar random variables as well as vectors.
Bold uppercase letters are reserved for matrices. The ¢5-norm

of vector x is denoted by ||x||,. For an m x n matrix A,

||A]| denotes its operator norm, [|A[| = sup,cgn xo %.
’ 2

The Hilbert-Schmidt (or Frobenius) norm of A is defined
as [|Allgs = 2imy 2oy |A; j|°. The symbol [n] denotes
the index set {1,2,...,n}. For any index set S C [n],
A denotes the submatrix compromising the columns of A
indexed by S. The matrices A ® B, AoB and A ®B denote
the Kronecker product, Hadamard product and columnwise
Khatri-Rao product of A and B, respectively. A < B implies
that B — A is a positive semidefinite matrix. A7, A#, A~1,

and AT denote the transpose, conjugate-transpose, inverse and
generalized matrix inverse operations, respectively.

II. DETERMINISTIC k-RIC BOUND

In this section, we present our first upper bound on the k-
RIC of a generic columnwise KR product A ® B, for any two
similar sized matrices A and B with normalized columns. The
bound is given in terms of the k-RICs of A and B.

Theorem 1. Let A and B be m X n sized real-valued
matrices with unit {y-norm columns and satisfying the k™
order restricted isometry property with constants (5? and
5,]?, respectively. Then, their columnwise Khatri-Rao product
A O B satisfies the restricted isometry property with k-RIC at
most 62, where § = max (5?, 5}3), ie.,

(1 -6zl <[[(A©B)zl; < (1 +6*)|lzll;  (®
holds for all k-sparse vectors z € R™.
Proof. The proof is provided in Section O

Remark 1: The RIC bound for A ® B in Theorem [I] is
relevant only when 0;(A) and 0,(B) lie in (0,1), which
is true only for £ < m. In other words, the above k-RIC
characterization for A ® B requires the input matrices A and
B to be k-RIP compliant.

Remark 2: Since the input matrices A and B satisfy k-
RIP with §x(A),d,(B) € (0,1), it follows from Theorem
that 05 (A © B) is strictly smaller than max (65 (A), 0x(B)).
If B = A, the special case of self Khatri-Rao product A ® A
arises, for which

S(A O A) <G(A). 9)

Above implies that the self Khatri-Rao product A© A is a bet-
ter restricted isometry compared to A itself. This observation
is in alignment with the expanding Kruskal rank and shrinking
mutual coherence of the self Khatri-Rao product reported in
[16]. In fact, for & = 2, the 2-RIC bound (9) exactly matches
the mutual coherence bound shown in [16].

For k € (m, m2], using ( [30], Theorem 1), one can

show that Jx(A © B) < (\/%—i- 1) 5\@, where 5\/E =

max (8, ;:(A), 8 z(B)). This bound, however, loses its tight-
ness and quickly becomes unattractive for larger values of k.
Finding a tighter K-RIC upper bound for the £ > m case
remains an open problem.

To gauge the tightness of the proposed k-RIC bound for
A © B, we present its simulation-based quantification for
the case when the input matrices A and B are random
Gaussian matrices with i.i.d. N/(0,1/m) entries. Fig. [I] plots
3k(A), 0x(B), 6, (A ®B) and the upper bound 65 (A © B) =
(max (6, (A), 6x(B)))” for a range of input matrix dimension
m. The aspect ratio m/n of the input matrices is fixed to
0.5 For computational tractability, we restrict our analysis
to the cases k = 2 and 3. The RICs: §x(A), 05(B) and

3 While the m X n matrices A and B may represent highly underdetermined
linear systems (when m < n), their m?2 x n sized Khatri-Rao product A©B
can become an overdetermined system. In fact, many covariance matching
based sparse support recovery algorithms [16], [[17], [31] exploit this fact to
offer significantly better support reconstruction performance.
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Fig. 1: Variation of k-RICs of A, B, A ® B and the proposed upper bound
with increasing input matrix dimensions. The top and the bottom plots are
for k = 2 and 3, respectively. Each data point is averaged over 10 trials.

0x(A @ B) are computed by exhaustively searching for the
worst conditioned submatrix comprising k columns of A, B
and A © B, respectively. From Fig. [I] we observe that the
proposed k-RIC upper bound becomes tighter as the input
matrices grow in size.

III. PROBABILISTIC k-RIC BOUND

The deterministic RIC bound for the columnwise KR prod-
uct discussed in the previous section is only applicable when
k < m. It also fails to explain the empirical observation that
the KR product A ® B often satisfies k-RIP in spite of the
input matrices A and B failing to do so. These concerns are
addressed by our second RIC bound for the columnwise KR
product. This second RIC bound is probabilistic in nature and
is applicable to the KR product of random input matrices
with i.i.d. subgaussian entries. Below, we define a subgaussian
random variable and state some of its properties.

Definition 1. (Subgaussian Random Variable): A random vari-
able x is called subgaussian, if its tail probability is dominated
by that of a Gaussian random variable. In other words, there
exists a constant K > 0 such that P(|x| > t) < e="/5".

Gaussian, Bernoulli and all bounded random variables are
subgaussian random variables. For a subgaussian random
variable, its p order moment grows only as fast as O(p?/?)
[32]]. In other words, there exists K7 > 0 such that

(Ex|")? < Kiy/p, p>1. (10)

The minimum such K; is called the subgaussian or 1o norm
of the random variable x, i.e.,

1
[1xIl,, = supp™ '/ (E|x[")7 . (1
p=1
Given a pair of random input matrices with i.i.d. subgaus-
sian entries, Theorem [2] presents a new upper bound on the
k-RIC of their columnwise KR product.

Theorem 2. Suppose A and B are m x n random matrices
with real i.i.d. subgaussian entries, such that EA;; = 0 and
EA, =1, and ||Ayl|,, < K, and similarly for B. Let K, =
max (K 1) Then, the k™ order restricted isometry constant
of & 7m0 \F denoted by Oy, satisfies d, < § with probability

at least 1 —8en =227~ for all v > 1/¢o, and co a universal
positive constant, provided that

3/2 2 .
m><wwﬁgfa>ﬁﬂ%mm,

Proof. The proof is provided in Section [VII [

The normalization constant /m used while computing

A B

the KR product =~ © —= ensures that the columns of

the input matrices A=, have unit average energy, i.e.
m

E|la;/v/m||, = E|\bz/\ﬁ||2 =1forl < i < n. Column
normalization is a key assumption towards correct modelling
of the isotropic, norm-preserving nature of the effective sens-
ing matrix %(A ©® B), an attribute found in most sensing
matrices employed in practice.

Theorem [2] implies that

A \/E(logn)3/2
\/73/2K2
<\F W)“G ( m )
(12)

with probability exceeding 1 — 8en~2(¢27=1)_ Thus, the above
k-RIC bound decreases as m increases, which is intuitively
appealing. Interestingly, for ﬁxed k and n, the above k-
RIC upper bound for \F f decays as O( ). This is
a significant improvement over the O(—=) decay rate [11]
already known for the individual k-RICs of the input sub-

gaussian matrices oo and Nk Thus, for any m, the Khatri-

ﬂ\

Rao product % ® % exhibits stronger restricted isometry
property, with significantly smaller k-RICs in comparison to
the k-RICs for the input matrices.

In some applications, the effective sensing matrix can be
expressed as the self-Khatri Rao product %(A ® A) of a
certain column normalized system matrix % with itself [|16].
In Theorem [3| below, we present the k-RIC bound for the

special case of self-Khatri-Rao product matrices.

Theorem 3. Let A be an m X n random matrix with real
i.i.d. subgaussian entries, such that EA;; = 0 and EA2 =1,
and ||Aijll,, < K. Then, the k™ order restricted lsometry
constant of the column normalized self Khatri-Rao product
%(A © A) satisfies 0, < § with probability at least 1 —
4en=27=1 for any v > 1/¢a, provided

3/2 172
m><w%j;fa>ﬁﬂ%mm,



Here, K, = max (K,1) and cy > 0 is a universal constant.
Proof. A proof sketch is provided in Appendix [F [
Theorem [3] implies that

A \/E(logn)?)/2
ol
(f \/>> =10 ( m >
(13)

with probability exceeding 1—4en~2(¢27=1)_ The above k-RIC
bound for the self Khatri-Rao product scales with m,n, and
k in a similar fashion as the asymmetric Khatri-Rao product.

Remark 3: From [11]], for an m x n matrix A with i.i.d.

2 : A 2Cklog(eN/k) . .
subgaussian entries, 5k(—m) < ==——>=== with high
probability. Now, even though the columns of A do not exactly
have unit norm, directly using this in Theorem [I|for the sake of
2Ck Tog(eN/k)

comparison results in 5k(— ® f) < 7, when
k < m. Our probabilistic bound in is therefore tighter
than the deterministic bound in Theorem [T] by a multiplicative
factor of O(v/k). Note that, the deterministic bound is valid
for any pair of input matrices with normalized columns, while
the probabilistic bound holds when the input matrices have
i.i.d. subgaussian entries.

Remark 4: In covariance matching based signal support
recovery algorithms like Co-LASSO [16]] and M-SBL [[17]],
given a system matrix —2=, do( JAE ® J%) < 1 is one of the
sufficient conditions for exact recovery of the true k-sparse
support of the unknown signal of interest [[18]]. This sufficiency
condition is met with arbitrarily high probability according
to Theorem [3] when the subgaussian matrix A has at least
m = O (\/Elogs/ 2
condition when compared with O(klogn) rows required for
exact k-sparse support recovery by conventional compressive
sensing algorithms such as SOMP [33]]. In fact, to the best
of our knowledge, our k-RIC bound for the self Khatri-Rao
product provides the first ever theoretical confirmation for
the empirically observed performance of covariance matching
based sparse support recovery algorithms, i.e., the number of
measurements m need to scale as only O(v/k) rather than
O(k) in the case of conventional support recovery algorithms.

n) rows. This is a significantly milder

IV. PRELIMINARIES FOR DETERMINISTIC k£-RIC BOUND

In this section, we present some preliminary concepts and
results which are necessary for the derivation of the determin-
istic k-RIC bound in Theorem (I} For the sake of brevity, we
provide proofs only for claims that have not been explicitly
shown in their cited sources.

A. Properties of the Kronecker and Hadamard product

For any two matrices A and B of dimensions m X n and
p X q, the kronecker product A ® B is the mp X ng matrix

anB  a;2B a1,B
a21B a22B agnB

A®B= : : (14)
amlB amQB amnB

The following Proposition relates the spectral properties of
the Kronecker product and its constituent matrices.

Proposition 4 (7.1.10 in [2]). Let A € R™*"™ and B € RP*P
admit eigenvalue decompositions U oA AU£ and UgA BUg,
respectively. Then,

(Ua®@Up)(Ax @ Ap)(Us @ Ug)”
yields the eigenvalue decomposition for A @ B.

For any two matrices of matching dimensions, say m X n,
their Hadamard product A o B is obtained by elementwise
multiplication of the entries of the input matrices, i.e.,

[A o B]i,j = aijbij for i € [m},] S [n] (15)

The Hadamard product A o B is a principal submatrix of the
Kronecker product A ® B [3]], [34]]. For n x n sized square
matrices A and B, one can write,

AoB=J'(A®B)J, (16)

where J is an n? x n sized selection matrix constructed entirely
from 0’s and 1’s which satisfies J7J = I,.

In Proposition [5] we present an upper bound on the spectral
radius of a generic Hadamard product.

Proposition 5. For every A, B € R™*"™, we have

Omax (A © B) < rmax(A)Cmax(B) (17)

where Opax(+), Tmax(-) and cua(:) are the largest singular
value, the largest row norm and the largest column norm of
the input matrix, respectively.

Proof. See Theorem 5.5.3 in [35]. O

We now state an important result about the Hadamard
product of two positive semidefinite matrices.

Proposition 6 (Mond and Pecari¢ [36]). Let A and B be
positive semidefinite n x n Hermitian matrices and let v and
s be two nonzero integers such that s > r. Then,

(A*oB*)"* > (A" o B")'/", (18)

In Propositions [7]and [8] we state some spectral properties of
correlation matrices and their Hadamard products. Correlation
matrices are symmetric positive semidefinite matrices with
diagonal entries equal to one. Later on, we will exploit the
fact that the singular values of the columnwise KR product
are related to the singular values of the Hadamard product of
certain correlation matrices.

Proposition 7. If A is an nxn correlation matrix, then A'/?o
A2 is a doubly stochastic matrix.

Proof. See Appendix [Al O

Proposition 8 (Werner [37]]). For any correlation matrices A
and B of the same size, we have A'/? o BY/2 < 1, where
A'Y? and B'/? are the positive square roots of A and B,
respectively.

Proof. Since A is a correlation matrix, from Proposition
it follows that A'/2 o A'/2 is doubly stochastic. Since the
rows and columns of A2 o A2 sum to unity, we have
Tmax(AY2) = cna(AY?) = 1. Similarly, 7 (BY?) =
cmax(Bl/ 2) = 1. Then, from Proposition it follows that
the largest eigenvalue of A'/2 o B/2 is at most unity. [



B. Matrix Kantorovich Inequalities

Matrix Kantorovich inequalities relate positive definite ma-
trices by inequalities in the sense of the Lowner partial orderE]
These inequalities can be used to extend the Lowner partial
order to the Hadamard product of positive definite matrices.
Our proposed RIC bound relies on the tightness of these
Kantorovich inequalities and their extensions.

A matrix version of the Kantorovich inequality was first
proposed by Marshall and Olkin in [38]]. It is stated below as
Proposition [9}

Proposition 9 (Marshall and Olkin [38]]). Let A be ann X n
positive definite matrix. Let A admit the Schur decomposition

A = UAUT with unitary U and A = diag(\1, Ao, ..., \y)
such that \; € [m, M]. Then, we have
A% < (M +m)A — mMT,. (19)

The above inequality is the starting point for obtaining
a variety of forward and reverse Kantorovich-type matrix
inequalities for positive definite matrices. In Propositions
and [TI] we state specific forward and reverse inequalities,
respectively, which are relevant to us.

Proposition 10 (Liu and Neudecker [39]]). Let A be an n xn
positive definite Hermitian matrix, with eigenvalues in [m, M.
Let V be an n x n matrix such that VIV = 1 Then,

VTA2V — (VIA2V)® < i(M —m)?L.  (20)

Proposition 11 (Liu and Neudecker [40]). Let A and B be
n X n positive definite matrices. Let m and M be the minimum
and maximum eigenvalues of BY/2A~ B2 Let X be an
n X p matrix with rank q (n > p > q). Then, we have

AmM T 1
@2n

(XTBX)(XTAX)(XTBX) >

Proposition [I0] can be proved using (I9) by pre- and
post-multiplying by V7 and V, respectively, followed by
completion of squares for the right hand side terms. The proof
of Proposition |1 1] is given in [40].

C. Kantorovich Matrix Inequalities for the Hadamard Prod-
ucts of Positive Definite Matrices

Lemmas [1] and [2] stated below extend the Kantorovich in-
equalities from the previous subsection to Hadamard products.

Lemma 1 (Liu and Neudecker [39]). Let A and B be
n X n positive definite matrices, with m and M denoting the
minimum and maximum eigenvalues of A @ B. Then, we have

1
A?0B?< (AoB)?+ Z(M —m)’L,.

Proof. Let J be the selection matrix such that J7J = I and
AoB = JT(A®B)J. Then, by applying Propositionwith
A replaced with A ® B, and V replaced with J, we obtain

(22)

JT(A®B)2J - (JT(A®B)J)? < i(M —m)°L

4The Léwner partial order here refers to the relation “<”. For positive
definite matrices A and B, A < B if and only if B — A is a positive
semi-definite matrix.

Using Fact 8.21.29 in [2], i.e., (A ® B)? = A%2 @ B2, we get
1
JT(A?®B*)J - (AoB)? < Z(M —m)I,

Finally, by observing that J7 (A% @ B%)J = A% 0 B2, we
obtain the desired result. O
Lemma 2 (Liu [41]]). Let A, B be n x n positive definite
correlation matrices. Then,

2cd
242"

where the eigenvalues of AY/? and B'/? lie inside |c, d).

(23)

Lemma 2] follows from Proposition [T} by replacing A with
I, ® B, B with A2 ® B/2, and X with J, where J is
the n? x n binary selection matrix such that J7J = I and
AoB=JT(A®B)J.

V. PROOF OF THE DETERMINISTIC k-RIC BOUND
(THEOREM [I))

The key idea used in bounding the k-RIC of the columnwise
KR product A ® B is the observation that the Gram matrix
of A ® B can be interpreted as a Hadamard product between
the two correlation matrices AT A and B7TB, as mentioned
in the following Proposition.

Proposition 12 (Rao and Rao [42])). For A,B € R™*™,

(AoB)T(A®B)=(ATA)o (B'B) (24)

Proof. See Proposition 6.4.2 in [42]. O

Then, by using the forward and reverse Kantorovich matrix
inequalities, we obtain the proposed upper bound for k-RIC
of A ® B as explained in the following arguments.

Without loss of generality, let S C [n] be an arbitrary index
set representing the nonzero support of z in (8), with |S| < k.
Let Ag denote the m x |S| submatrix of A, constituting |S]
columns of A indexed by the set S. Let Bs be constructed
similarly. Since J;(A), 0x(B) < 1, both Ag, Bg have full
rank, and consequently the associated Gram matrices ALA g,
BEBS are positive definite. Further, since A and B have
unit norm columns, both AgAg and BEBS are correlation
matrices with unit diagonal entries. Using Proposition [12] we
can write

(As ©Bs)'(As ®Bs) = ALA50BLBs. (25)

Next, for & < m, by applying Lemma [I| to the positive
definite matrices (AL Ag)'/? and (BLBg)!/2, we get,

2 1
ATA5oBIBg < ((A@AS)%O(BgBS)%) (M =m)’L,

< Tt (M- m)L, (26)

where the second inequality is a consequence of the unity
bound on the spectral radius of the Hadamard product between
correlation matrices, shown in Proposition [§} In (26), M and
m are upper and lower bounds for the maximum and minimum
eigenvalues of (AL Ag)'/2 @ (BLBg)'/?, respectively. From
the restricted isometry of A and B, and by application of



Proposition the minimum and maximum eigenvalues of
(ALA5)Y? @ (BEBg)'/? are lower and upper bounded by

\/(1 —0A)(1—0B) and \/(1 + 62)(1 4 6B), respectively.
By introducing § £ max (6, 02), it is easy to check that
the eigenvalues of (ALA5)!/? @ (BLBg)!/? also lie inside
the interval [1 — 4,1 + 5]. Pluggingm =1—¢ and M =1+
in (26), and by using (23), we get

(As ®Bg)'(As ®Bg) < (1+6%) L.

Slmllarly, by applying Lemma I to ALAg and BB with
l1—¢dand d=+v1+96, we obtaln

(A%As)"?0 (BIBs)2 > (V1-9) 1,

From Proposition @ we have ATAS o BT sBs >
(ALAg)/%0 (BTBS)l/Q) Therefore, we can write

(1-0°) 1.

@7

ALTA50BLBg >
Further, using (23), we get
(As ®Bgs)"(As ®Bg) > (1-6%) 1. (28)
Finally, Theorem [I]s statement follows from and (28).

VI. PRELIMINARIES FOR PROBABILISTIC k-RIC BOUND

In this section, we briefly discuss some concentration results
on certain functions of subgaussian random variables which
will appear in the proofs of Theorems [2] and 3]

A. A Tail Probability for Subgaussian Vectors

The Theorem below presents the Hanson-Wright inequality
[43]], [44], a tail probability for a quadratic form constructed
using independent subgaussian random variables.

Theorem 13 (Rudelson and Vershynin [44]). Let x =
(x1,X2,...,Xp) € R™ be a random vector with independent
components x; satisfying Ex; = 0 and |[x;||,, < K. Let A
be an n x n matrix. Then, for every t > 0,

]P’{|XTAx — EXTAX| > t}
< 2exp | —cmin r t
>~ X - P
K4||All% K2 A

where c is a universal positive constant.

B. Concentration of Supremum of Linear Combination of
Bounded, Nonnegative Independent Random Variables

The following theorem bounds the subgaussian tail of a
function of several independent random variables satisfying
a relaxed bounded difference property.

Theorem 14. Consider a general real-valued function of n

independent random variables z = f(x1,Xa,...,X,) and

z; denotes an X;-measurable random variable defined by

z; = infy f(x1,%o,...,X},...,Xy). Assume that the random

variable z is such that there exists a constant v > 0, for which,
n

> (

i=1

zZ — zi)2

almost surely. Then, for all t > 0,
P(z—Ez>1t) < et /2
Proof. See Theorem 6.7 in [45]. O

Theorem |14 can be used to show a subgaussian tail for the
maximal linear combination of bounded nonnegative random
variables, stated below.

Lemma 3. Ler x1,Xo,...,X, be i.i.d. nonnegative, bounded
random variables satisfying x; < b. Then, y =
SUP,eRn ||z]|o<1 Yoi ziX; is a nonnegative random variable
which satisfies the following tail inequality:

Ply—Ey>t) < et /207
Proof. See Appendix O

The following proposition bounds the expectation of a
nonnegative subgaussian random variable.

Proposition 15. Let x be a nonnegative random variable with
a subgaussian tail, i.e., for t > 0,

P(z—Ez>t) <et/2
for some v > 0. Then, Ez < /27v.
Proof. See Appendix [C] O

VII. PROOF OF THE PROBABILISTIC k£-RIC BOUND
(THEOREM 2))

The proof of Theorem [2] starts with a variational definition

of the k-RIC, 6, (\/% O} %) given below.

A B\ A B,

v \F\_nzz%?n v ) )
|z||,=1 z|| <k

(29)

In order to find a probabilistic upper bound for §, we intend
to find a constant § € (0, 1) such that P(d, f—m ©® \/% >9)
is arbitrarily close to zero. We therefore consider the tail event

[EXEAP

and show that for m sufficiently large, P(£) can be driven
arbitrarily close to zero. In other words, the constant § serves
as a probabilistic upper bound for dy, \2% ® %)

Let Uy, be the set of all £ or less sparse unit norm vectors
in R™. Then, using Proposition [I2] the tail event in (30) can
be rewritten as

PE)=P <sup z!

zEU

2

= sup —1|>4

b

2
IIZHr1 ||ZH0<k

(A@B)T(AQB)z—mQ‘ 25m2)

=P (sup |ZT (ATA o BTB) Z m2’ > 5m2>
zEU,

=P | sup ZZzlzJ a b b) 2| > om?
zEUY,

=1 j=1



where a; and b; denote the ith column of A and B, re-
spectively. Further, by applying the triangle inequality and the
union bound, we get

PE) < 1P<Sup > 22l (bl — m? >cwnf>-+
=1

P|sup > ) zzalabb;| > (1—a)dm® | .31
2€U i1 j=1j#i

In the above, o € (0, 1) is a variational union bound parameter
which can be optimized at a later stage. We now proceed to
find separate upper bounds for each of the two probability
terms in (BT).
The first probability term in (3I) admits the following
sequence of relaxations.
2l > a5m2>

n
P | sup
zE€UY |
hMﬂbm—m\>Mm>

2 2
ZZ? [[aill3 [bs]|5 —
(a)
: (z

zclU k j—

22 2 2
P (e [l 10 — ] = ad?)

© 2 2
9 p { [l 3 1] 5 = o2

1<i<n

o)

SR (|llal bl - | = aom?)
i=1
D ([lfanl b1l m?| = aom?).
< (\Hallli —m] ‘Ilbl\li —m} > a55m2)
+2nP <‘||a1|§ —m| > a(l—fﬁm)
< o ([llallg — m| > v/agom)
2 (] - m| > 220
< MW(Mm@—nlzﬁy(@_iv)
(2 dne ™ v 2 (1-ab/4)? . a2

In the above, step (a) follows from the triangle inequality
combined with the fact that 2?’s sum to one. The inequality
in step (b) is a consequence of the fact that any nonnegative
convex combination of m arbitrary numbers is at most the
maximum among the n numbers. Step (c) is obtained by
simply rewriting the tail event for the maximum of n random
variables as the union of tail events for the individual random
variables. Step (d) is obtained by using the union bound over
values of index i € [n]. Step (e) follows because the columns
of A and B are i.i.d.. Step (f) is the union bound combined
with the fact that for any two vectors a, b € R™, the following
triangle inequality holds:

2 2 2 2
lali3 bl —m2| < [(Ifally = m) (Ibl3 - m))|

2 2
+m||lal 5 = m|+m |[bl; — m|.

In step (d), 8 € (0, 1) is a variational union bound parameter.
Step (g) is once again the union bound and exploits the i.i.d.
nature of the columns of A and B. Step (h) is obtained
by setting 3 = ad/4. Lastly, step (¢) is the Hanson-Wright
inequality (Theorem [T3)) applied to the subgaussian vector a;.

Next, we turn our attention to the second probability term
in (3I). It can be upper bounded as follows:

n

n
sup E E zizjaiTajbITbj

2 i=1 j=1,j4i

n

n
< sup >zl llailly [bally | D 2] fuijois]
2€U G=1,j#i
n
< (Sup > il llaill, |bi|2>
zEU, i=1
max sup Z |25 | |wijvij] (33)
1<i<n 40 Euk] ., ij Vig ’
where u;; <W’aﬂ> and v;; <H}:’il|z b;). From

the approximate rotational invariance of subgaussian random
variables [32], it can be shown that the inner products u;; and
v;; are also subgaussian with [lu|,, = [lvill,, < K,
with c3 > 0 being a universal numerical constant.

Using (33), and by applying the union bound, the second
probability term in (31)) can be written as the sum of following
two tail probabilities.

n

P supz

Z zizjaj ajbl b;| > (1 — a)ém?
z€U,

i=1 =15

Z zjuijvij| > 4V2m K2 (ylogn)3/?
=1

<P | max sup

1<i<n zEU

n
(1 — a)ém?
+ P su zi| ||agl| [|billy > 34
(zezilelll lalbilly 2 o ogmyira ) ¥

=1

The following Lemmas provide upper bounds for the two tail
probability terms in (34).

Lemma 4. Let A and B be m X n random matrices as
specified in Theorem [2| Let u;; = (ﬁ,aﬂ and v;; =
<|Ib m ,b;), where a; and b; denote the i" column of A and
B, respectlvely. Then,

P | max sup Z |25 [uijuij| > 4V2m K2(ylogn)3/?

1<i<n u
2EUk j=1,ji

2e

S ey 39

where K, = max(K, 1) and cy > 0 is a universal constant.

Proof. See Appendix O



Lemma 5. Let A and B be m x n random matrices with in-
dependent zero mean, unit variance, i.i.d. subgaussian entries
satisfying ||Aqjll,, = |[Bijll,, < K. Then,

(1 — a)dm?
<5up Z|Zz| llaaly [oilly = 4\/7K2(710gn 3/2

cm

<2ne X5, (36)
. SmK 'y _
provided m > =——ot— \flog n. Here, K,=max (K, 1)
and c>0is a umversal constant.
Proof. See Appendix [E| O

By using Lemmas [ and [5] together in (34), we get

n

n
Z zizjazrajbinj > (1 — a)ém?

P | sup
2 Uk =1 j=1,j+i
2e —em de
= n2(cay—1) +2ne o < n2(cay—=1)’ (7
8v2m K 2~3/2

provided m > max (220 /R 10g} p, Zer-lolosn)
Using (32) and together in (3I)), we get

4 4e 8e
PE) = (ca262(17a(5/4)27n_1> + n2(c2y—1) < n2(e2y=1)"’ (38)
n 4K§ logn

provided m > max(is‘/??f{;)fﬂ \/Elog% n, —(2627_1)6“{3 log n)
Where é‘ — Imax (1, m)

Lastly, by choosing @ = 1/2, we get P(dy, > 0)
8en~2(¢27=1) provided that

=P <

1627 K 23/2 2 1)K
mZmaX( VI g 3, Qo —DERD, N
c
where £ = max (1,%).Note that, in terms of k and

n, the first term in the inequality for m scales as vk 10g3/ 2
it dominates the second term, which scales as log n. This ends
our proof.

VIII. CONCLUSIONS

In this work, we have analyzed the restricted isometry
property of the columnwise Khatri-Rao product matrix in
terms of its restricted isometry constants. We gave two upper
bounds for the k-RIC of a generic columnwise Khatri-Rao
product matrix. The first £-RIC bound, a deterministic bound,
is valid for the Khatri-Rao product of an arbitrary pair of
input matrices of the same size with normalized columns.
It is conveniently computed in terms of the k-RICs of the
input matrices. We also gave a probabilistic RIC bound for
the columnwise KR product of a pair of random matrices with
ii.d. subgaussian entries. The probabilistic RIC bound is one
of the key components needed for computing tight sample
complexity bounds for several machine learning algorithms.

The analysis of the RIP of Khatri-Rao product matrices in
this article can be extended in multiple ways. The current RIC
bounds can be extended to the Khatri-Rao product of three or
more matrices. More importantly, in order to relate the RICs

to the dimensions of the input matrices, we had to resort to the
randomness in their entries. Removing this randomness aspect
of our results could be an interesting direction for future work.

APPENDIX
A. Proof of Proposition ]
Proof. Since A is a correlation matrix, it admits the Schur
decomposition, A = UAU7”, with unitary U and eigenvalue
matrix A = diag(A, Aa,...,\,). Since A is positive semi-
definite, its nonnegative square-root exists and is given by

A2 = UAY2UT. Consider
Ao A2 S A Pl o 3 A Ayl
i=1 j=1
n n / /
1/2\1/2 T T
= ZZ/\Z. A7 (wiag) o (ujuy)
i=1 j*l

(u; ouy) (u; 0 u]) .(39)

Z: Z )\1/2 ;/2

Above, the second equality follows from the distributive
property of the Hadamard product and the last step follows
from Fact 7.6.2 in [2]]. Using (39), we can show that the rows
and columns of A'/? o A'/2 sum to one, as follows:

ZZ)‘UQ 1/2 (u; o u;) (u; 0 U-J)T 1

=1 j=1

=33 AN (o) (wie)

i=1 j=1

= Z Z)\Z}/2/\;/2 (w; o u;) ul u;

i=1 j=1

- Z Ai (ujou;) =d (say).

(A1/2 oA1/2

The above arguments follow from the orthonormality of
the columns of U, and repeated application of Fact 7.6.1 in
[2]. Note that for k € [n], d(k) = 327, A(i) (w;(k))* =
[UAUT], = Agr = 1. Thus, we have shown that (A'/2 o
A'Y/?)1 = 1. Likewise, it can be shown that 17 (A2 o
A'Y2) =17 Thus, A'/? 0 A'/? is doubly stochastic. O

B. Proof of Lemma [3|

Define y(i) £ inf sup (21%1 + -+ + 2%, + -+ + 2,Xp)-
X; z€R™
[l=]]<1

Further, let z* &  arg sup ZJ 1 %j%;. Since X; are non-

z€R”,\|zH2<1
negative, clearly z* is a nonnegative, unit norm vector. Then,

for i € [n],

[

+ Z'IX'I

n
z : /
ZjXJ

Jj=1,
J#i

sup g zjXj —inf sup
zER™ X z'€R™,
lall; <17



= 2} (xi — inf xi) = 2/x;. (40)
Since x; < b and [|z*[|> < 1, we have >, (y y('))2

i, z;?b* < b?. Finally, by invoking Theorem [14) with v =
b2, we obtain the desired tail bound for y.

C. Proof of Proposition

The said upper bound for Ez can be derived as shown below.
/ P(z > t)dt = / P(z > r + Ez)dr
0 —Ez

o 2 oo 7‘2
/ e T2y < / e zvdr < V2mv.
—Ez —00

Ez

IN

D. Proof of Lemma

Let @ C (R™*™ x R™*™) be the collection of matrix

tuples (X,Y) satisfying |u;;v;;| < 2K?ylogn for all 1 <
T

i,j <n,j # i, where u;; and v;; are evaluated as <H min L) and

yly
(il
Al

), respectively. Then, for subgaussian random matrices
as defined in Lemma [}

P(AB)¢Q = P| (J {lujvi|>2K>ylogn}

1<i,j<n
J#i
(@)
< Z P (|uijvij| > 2K2’}/ logn)
1<i,j<n

J#i
() n2 9
< EP (Jurzv12| > 2K%vlogn)
€
< 0P (Iu12| > \/5K\/710gn)
(d) e

2 —2ciylogn __
< en’e = -1 41)

In the above, steps (a), (b), and (c) are obtain by applying
the union bound over (%) combinations of distinct (i, j) pairs
and exploiting the identical subgaussian tails of the random
variables w;; and v;;, ¢ # j. Step (d) is simply the standard
subgaussian tail bound, with ¢; > 0 a universal constant. Thus,
for v > 1/cy, the random variable |u;;v;;|, ¢ # j, is uniformly
bounded by 2K 2+ logn with arbitrarily high probability, for
sufficiently large n.

Let & denote the event that the matrix tuple (A,B) € Q.
Then, by the law of total probability, we have

P | max sup Z |zj||wijvis| >t

1<i<n zeld j Lo
< P o sw S alluso] > ¢| € ) +P(Ep

Jj=1,j#1i

n
nP | sup Z | 25| [urjv5] >t
zE kj:?

IN

‘ E | +P(&5).  (42)

Let Eab 2 56HN{(X,Y) € R™M*" x R™m*": x; = a,y; = b}
denote the set of matrix tuples (X, Y) with their first columns
fixed as a and b € R™, respectively. Then, conditioned
on €2a’b, the random variables |uq;v1;], 2 < j < n are
ii.d., bounded and nonnegative random variables. By applying
Lemma [3] it follows that

n
P sup Z|ZJ||UUUU| E sup Z\z]||uljv1]| >t | exP
zE kj—2 zEU, =2

< 67t2/8K4'y2 log? n

(43)

It is to be noted here that the above tail bound in the RHS
does not depend on a and b. This leads to an interesting
consequence explained in the following discourse.

Let 7 be an event such that P(T|E2") < 7, where 7 is
independent of a,b. Since & = U, pepn &5 P we have

BT NEy) P (Vaner (TN E")

P(T|E) = PE) B &)
L BTOEY) [ BTIESPER®)
- PE) P(&)
JanPE®)  P(&)
=Ty "PE) “H

Coming back to our proof, using similar arguments as
above’| and on account of the tail bound in the RHS in (@3)
being independent of a and b, it follows that

P{ sup Z|Z]||U’UUZ]| E SUP Z‘%Huljvlﬂ >t

ZEk_2 k_2

< e—i,‘2/8K4’y2 log? n (45)

Further, using Proposition the probability term in the
LHS of the inequality in (45) can be replaced by a smaller
probability term as shown below.

P SUPZ|ZJ||U13U1]|>15+2\/7Kfylogn &

zEU}, =2

< 67t2/8K2'y2 log? n

Setting t = 4K (ylogn)3/2, we get

1
P bUPE \ZJ||U1JU1]|>4FK2(710gn) & gﬁ_
zc€Uy
j=2
(46)

Finally, by combining (@T), (@2) and (46), we obtain the
desired tail bound:

P | max sup Z |25 [uijuij| > 4V2m K2(ylogn)3/?
1<i<n zey, T
< 1 e
— n?'yfl n2(c1'y—1)

< 2e
= p2(c2y-1)7

(47)
where co =min (c;, 1) is a universal positive constant.

5The tail bound in {@3) can also be obtained by using the law of total
probability extended to conditional probabilities.



E. Proof of Lemma
Consider the tail event

(1 — a)dm?
& = {SUPV;VAH%HQ”IO lly = 4@[(?(710};71)3/2}.
(48)
While bounding the tail probability P(€3), the supremum with
respect to z can be circumvented as shown below.

| zi| (1 — a)dm?
P& su g a; illg = 3
< i || lzlPil 2 4\/ﬂK§(Wlogn)§

(1 — a)dm? )
<P{ max ||la; b;||, > . (49)
(WJ ool 2 )
The above inequality is obtained by observing that

since z has unit f3-norm, by Cauchy-Schwarz inequal-
ity, we have ﬁzg;l |z;] < 1. Consequently, the lin-

ear combination ., z—k’ l|ail|, |[bi||, can be at most
maxi<i<n ||ai||, ||bi||5, a quantity independent of z.
Since a; and b;, the column vectors of A and B, respec-

tively, are i.i.d., the following series of union bounds apply.

(1 — a)ém? >
P(&) < nPl|la bi||, >
&) < e (il ol = {
<

onP < (1 —a)ém?
nP { llaally = 4V2mk K2(ylogn)3/2
2 (1 —-a)om
< 2nP <||a1||2—m > m(4\/ﬂK§(vlogn)3/2 - )) .(50)

Since a;j is a subgaussian vector with independent entries, by
the Hanson-Wright concentration inequality in Theorem
the desired tail probability can be obtained as follows:

,m( (1—a)sm
P(Es) < ome” ¥ (WEREs oV R

71) < ope—cm/Ks,

(5D

oz /
provided m > QW) VE(logn)3/2, and with ¢ > 0
being a universal constant. O

F. Proof Sketch for Theorem

The proof of Theorem [3] is along similar lines as that of
Theorem [2} the sketch here focuses on the differences in the
steps. We consider the tail event

g2 4 sup ‘(A®A>Z

! zEU), \/ﬁ \/ﬁ
and show that for sufficiently large m, P(£;) can be driven
arbitrarily close to zero, thereby implying that § is a proba-

bilistic upper bound for o ((A/v/m © A/y/m)). Now, P(&;)
admits the following union bound:

2

-1 25}, (52)

P(&) = ]P’(s;g) ZT(AQA)T(AQA)Z—TRQ‘ 26m2>
zelUy,
= P (sup ’ZT (ATAOATA)Z—mQI > (5m2>
zcUy,
= sup ZZZ’ZJ aZTaj —m?| > dm?
z€Uy =1 j=1

ZZ HazH4

m?| > a5m2>

< P| sup
z€U,

i=1
+P | sup Z ZZzZ; (a] a;) 2 > (1 —a)dm? | .(53)
2C€U |i=1 j=1,j#i

In the above, the second identity follows from Proposition [T2]
The last inequality uses the triangle inequality followed by the
union bound, with « € (0, 1) being a variational parameter to
be optimized later. Similar to the proof of Theorem [2, we now
derive separate upper bounds for each of the two probability

terms in (G3).

The first term in (33) admits the following series of relax-

ations.
3ol |

P sup
z€UL |,
lailly —m?| = a6m2>

(a) n
< P sup z?
(zeu Z

n

k=1

(b) 4 5 5

< P(max ’||ai||2—m ‘Zadm

(¢)

< np(‘||a1\|‘;—m2‘za5m2).

(@) , 2 ,

< nP ’Ha1||2fm‘ > afidm
1-75)6

1P <’|a1||§ ,m‘ > W)

< n]P’(‘Hangfm’Z aﬁém)

a(l — B)dm
+20 (|} - ] = 2EE20 Y
5
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In the above, step (a) is the triangle inequality. The inequality
in step (b) follows from the fact that nonnegative convex
combination of n arbitrary numbers is at most the maximum
among the n numbers. Step (c) is a union bound. Step (d)
is also a union bounding argument with 8 € (0,1) as a
variational parameter, combined with the fact that for any vec-

tor a, the triangle inequality ‘Ha||2 m ‘ < ‘||a||2 m‘

2m ‘||a| |5 — m‘ is always true. Step (f) is obtained by choos-
ing the union bound parameter S = «d/4. Finally, step (g)
is the Hanson-Wright inequality (Theorem [I3)) applied to the
subgaussian vector aj.

We now derive an upper bound for the second probability

term in (33). Note that

n n

> iz (afay)

i=1 j=1,j#i

n
2
< sup Y il [fall3
zEU =1

sup
zEU,

n

Z |ZJ|Ufg

j=1.j#i



n
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:E: |25 |u3j

k=1, j#i

«(55)

< (sup S e ||az||2> max sup
1<i<n,

where wu;; = <H;T|2’ a;). The inner product u,; is a subgaus-
sian random variable satisfying [[us;|,,, < c4K, where ¢4 is
a universal numerical constant.

Using (33) in yields the following union bound.

P [ sup Z Z 2i2; (a;fraj)2 > (1 — a)om?
2€Uk =1 j=1,ji
< P 1123<an8252|2 |qu 4V2r K2 (ylogn)
J#Z
- (1 — a)ém?
+ P [ su zil ||a; 2 > . (56
(zepk; il 4v2m K3 (vlogn)3/2 o

The following Lemmas [6] and [7] provide upper bounds for the
two tail probability terms occurring in the RHS of (56).

Lemma 6. Let A be an m X n random matrix as specified in

Theorem Let u;; = <ﬁ7aj>. Then,

illg

> 4V K? ] PO
P max zseublzc E \zj|u” 4V2 K7 (ylogn)2 S )

Jj=1,j7#i
where K,=max (K,1) and co >0 is a universal constant.
Proof. See Appendix [G| O

Lemma 7. Let A be an m X n random matrix with zero mean,
unit variance, i.i.d. subgaussian entries satisfying ||A;|| v S
K. Then,

(1—a)dm —c

? (a3t > fgnns) <7
(57)

n. Here, ¢ > 0 is a

8V2r K2y

provided m > === ﬂflog

universal constant.

Proof. The proof is similar to that of Lemma[5] which is given
in Appendix O

By using the tail probability bounds in Lemmas [6] and
together in (36), we obtain the following upper bound.

n n

2
P | sup Z Z ZiZ; (alTaj) 2(1—@)57712

2€UL |57 51 44

7cm/K§ _ €
S pEen—n T D G
2e
S e (58)
he above inequality is true for m >

/2 -
\/??K: ’ Vklog? n, M . By combining
and @ we obtain the followmg tail bound.

2e 4e
nQ(CQ'y—l) S n2(cyy—1)’ (59)

ca252(1—as/4)2m 1
n 4K1 logn

/ py—
provided m >max (%\/E log% n, Mlog n) ,

where £ = max (l,m) Finally, by choosing

a = 1/2, we have P(£) < 4den~2(¢27=1) provided that
TR 2~3/2 Y

m > max (167 V2r Rk log®? %logn)

with £ = max (1, m). Note that, in terms of k and

n, the first term in the inequality for m scales as vk log3/ 2
it dominates the second term, which scales as logn.

G. Proof of Lemma [0]

Let W C R™*™ be the collection of all m x n sized
matrices X with columns x;,4 € [n], and satisfying |u;;| =
L] < K+/2~vlogn for all 1 <i,5 <n,j#i. Then, for a

IEAIR
subgaussmn random matrix A,

U

1<4,j<n, j#i

PA¢W) = P

{|Uz‘j| > Kv/ 2710gn}

< Z P <|Uz]| > K+/2vlog n)
1<i,j<n, j#i
2
< %]P’ (|u12| ZK\/2ylogn)
en? e
< —2c1vlogn _
< e Ty (60)

where ¢; > 0 is a universal constant. In the above, the first
and second inequalities are due to the union bound and the
identically distributed nature of w;;, j # ¢. The last inequality
is simply the subgaussian tail bound. Thus, for v > 1/¢;, and
for sufficiently large n, K+/2vlogn acts as a uniform upper
bound for the random variables |u;;|,j # ¢ with arbitrarily
high probability.

Let &5 denote the event that the matrix A € W. Then, by
law of total probability,

P| max sup Z |25 us|* > t
Jj=1,#i
< > c
< P max sup Z Enls t‘ s | +P(&5)
J=1,j#i
< nP | sup Z|ZJHU1J| >t | & | +P(ES). (61)
zEU, j=2

Conditioned on event £3 and the column a; assuming
some fixed value, the random variables \u1j|2 are bounded,
nonnegative and i.i.d. random variables. By Lemma [3 it
follows that

P SUPZ‘ZJH“UF ]EbuP Z|Z]Hu1]| >t

FAS k=2 zclU k=2

537 aj

< 67t2/8K4'y2 loan' (62)

Since the above tail probability bound is independent of
aj, it remains unchanged after marginalizing the conditional



probability in the LHS over all values of aj, i.e.,

n n
P | sup > |zllurs > —Esup > |zl |urs [ >t | €
z

zZE kj:2 € k,j:2

< e—t2/8K4'y2 log? n

(63)

Further, using Proposition [T3] the probability term in the LHS
of the inequality in (63) can be replaced by a smaller tail
probability as shown below.

P | sup > |zluil* > t+ 2v21 K>y logn

zEU =2

&3

< 67152/81(2')/2 log? n

Setting t = 4K (ylogn)3/2, we get

- 1
P suLI{) Z 25| lur > > 4vV2r K2 (ylogn)®/?|& | < o
z€U
j=2
(64)

Finally, by combining (60), (61) and (64), we obtain the
desired tail bound.

n
P | max sup Z |2 [uij|* > 4v2rm K2 (ylogn)3/?
SIS aelh ;A
1 e €

o2n2(ciy—1) n2(c2y—1)’

<
— n2'y71

where co =min (1, ¢;) is a universal positive constant.
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