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Abstract—We consider the problem of decentralized estimation
of multiple joint sparse vectors by a network of nodes from locally
acquired noisy and underdetermined linear measurements, when
the cost of communication between the nodes is at a premium.
We propose an iterative, decentralized Bayesian algorithm called
FB-DSBL (Fusion Based Distributed Sparse Bayesian Learning)
in which the nodes collaborate by exchanging highly compressed
messages to learn a common joint sparsity inducing signal prior.
The learnt signal prior is subsequently used by each node to
compute the maximum a posteriori probability (MAP) estimate of
its respective sparse vector. Since the inter-node communication
cost is expensive, the size of the messages exchanged between
nodes is reduced substantially by exchanging only those local
signal prior parameters which are associated with the nonzero
support detected via multiple composite log-likelihood ratio tests.
The average message size is empirically shown to be proportional
to the information rate of the unknown vectors. The proposed
Sparse Bayesian Learning (SBL) based distributed algorithm
allows nodes to exploit the underlying joint sparsity of the signals.
In turn, this enables the nodes to recover sparse vectors with
significantly lower number of measurements compared to the
standalone SBL algorithm. The proposed algorithm is interpreted
as a degenerate case of a distributed consensus based stochastic
approximation algorithm for finding a fixed point of a function,
and its generalized version with Robbins-Monro type iterations is
also developed. Using Monte Carlo simulations, we demonstrate
that the proposed FB-DSBL has superior MSE and support
recovery performance compared to the existing decentralized
algorithms with similar or higher communication complexity.

Index Terms—Compressed sensing, distributed estimation,
joint sparsity, sparse Bayesian learning, sensor networks.

I. INTRODUCTION

A vector x ∈ R
n is said to be s-sparse if at most s(≪ n)

of its coefficients are nonzero. Further, two or more vectors

are said to be jointly sparse if they share a common nonzero

support, i.e., their nonzero coefficients belong to the same

index set. In this work, we consider the problem of in-network

estimation of multiple joint sparse vectors by a network of

nodes, where each node is interested in estimating only its

own local sparse vector from its noisy, underdetermined,

linear measurements. Since the local sparse vectors at the

individual nodes share a common support, they can be jointly

estimated from significantly fewer measurements compared
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to their independent reconstruction by their respective nodes.

This motivates us to explore efficient mechanisms for col-

laboration between the network nodes which can exploit the

network-wide joint sparsity of the local sparse vectors. A

typical example of such a distributed setup involves mul-

tiple connected agents forming a large network, trying to

learn a local sparse parameterized model of an unknown but

common physical phenomenon. Since the same underlying

phenomenon is observed by each agent, their respective sparse

model parameters/representations tend to exhibit joint sparsity.

The joint sparse vectors considered in this work belong to

the Type-2 Joint Sparsity Model (JSM-2) [1], in which the

nonzero coefficients are assumed to be uncorrelated within

and across the vectors. The JSM-2 signal model has been

successfully applied to several interesting problems such as

MIMO channel estimation [2]–[4], cooperative spectrum sens-

ing [5], [6], decentralized event detection [7] and acoustic

source localization [8].

In the literature, distributed estimation of JSM-2 signals has

been addressed in two ways - centralized and decentralized. In

a centralized approach, each node communicates its local mea-

surements to a fusion center which then recovers the unknown

joint sparse vectors and transmits the reconstructed signals

back to the respective nodes [1], [9]–[15]. In contrast, in

this paper, we consider decentralized recovery of joint sparse

vectors. This approach is not only inherently robust to node

failures, but is also energy efficient when implemented over

large networks. We are interested in decentralized schemes that

yield the same solution as the centralized algorithm, while pro-

cessing the observations locally at each node and exchanging

messages between one-hop neighbors in the network.

Decentralized algorithms, however, might incur a high

communication cost due to the exchange of messages. Most

existing decentralized algorithms in literature catering to joint

sparse signal recovery involve multiple exchanges of O(n)
sized messages between the network nodes, where n is the

dimension of the sparse vectors. Since n is typically large,

the O(n) scaling of message size poses a severe bottleneck in

terms of the communication overhead for in-network signal

recovery. In practice, each network node needs to operate

within a limited budget for time and power resources dedi-

cated towards inter-node communications. Thus, any sizable

reduction in the amount of information exchanged between

the nodes is highly desirable as it has a direct positive

impact on the operating life time of the network. Herein

lies the challenge of devising schemes for reconstruction of

sparse signals locally at each of the nodes, while exploiting

their joint sparsity to improve the reconstruction accuracy, by
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using minimal communication between them. Further, in many

security related applications, it is also important to ensure

that the messages exchanged between the nodes cannot be

misused by a malicious node or an eavesdropper to reconstruct

the signal vector of another node in the network. Thus, it is

preferable to consider decentralized schemes which do not

directly exchange signal coefficients or local measurements

between the network nodes.

A. Prior Work

We start with a review of the decentralized algorithms

that have been proposed in the literature for joint sparse

signal recovery. DCOMP [16] and DCSP [17] are decen-

tralized extensions of the greedy algorithms SOMP [1] and

SSP [17] respectively. Both these algorithms have very low

computational complexity but perform poorly compared to

convex relaxation and Bayesian recovery methods. Moreover,

both DCOMP and DCSP require knowledge of s, the sparsity

level, which is generally not available in practice. In [18],

three distributed greedy pursuit algorithms: DiOMP, DiSP and

DiFROGS have been proposed, and an extensive simulation

based performance comparison study has been carried out

for a wide range of network connection densities. Among

these three algorithms, DiOMP turns out to be the best all-

round performer. However, DCOMP is more accurate than

DiOMP in terms of support detection, as demonstrated in

[16]. DR-LASSO [19] is an iterative decentralized algorithm

which uses alternating minimization to optimize a convex

regularized objective with an ℓ1-ℓ2 mixed norm based joint

sparsity inducing penalty. In [6], the same ℓ1-ℓ2 norm penalty

is used in a cooperative spectrum sensing setup to estimate the

joint sparse spectral occupancy patterns perceived by multiple

cognitive radios via independent channels. The decentralized

re-weighted ℓ1 norm minimization algorithm or DRL-1 [7]

employs a sum-log-sum penalty which is better at promoting

sparsity than the penalty function used in DR-LASSO. In

DRL-1, the non convex objective is minimized by replacing

it with a surrogate convex function made up of weighted ℓ1
norm terms, and the weights are updated in each iteration.

In both DR-LASSO and DRL-1, the sparsity of the solution

is controlled by a regularization parameter λ which biases

the joint sparsity inducing penalty term in the objective. The

correct amount of regularization or the optimal value of λ is

typically chosen via cross-validation, which is not practical

unless additional training data is available.

In a Bayesian approach, the amount of regularization is

tuned automatically by the procedure of selecting an appropri-

ate member prior from a parameterized family of joint sparsity

inducing priors. The selected prior is the one with maximal

Bayesian evidence. Subsequently, the learned signal prior is

used to obtain a maximum a posteriori probability (MAP)

estimate of the sparse vectors. DCS-AMP [20] is one such

Bayesian algorithm which uses approximate message passing

to efficiently learn the parameters of a joint sparsity inducing

Bernoulli-Gaussian family of priors. DCS-FBMP [21] also

uses a Bernoulli-Gaussian signal prior, and constructs the

sparse support incrementally by using a greedy approach to

maximize the log-posterior probability of the support param-

eters. However, this algorithm is designed to work only with

star and ring topology networks. The recently proposed CB-

DSBL algorithm [22] employs a Gaussian signal prior whose

parameters are learned via Type-2 maximum likelihood (ML)

estimation. The ML cost is maximized by solving a series of

convex optimization problems in a decentralized manner using

the alternating directions method of multipliers (ADMM). To

reduce the amount of inter-node communication and the asso-

ciated overheads, a special internode communication scheme is

employed, in which the nodes exchange messages with only a

small set of bridge nodes. In [23], a similar ADMM based

decentralized algorithm is proposed for recovery of JSM-1

signals.

Each of these algorithms involve exchange of O(n) sized

messages per iteration between the nodes, with the exception

of DCSP with O(s log n) message size, where s is the size of

the nonzero support. In this work, we aim to fill this gap in

the existing literature by proposing a decentralized algorithm

which is well endowed in terms of both signal recovery

performance as well as low communication complexity.

B. Our Contributions

Our main contributions in this paper are as follows:

1) We propose a novel, decentralized, iterative algorithm

for in-network estimation of joint sparse vectors. We

call our algorithm Fusion based Decentralized Sparse

Bayesian Learning (FB-DSBL) to emphasize that the

algorithm fuses the support estimates across the nodes,

is decentralized, and is based on the sparse Bayesian

learning algorithm. In the proposed algorithm, each node

computes the MAP estimate of its local sparse vector,

using a network-wide joint parameterized prior. The pa-

rameterized prior is itself learned on-the-fly using highly

compressed messages exchanged over the network. The

combined effect of exchanging compressed messages and

using a joint parameterized prior is accurate reconstruc-

tion of the sparse vectors at the individual nodes using

far fewer measurements compared to the independent

reconstruction of the sparse vectors at each node.

2) In order to reduce the communication complexity, we

propose a scheme to reduce the size of the messages

exchanged between the nodes. Each node shares with

its single-hop neighbors, only those components of the

joint parameterized prior which are associated with the

active locations in the local instantaneous estimate of

the true support. These active locations are identified

via multiple log-likelihood ratio tests. We also propose

a scheme for refinement of the local estimates of the

joint prior by using the compressed messages received

from the single-hop neighbors. We show empirically that

FB-DSBL requires the exchange of only O(s logn) sized
messages between the nodes, where s is the size of the

nonzero support.

3) We show that FB-DSBL can be analyzed under the

stochastic approximation framework by interpreting its

iterations as degenerate distributed Robbins-Monro it-

erations for finding a fixed point of certain function.
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With this interpretation, we also propose FB-DSBL†, a

stochastic approximation inspired generalization of the

FB-DSBL algorithm. Through simulations, we show that

its performance is marginally better, but its convergence

is slower and the communication cost is higher, compared

to the FB-DSBL algorithm.

Unlike DCSP and DCOMP, FB-DSBL does not require s, the
true sparsity level, to be known apriori, nor does it require the

exchange of the raw measurements or sparse vector estimates

between the nodes. Thus, it is suitable for applications where

data privacy needs to be preserved.

The rest of the paper is organized as follows. In Section II,

we formalize the problem considered in this work and briefly

present the required background on Sparse Bayesian Learning

(SBL) [17]. In Section III, we present the proposed FB-

DSBL algorithm for in-network decentralized recovery of

multiple joint sparse signals. An interesting interpretation

of FB-DSBL algorithm as a special case of the Robbins-

Monro type distributed stochastic approximation algorithm is

discussed in Section IV. Based on this interpretation, we also

suggest a pseudo-stochastic variant of the proposed algorithm.

A detailed comparison of the performance of the proposed

algorithms relative to existing solutions is presented in Sec-

tion V. Concluding remarks are offered in Section VI.

Notation: Throughout this paper, lowercase (x) and bold

lowercase (x) alphabets are used to represent scalars and

vectors, respectively. Bold uppercase alphabets (X) are used

to represent matrices. The ith entry of vector x at node

j is denoted by xj(i). The vector supp(x) represents the

binary nonzero support of x. The operator ◦ denotes the

element-wise multiplication operation. The vector comprising

elementwise squared entries of the vector x is denoted by x2.

The ith column of the matrix Φj is denoted by Φj,i. The

index set {1, 2, . . . , n} is denoted by [n]. The cardinality of

a set A is given by |A|. The probability of an event and

a probability density function are represented by P(·) and

p(·), respectively. The expectation of f(x) with respect to

the conditional probability distribution p(x|y) is denoted by

Ex|y[f(x)]. A multivariate Gaussian probability density with

mean µ and covariance matrix Σ is denoted by N (µ,Σ).

II. SYSTEM MODEL AND BACKGROUND

A. Decentralized Joint Sparse Signal Recovery Problem

We consider a network consisting of L computing nodes

enumerated by the index set J = {1, 2, . . . , L}. The network

connectivity is represented by an undirected graph G whose

vertices have a one-to-one correspondence with the network

nodes. An edge between the ith and j th vertices of G represents

an error free communication link between node i and node

j. Each node j ∈ J communicates only with its single-hop

neighboring nodes, belonging to an index set denoted by Nj .

Each sensor node j is interested in estimating an unknown

s-sparse vector xj ∈ R
n from its m(≪ n) noisy linear

measurements yj ∈ R
m, generated according to the local

measurement model:

yj = Φjxj +wj , j ∈ J . (1)

Here,Φj is anm×n measurement matrix which is assumed to

be known locally at node j. The measurement noise vector wj

is assumed to be zero mean Gaussian with known covariance

matrix σ2
j Im. The sparse vectors x1,x2, . . . ,xL are assumed

to be joint sparse i.e., their nonzero coefficients belong to the

same index set S ⊂ [n], with |S| = s. In accordance with

JSM-2 [1], the nonzero coefficients are uncorrelated within

and across the vectors.

The goal here is to estimate the local sparse vector xj at

node j, for each j ∈ J , in a decentralized fashion. Decen-

tralized processing here implies that each node is capable of

processing its local measurements and is allowed to exchange

messages with only its one-hop neighbors. In particular, we

seek to devise algorithms that (a) exploit the joint sparsity

structure of the vectors to be recovered; and (b) require

minimal communication overhead between the nodes.

B. Sparse Bayesian Learning

We start by briefly introducing the Sparse Bayesian Learn-

ing (SBL) framework [24] which lies at the core of our

proposed algorithm. The SBL algorithm is suitable when

each node j estimates its local unknown sparse vector xj

in a standalone fashion, using only local measurements yj

generated according to (1). In SBL, a MAP estimate of the

unknown sparse vector xj is sought by imposing a fictitious

parameterized signal prior on xj as defined below.

p(xj ;γ) =
n
∏

i=1

1
√

2πγ(i)
exp

(

−
|xj(i)|2

2γ(i)

)

. (2)

The hyperparameter γ(i) models the variance of xj(i). The
unknown hyperparameter vector γ ∈ R

n
+ is chosen by maxi-

mizing the Bayesian evidence p(yj ;γ), which is equivalent to

maximum likelihood (ML) estimation of γ. The ML estimate

of γ is obtained by an iterative Expectation-Maximization

(EM) procedure, comprising the following two steps:

E-step: Q(γ|γk) = Exj |yj ,γk [log p(yj ,xj ;γ)]

M-step: γ
k+1 = arg max

γ∈R
n
+

Q(γ|γk), (3)

where k denotes the EM iteration index. From LMMSE theory

[25], the a posteriori probability density p(xj |yj ,γ
k) used

to evaluate the expectation in the E-step is N (µk
j ,Σ

k
j ), with

mean µ
k
j and covariance Σk

j given by

Σk
j =

(

(

Γk
)−1

+
ΦT

j Φj

σ2
j

)−1

µ
k
j = σ−2

j Σk
jΦ

T
j yj (4)

where Γ = diag(γ). The M-step optimization yields the

following update rule for γ:

γ
k+1 =

(

µ
k
j

)2
+ diag

(

Σk
j

)

. (5)

By repeatedly iterating between (4) and (5), the EM algo-

rithm converges to a local maximum (γ̂ML) of the ML cost

log p(yj ;γ). Once γ̂ML is found, the MAP estimate of the

local sparse vector xj is given by the posterior mean µj in
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(4) evaluated at γ̂ML. In [24], it has been shown that all local

maxima of log p(yj ;γ) are at most m-sparse and hence, the

SBL algorithm promotes a sparse MAP estimate of xj . In

practice, to obtain a sparse estimate, estimated coefficients

with variance at least one order of magnitude lower than

noise variance are forced to zero and excluded from the active

support.

SBL can be easily extended to handle the estimation of

multiple joint sparse vectors, resulting in its multiple mea-

surement vector or MMV variant called M-SBL [10]. M-SBL

is a centralized algorithm which enforces joint sparsity of

x1,x2, . . . ,xL by assuming each vector xj to be drawn inde-

pendently from a common N (0,Γ) signal prior, where Γ =
diag(γ). Thus, the joint distribution of X = [x1,x2, . . . ,xL]
is given by

p(X;γ) =
L
∏

j=1

p(xj ;γ)

=

L
∏

j=1

1

(2π)
m
2 |Γ|

1
2

exp

(

−
1

2
xT
j Γ

−1xj

)

. (6)

Once again, the ML estimate of γ is sought by maximizing the

joint log-likelihood log p(Y;γ) =
∑L

j=1 log p(yj ;γ), with

p(yj ;γ) = N (0, σ2
j Im + ΦjΓΦ

T
j ). As shown in [10], an

iterative EM procedure can be derived to obtain the ML

estimate of γ in the MMV setup using the following M-step

update rule:

γ
k+1 =

1

L

L
∑

j=1

(

(

µk
j

)2
+ diag

(

Σk
j

)

)

. (7)

Here, µk
j and Σk

j are evaluated according to (4). A naı̈ve cen-

tralized implementation of M-SBL would be a fusion center

(FC) based approach, in which each node j communicates

its O(m) sized local measurement vector yj to the FC. The

FC recovers all the joint sparse vectors and transmits the

recovered vectors back to their respective nodes. In the case of

distinct measurement matrices at the nodes, each node incurs

an additional communication cost of sending its local m× n
sized measurement matrix to the FC. The communication

cost associated with the exchange of measurement matrices

between the nodes and FC can become prohibitively high,

especially if the measurement matrices vary with time. To

keep the communication costs low, we seek a decentralized im-

plementation of the M-SBL algorithm. In our previous work,

we proposed a decentralized algorithm called CB-DSBL [22],

for in-network estimation of the common hyperparameters γ.

Although closely matching M-SBL in performance, each it-

eration of CB-DSBL entails exchange of n× 1 sized vectors

between the single-hop neighboring nodes. In the following

section, we propose a new decentralized extension of the SBL

algorithm called FB-DSBL, which can estimate the common γ

with significantly reduced communication complexity.

III. PROPOSED FB-DSBL ALGORITHM

In this section, we present the proposed FB-DSBL algo-

rithm, in which each network node learns the same joint spar-

sity inducing signal prior as the centralized M-SBL algorithm,

but in a decentralized fashion. Each node j(∈ J ) assumes a

separate SBL type signal prior p(xj) ∼ N (0, diag(γj)) on

its local sparse vector xj of interest. Here, γj denotes the

n× 1 hyperparameters of the local SBL prior at node j. We

also define two terms: hard support estimate and soft support

estimate, which will be used in the sequel. The hard support

estimate bj ∈ {0, 1}n, is an estimate of true binary support

S of the sparse vector at node j. Its computation is discussed

in Section III-A. For a given bj at node j, we define the

soft support estimate gj , γj ◦ bj , where ◦ is the element-

wise multiplication operator. To take advantage of the common

support of the unknown signal vectors, each node j shares its

soft support estimate gj with its single-hop neighbors after

every local SBL iteration. Unlike γj , its censored copy gj is

highly sparse and hence, node j can share it with its one-hop

neighbors at a substantially lower communication cost. The

soft support estimates gathered from the neighboring nodes

are subsequently used by node j to refine its local estimate of

γj obtained from a standalone EM step.

We now outline the main steps involved in a single iteration

of the proposed algorithm:

Step-1 Each node j updates its local hyperparameters γj

according to the local SBL update rule given by (4)

and (5).

Step-2 Each node j generates a local hard support estimate

bj . Node j broadcasts the soft support estimate gj =
γj ◦ bj to its single-hop neighbors in Nj .

Step-3 Upon receiving gl from all of its neighboring nodes

l in Nj , each node j fuses the hard support estimates

bl = supp(gl) to generate an improved binary estimate

of the true support S denoted by bfused
j .

Step-4 Each node j updates its local hyperparameters

γj to assimilate the available extrinsic information

{gl | l ∈ Nj} conditioned on bfused
j .

Step-5 Repeat steps 1-4 until convergence.

Step 1 is the standard EM (SBL) iteration executed lo-

cally by each node in a standalone fashion using its own

observations and a previous estimate of the hyperparameters.

The remaining steps update the hyperparameters at each

node based on the coarse information about the common

support received from the neighboring nodes, for use in the

next iteration of SBL. Since the network is connected, the

neighborhoods Nj , j ∈ J are partially overlapping, which

allows FB-DSBL to exploit the joint sparsity across the entire

network. The details of the computations involved in steps 2, 3

and 4 are fleshed out in the subsections III-A, III-B and III-C,

respectively.

A. Computation of Local Hard Support Estimates

Since, under the JSM-2 model, a common γ is sought across

the nodes, it is desirable that, at the end of the iterations, the

estimates of γj(i)
′s across the nodes are equal if i ∈ S, and 0

otherwise. Hence, we essentially want to exchange the values

of the entries of γk
j that are likely to correspond to the true

common support S, which is a real valued vector of length

s, where s is the sparsity of the vectors to be recovered. If

the set of indices that contain the true support S with high
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probability, along with their corresponding hyperparameter

values, is exchanged across the nodes, that would suffice for

estimating/updating the local estimate of γ. Hence, the first

step is to estimate the true support S, which we denote by bj ,

at node j. We do this by setting up a hypothesis test for each

of the indices, as described in the sequel.

Recall that bj is an n length binary vector representing an

estimate of the support at node j, and is computed locally

at the node based on its measurements. The ith coefficient

of bj is detected through a composite hypothesis test, by

testing hypothesis H0, that the coefficient is zero, against

hypothesis H1, that the coefficient is nonzero. Such an ap-

proach was first used in [26], where the authors proposed

index-wise log-likelihood ratio tests (LLRTs) to prune the

hyperparameters corresponding to the inactive coefficients for

faster convergence of the EM iterations in the SBL algorithm

in a centralized setup. Unlike in [26], our goal here is to use the

LLRTs to identify the set of hyperparameters corresponding

to the most likely support which will be exchanged with other

nodes. For an index i ∈ [n], we setup the following hypothesis

test:

H0 : xj(i) = 0

H1 : xj(i) 6= 0 (8)

or equivalently,

H0 : γj(i) = 0

H1 : γj(i) > 0. (9)

To keep the notation light, the specificity of the hypotheses

H0 and H1 to node j and coefficient i is not highlighted,

however, it is implicitly assumed. Unlike (8), the hypothesis

test in (9) is a one sided test, and hence, a uniformly most

powerful (UMP) test may exist. For the ith index, we decide

in favor of H1, if

log
p(yj ;H1)

p(yj ;H0)
≥ θ (10)

where θ is the detection threshold. Note that, the likelihood

p(yj ;γ) equals N (0, σ2
j Im + ΦjΓ̃

k
j,iΦ

T
j + γj(i)Φj,iΦ

T
j,i)

under H1 and N (0, σ2
j Im + ΦjΓ̃

k
j,iΦ

T
j ) under H0.

Here, k denotes the current iteration index and, Γ̃k
j,i

= diag
(

γ
k
j (1), . . . ,γ

k
j (i− 1), 0,γk

j (i + 1), . . . ,γk
j (n)

)

, with

the (i, i)th diagonal entry set equal to zero. By substituting

the likelihood functions and simplifying the LLR, it is shown

in Appendix A that the above hypothesis test decides in favor

of H1 for index i if

T i
j (yj) =

{

ΦT
j,i

(

σ2
j Im +ΦjΓ̃

k
j,iΦ

T
j

)−1

yj

}2

≥ θ
′

, (11)

and decides in favor of H0 otherwise. Here, θ
′

denotes the

detection threshold. Since the detection test metric T i
j is

independent of the parameter under test, i.e., γj(i), a UMP

test for γj(i) exists. We normalize the detection test metric T i
j

to a standard chi-squared distributed random variable with a

single degree of freedom under H0, resulting in the following

Neyman-Pearson (NP) test:

Decide H1 for index i if,

T̄ i
j =

{

ΦT
j,i

(

σ2
j Im +ΦjΓ̃

k
jΦ

T
j

)−1

yj

}2

ΦT
j,i

(

σ2
j Im +ΦjΓ̃

k
j,iΦ

T
j

)−1

Φj,i

≥ θ̄. (12)

For a desired probability of false alarm (PFA) α ∈ [0, 1], the
normalized threshold θ̄ is computed offline as

θ̄ =
(

Q−1
(α

2

))2

, (13)

where Q(·) is the standard Q-function. In the proposed

scheme, α is an algorithm parameter which is common across

all the network nodes.

In the kth iteration of the proposed algorithm, node j
generates its hard support estimate bk

j by performing the NP

test (12) for each index i = 1 to n. Subsequently, node j
also computes the corresponding soft support estimate gk

j =
γ
k
j ◦b

k
j , and broadcasts it to its single-hop neighboring nodes

in Nj .

Remark: In [27], the active coefficients are identified by

performing component-wise maximization of marginalized

likelihood across individual hyperparameters. In this scheme,

node j declares ith index as active if the ratio q2j,i/sj,i is greater

than one, where qj,i = ΦT
j,i

(

σ2
j Im +ΦjΓ̃

k
jΦ

T
j

)−1

yj and

sj,i = ΦT
j,i

(

σ2
j Im +ΦjΓ̃

k
j,iΦ

T
j

)−1

Φj,i. The ratio q2j,i/sj,i

is shown to be a proxy for SNR of the ith component,

thereby suggesting that the active indices must have associated

SNR greater than 0 dB. In [28], this rule is generalized to

q2j,i/sj,i > η, where η is the predefined SNR of the ith

component. It is interesting to note that the ratio q2j,i/sj,i
is the same as the chi-squared LLRT statistic (12) derived

for the proposed FB-DSBL algorithm. In fact, if η is set

equal to the NP threshold θ̄, as defined in (13), we obtain

the LLRT based criterion for active support detection. Hence,

the selection of the PFA parameter α in FB-DSBL offers

a principled mechanism to control the sparsity of the hard

support estimates, and consequently, the size of the messages

exchanged between the network nodes.

B. Fusion of Hard Support Estimates from Local Neighbor-

hood

In this subsection, we discuss how node j combines the soft

support estimates
{

gk
l | l ∈ Nj

}

received from its single-hop

neighbors to obtain a more accurate estimate of the true binary

support S. In each iteration of the proposed algorithm, node

j computes a fused binary support estimate called bfused
j by

applying an element-wise majority rule to the locally available

binary support estimates bl = supp(gl), where l ∈ Nj ∪ {j}.
For index 1 ≤ i ≤ n,

b
fused,k
j (i) ,







1 if |Aj,k
i | >

⌈

|Nj |

2

⌉

0 otherwise

(14)
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where Aj,k
i ,

{

l ∈ Nj ∪ {j} : bk
l (i) = 1,bk

l = supp(gk
l )
}

.

The above fused estimate of S is subsequently used in sec-

tion III-C to further refine the local hyperparameter estimate

γ
k
j obtained from the local SBL update.

In the proposed algorithm, element-wise majority rule has

been used to fuse the binary support estimates from the

neighboring nodes. The primary reason for this choice is the

lack of knowledge of the probability of detection PD associated

with the binary support estimates of the one-hop neighbors.

Since the direct exchange of local measurements and mea-

surement matrices between network nodes is not allowed,

the optimal “K-out-of-N” fusion rule is not implementable.

Further motivation for choice of majority fusion rule comes

from [29] where it has been shown that the optimal fusion

rule for the binary decisions from non-identical sensors has a

similar structure as the majority rule.

C. Updating Local Hyperparameters using Extrinsic Informa-

tion

Now, we present a scheme to update the hyperparameters

estimate γ
k
j at node j by assimilating the available extrinsic

information. The extrinsic information at node j refers to
{

gk
l | l ∈ Nj

}

, i.e., the collection of soft support estimates

gathered from the neighboring nodes. From [10], [22], the

optimal scheme to update the local hyperparameter estimate

γ
k
j at node j is to replace it with the average of the current

hyperparameter estimates from all network nodes. However,

the optimal scheme cannot be implemented as each node has

access to only censored copies of the current hyperparameter

estimates of its single-hop neighbors.

The problem of parameter estimation from censored mea-

surements in a distributed setup has been studied in the

literature [30], [31]. One of the ways to circumvent the non-

availability of hyperparameters associated with indices under

the H0 hypothesis is to replace the missing hyperparameters

with their respective ML estimates. We observe that the

probability of detection PD for a one sided LLRT (similar to

(12)) for ith index is functionally dependent on γj(i). Then,
under the assumption that the expression for PD(γ(i)) is the

same for all the neighboring nodes, the missing γ(i) can be

chosen such that the associated PD maximizes the likelihood

of locally available binary decisions from the neighboring

nodes regarding the ith index. However, this scheme is not

suitable for the current situation where PD of a neighboring

node also depends on its local measurement matrix and local

measurement noise power, which are not available globally.

Moreover, for a practical network topology, the number of

available binary decisions can be insufficient for robust esti-

mation of the missing parameters.

We now propose a suboptimal but pragmatic rule to update

the current local hyperparameter estimate γ
k
j (i), i ∈ [n]. The

proposed update rule is designed to approximate the M-SBL

update rule (7). Conditioned on the majority vote b
fused,k
j (i)

computed according to (14), we propose separate update rules

for the following two cases.

a) Case I: b
fused,k
j (i) = 0: If the majority vote b

fused,k
j (i)

suggests H0 at the ith location in the kth iteration, γk
j (i) at

node j is set equal to the average of the estimated hyperpa-

rameter of all nodes in Nj , with censored hyperparameters

replaced with zero. The updated local hyperparameter γ̄k
j (i)

is given by:

γ̄
k
j (i) =

γ
k
j (i) +

∑

l∈Nj
gk
l (i)

1 + |Nj |
. (15)

For index i /∈ S, since γ
k
j (i) finally converges to zero for all

j ∈ J , replacing the missing hyperparameters with zero turns

out be a good approximation.

b) Case II: b
fused,k
j (i) = 1: If the majority vote

b
fused,k
j (i) suggests H1 at the ith location in the kth iteration,

we propose to set the hyperparameter γ
k
j (i) at node j to

equal the average of its own hyperparameter γk
j (i) and the

hyperparameters received from only those neighboring nodes

that are in agreement with the majority vote. The updated local

hyperparameter γ̄k
j (i) is given by:

γ̄
k
j (i) =

γ
k
j (i) +

∑

l∈Nj
gk
l (i)

1 +
∑

l∈Nj
bl(i)

. (16)

The selective averaging in (16) can be seen as an unbi-

ased approximation of the hyperparameter update (7) used

in the centralized M-SBL algorithm by allowing only the

neighboring nodes that are in agreement with the majority

vote, b
fused,k
j (i), to contribute to the average. Note that, for

a fully connected network, when α equals one, the proposed

FB-DSBL algorithm is tantamount to executing the M-step

update (7) via a decentralized local averaging algorithm.

Finally, we summarize the steps involved in proposed FB-

DSBL algorithm as Algorithm 1. In Table I, we provide a

stepwise breakdown of the per iteration computational and

communication complexity of the algorithm.

In the above exposition, a majority vote based selective

averaging procedure has been proposed which combines both

the available censored soft samples and the associated hard

decisions to estimate the index wise local average of the

unknown variance parameter γ(i). The proposed updates can

be understood as a solution to a theoretical formalism which

we will now discuss independently in a simpler setup.

Consider a toy problem in which the goal is to find the

average of L scalar random variables xi, generated according

to the model xi = xtrue + wi, 1 ≤ i ≤ L, where xtrue is

an unknown nonnegative parameter and wi is a zero mean

measurement noise with an unknown probability distribution.

Without any knowledge about the statistics of the measurement

noise, a reasonable estimator of xtrue is the sample average

x̄ which can be computed by solving the optimization: x̄ =
arg min

x

1
L

∑L

i=1(x−xi)
2. Say, in addition to the soft samples

xi, we also have access to side information {bi}i∈[L], where

each bi is an independently generated hard decision variable

which takes values 0 or 1 to indicate weather xtrue is zero

or nonzero, respectively. The hard decisions bi could be in

error, and as motivated from many practical setups similar to

ours, the associated type-1 and type-2 error probabilities are

unknown. A natural formalism which incorporates this extra

side information for improved estimation of xtrue is to solve
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the regularized optimization problem:

x̂ = arg min
x

1

L

L
∑

i=1

(x− xi)
2 + λx2 (17)

where a quadratic penalty x2 has been introduced to attract the

solution towards zero, with the strength of attraction governed

by a regularization parameter λ ≥ 0. Clearly, the value of

λ must reflect the available side information {bi}i∈[L]. Intu-

itively, λ should increase with the number of hard decisions

indicating xtrue to be zero.

It is easy to check that (17) has a closed form solution:

x̂ = x̄
(

1
1+λ

)

. The multiplicative factor 1
1+λ

causes shrinkage

of the original unregularized solution x̄, thereby accounting

for the side information which may be suggesting xtrue to

be zero. To ensure that the shrinkage is proportional to the

number of zero hard decisions, we suggest choosing λ as

the ratio: λ = Z
NZ

, where Z and NZ = (L − Z) denote

the number of hard decisions bi equal to zero and nonzero,

respectively. Note that this choice of λ allows the penalty term

to completely disappear when all hard decisions suggest xtrue

to be nonzero, resulting in x̂ = x̄. Next, we complicate the

toy problem further by censoring those soft samples xi, for

which the associated bi is zero. Due to the censoring of the

soft samples, the solution x̂ of the regularized optimization

(17) can no longer be computed, as x̂ depends on x̄ whose

evaluation requires the uncensored values of all soft samples.

To proceed, we evaluate x̂ = x̄
(

1
1+λ

)

with x̄ replaced with

its unbiased proxy, x̃ = 1
NZ

∑

i:bi 6=0 xi computed only using

uncensored soft samples. Thus, we obtain the regularized

estmate x̂ =
(

1
NZ

∑

i:bi 6=0 xi

)(

NZ
Z+NZ

)

= 1
L

∑

i:bi 6=0 xi,

which interestingly is also the FB-DSBL update (15) with

xi’s and bi’s representing the per index soft and hard support

estimates, respectively.

To account for potential errors in the hard decisions bi’s,
the regularized solution (17) is accepted only if Z > NZ ,

i.e., when the majority of the hard decisions indicate that

xtrue is zero, otherwise the unregularized but unbiased estimate

x̃ = 1
NZ

∑

i:bi 6=0 xi is accepted to be the solution. This

also provides a theoretical underpinning for the other FB-

DSBL update (16). In the absence of of knowledge of the

type-1 and type-2 error probabilities, the majority rule based

selection between the regularized and unregularized solutions

turns out to be surprisingly effective in practice, as illustrated

via simulations in Section V.

D. Inter-node Communication

As discussed in Section III-A, in every FB-DSBL iteration,

each node j broadcasts its local soft support estimate gj to

its single-hop neighbors in Nj . Although gj is an n length

vector, in practice, it is found to be a highly sparse vector

i.e., most of its entries are equal to zero. From Fig. 1, it

can be seen that for a fixed sparsity rate (s/n), the fraction

of nonzero coefficients in the soft support estimate remains

roughly constant with increasing signal dimension n, which
is desirable. Further, from Fig. 2, it can be seen that the

sparsity of the soft support estimates grows linearly with the

Algorithm 1: FB-DSBL: Fusion Based Decentralized

Sparse Bayesian Learning

Input:

{yj ,Φj , σj}
L

j=1 , and α

Initializations:
k ← 1
γ

0
j ← 10−3 · 1n×1 ∀ j ∈ J

∆ = 2ǫ

while (k < kmax) and (∆ > ǫ) do
1a. Local E step: Each node j updates its posterior mean
µ

k−1
j and variance Σk−1

j according to (4).

1b. Local M step: Each node j updates it local
hyperparameter vector: γk

j = diag(Σk−1
j ) + (µk−1

j )2 .

2a. Each node j generates hard support estimate bj by
performing index-wise LLRTs as shown in (12).

2b. Each node j computes the soft support estimate
gk
j = γ

k
j ◦ b

k
j and broadcasts it to all the nodes in Nj .

3. Each node j computes bfused
j by fusing

{

bl , supp(gl)
}

l∈Nj

using the majority rule (14).

4. Each node j assimilates available extrinsic information
by updating γ

k
j to γ̄

k
j according to:

For 1 ≤ i ≤ n,

If bfused
j (i) = 0: γ̄k

j (i) =
γ
k
j (i)+

∑
l∈Nj

gk
l (i)

1+|Nj |

If bfused
j (i) = 1: γ̄k

j (i) =
γ
k
j (i)+

∑
l∈Nj

gk
l (i)

1+
∑

l∈Nj
bl(i)

5. γk
j ← γ̄

k
j , ∆← min

j∈J

||γk
j − γ

k−1
j ||2

||γk−1
j ||2

and k ← k + 1.

end

Output:

For 1 ≤ j ≤ L, x̂j,MAP ← µk
j

TABLE I
COMPUTATIONAL& COMMUNICATION COMPLEXITY ANALYSIS OF A

SINGLE ITERATION OF FB-DSBL

Steps in FB-DSBL

iteration

Computational

complexity

per node

Communication

complexity

per node

Local E-step (4) O(n2m+m3) 0
Local M-step (5) O(n) 0
Compute bj ,gj (12) O(nm3) 0
Compute bfused

j (14) O(nL) O(sL logn)

Compute γ̄j (15, 16) O(nL) 0

TABLE II
COMPARISON IN TERMS OF COMMUNICATION COST

Decentralized algorithm Total number of message
exchanges per iteration

FB-DSBL (proposed) O(sL2 logn)
DCSP [17] O(sL2 logn)
DCOMP [16] O(nL2)
CB-DSBL [22] O(nL2)
DRL-1 [7] O(nL2)
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Rademacher signal, s/n = 0.1

Rademacher signal, s/n = 0.05

Gaussian signal, s/n = 0.1

Gaussian signal, s/n = 0.05

Fig. 1. Fraction of nonzero entries in the soft support estimate gj plotted
against increasing value of n. The fraction of nonzero entries in gj displayed
here is averaged across nodes and iterations. The sparse soft support estimates
are exchanged between the nodes in each FB-DSBL iteration. The flat curves
indicate that the sparsity of the soft support estimates does not change with
increasing signal dimension n. Here, SNR = 20 dB, the network size L = 10
nodes and the number of measurements at each node is m = s logn/s.

sparsity rate (s/n) of the unknown vectors for fixed signal

dimension n. Figures 1 and 2 together imply that by encoding

the locations and magnitudes of only the nonzero entries of

gj , the size of the messages exchanged amongst the network

nodes can be restricted to O(s logn). The additional logn bits

are needed to encode the locations of the individual nonzero

coefficients in the soft support estimates. Fig. 3 shows one

such example of a frame structure for encoding gj using

O(s log n) information bits. Compared to O(n) sized mes-

sages exchanged in existing decentralized joint sparse signal

recovery algorithms [7], [16], [22], the proposed algorithm

requires significantly lower communication bandwidth for the

recovery of the jointly sparse vectors at the individual nodes.

IV. A STOCHASTIC APPROXIMATION VIEW OF FB-DSBL

We now present an interesting interpretation of the proposed

FB-DSBL algorithm as a degenerate case of a stochastic ap-

proximation based distributed algorithm for maximum likeli-

hood estimation of the unknownmodel parameters γ. We show

that the FB-DSBL updates are a special case of a distributed

Robbins-Monro type stochastic approximation updates [32],

[33], when the PFA parameter α is set to one. For α = 1, the
threshold θ̄ used in the index wise LLRT (12) is zero. This

in turn causes the hard support estimates bj’s to be evaluated

as 1n, by each node. Thus, the nodes exchange their local

hyperparameters estimates as is, without any censoring. In this

case, the kth iteration of FB-DSBL at node j comprises the

following two steps:

Combined EM step: γ̃
k
j = Gj(γ

k−1
j ,yj), (18)

Consensus step: γ
k
j =

1

|Nj |

∑

l∈Nj

γ̃
k
l . (19)
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Rademacher signal

Gaussian signal

Fig. 2. Fraction of nonzero entries in the soft support estimate gj plotted
against increasing value of sparsity rate (s/n) for fixed n equal to 200. The
fraction of nonzero entries in gj displayed here is averaged across nodes
and iterations. Here, SNR = 20 dB, the network size L = 10 nodes and the
number of measurements at each node is m = s logn/s.

Fixed

length

header

No. of non

zero entries

in gj

Index and

value of 1th

non zero

entry in gj

Index and

value of 2nd

non zero

entry in gj

Index and

value of last

non zero

entry in gj

c1 bits log n bits log n+ c2

bits

log n+ c2

bits
log n+ c2

bits

Fig. 3. O(s logn) sized example data packet format encoding the local soft
support estimate gj , which is broadcast by node j. The scalar constant c2
controls the quantization noise of nonzero entries of gj .

The function Gj : R
n
+ × R

m → R
n
+ replaces the combination

of the local E and M-steps given by (4) and (5), respectively,

and is evaluated as

Gj(γ,y) = diag

[

(

Γ−1 +
ΦT

j Φj

σ2
j

)−1

+ 1
σ4

(

Γ−1 +
ΦT

j Φj

σ2

)−1

ΦT
j yy

TΦj

(

Γ−1 +
ΦT

j Φj

σ2
j

)−1
]

(20)

where Γ = diag(γ). Let us define the function G : RnL
+ ×

R
mL → R

nL
+ as

G(γ⊖,y⊖) = [G1(γ1,y1), G2(γ2,y2), . . . , GL(γL,yL)]
T
,

(21)

where γ⊖ =
(

γ
T
1 ,γ

T
2 , . . . ,γ

T
L

)T
and y⊖ =

(

yT
1 ,y

T
2 , . . . ,y

T
L

)T
are nL×1 and mL×1 sized concatenated

vectors representing the local hyperparameter estimates and

the local observations, respectively. With these new definitions,

we can rewrite the network wide FB-DSBL iterations in a

compact vector form,

γ
k
⊖ = (W ⊗ In)G

(

γ
k−1
⊖ ,y⊖

)

, (22)

where ⊗ denotes the Kronecker product, and W is an L×L
matrix with entry Wjl = 1

|Nj |+1 when l ∈ Nj ∪ {j} and

0 otherwise. The weight matrix W defined in this manner

encodes the local averaging based consensus step described
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in (19). Other consensus strategies can be realized in this

framework by appropriately choosing the entries of W. For

example, by modeling W as an appropriate random matrix,

the vector representation in (22) can support the α 6= 1
case. In the ensuing arguments, we elucidate the structural

similarities between the FB-DSBL vector iterations in (22)

and the distributed Robbins-Monro stochastic approximation

algorithm proposed in [32].

We begin by observing that the EM iterations (4), (7) in

centralized MSBL can be rewritten as a fixed point iteration:

γ
k+1 =

L
∑

j=1

Gj(γ
k,yj)

= 〈G(1L ⊗ γ
k,y⊖)〉 (23)

where 〈x〉 , (1T
L⊗ In)x is a vector in R

n for any vector x in

R
nL. From the convergence property of EM [34], the above

fixed point iteration (23) converges to one of the stationary

points of the log-likelihood log p(Y,γ).
We now setup a distributed stochastic approximation algo-

rithm to find the fixed point of 〈G(1L⊗γ
k,y⊖)〉. As proposed

in [32], let us consider a distributed algorithm in which each

node j implements a “local step” followed by a “gossip step”

as described below:

Local step: γ̃
k
j = γ

k−1
j + ak

(

Gj(γ
k−1
j ,uk

j )− γ
k−1
j

)

(24)

Gossip step: γ
k =

1

|Nj |

∑

j∈Nj

γ̃
k
l (25)

where ak is an iteration dependent positive step size satisfying
∑∞

k=1 ak = ∞ and
∑∞

k=1 a
2
k < ∞. In (24), the observation

vectors uk
j s are drawn independently by node j according to

some distribution pj(u) in every iteration. The distribution

pj(u) depends on the measurement model and measurement

noise distribution at node j. Once again, we can rewrite the

update equations (24) and (25) together in a compact vector

form as

γ
k
⊖ = (W ⊗ In)

[

γ
k−1
⊖ + ak

(

G(γk−1
⊖ ,uk

⊖)− γ
k−1
⊖

)]

(26)

where u⊖ =
(

uT
1 ,u

T
2 , . . . ,u

T
L

)T
is mL × 1 sized concate-

nated vector representing the combined observations across

the nodes. For the above distributed Robbins-Monro type

update [35], we introduce the associated mean field function

h(γ) : Rn
+ → R

n
+ as

h(γ) = E1n⊗γ

[

1

L
(〈G(1L ⊗ γ,u⊖)〉 − 〈1L ⊗ γ〉)

]

. (27)

where the expectation is evaluated as a conditional mean given

the past observations [33]. In [32], the authors have shown

that under certain assumptions related to the step size ak, the
weight matrix W and the function G, the distributed update

in (26) converges to one of the zeros/roots of the mean field

function h. Further, there is network wide consensus between

the nodes with respect to their local hyperparameters γj upon

convergence [32], [33].

In our distributed setup, the nodes have access to only a

single observation, and hence are forced to use the same obser-

vation repeatedly in all iterations of the stochastic update (26).

This repeated use of the observations is modeled as each node

j drawing its local observations uk
j independently according to

the degenerate Dirac-delta distribution, i.e., pj(u) = δ(u−yj).
Under this modeling assumption, the stochastic update in (26)

follows a deterministic trajectory and converges to the zero

of the mean field function 1
L
〈G(1L ⊗ γ,y⊖)〉 − 〈1L ⊗ γ〉, or

equivalently, to one of the fixed points of 〈G(1L ⊗ γ,y⊖)〉.
From (23), we recall that every fixed point of 〈G(1L⊗γ,y⊖)〉
is also a stationary point of the log-likelihood cost considered

in MSBL. Hence, the pseudo-stochastic1 updates proposed in

(26) converge to the centralized MSBL solution.

It is interesting to note that for a constant step size

ak = 1 and pj(u) = δ(u − yj), the distributed Robbins-

Monro stochastic updates in (24)-(25) revert to the FB-DSBL

updates in (18)-(19) when the censoring threshold is set to

zero (i.e., α = 1). In fact, in Section V, we demonstrate

through simulations that the proposed FB-DSBL updates with

a constant step size (ak = 1) converge significantly faster

compared to its stochastic approximation based variant which

uses (24) instead of (4)-(5). In the rest of the paper, we refer to

the FB-DSBL variant with the local EM step (4)-(5) replaced

with the Robbins-Monro update (24) as FB-DSBL†. A de-

tailed performance comparison of FB-DSBL and FB-DSBL†

is presented via simulations in the next section.

V. SIMULATION RESULTS

We now present simulation results to illustrate the efficacy

of the proposed FB-DSBL algorithm and compare its perfor-

mance against the following decentralized joint sparse signal

recovery algorithms.

1) DRL-1 - Decentralized Re-weighted ℓ1 Norm Minimiza-

tion algorithm proposed in [7].

2) DCOMP - Distributed and Collaborative Orthogonal

Matching Pursuit proposed in [16].

3) DCSP - Decentralized and Collaborative Subspace Pur-

suit proposed in [17].

4) CB-DSBL - Consensus Based Distributed Sparse

Bayesian Learning algorithm proposed in [22].

5) FB-DSBL† - The FB-DSBL variant with the local M-step

(5) replaced with the stochastic approximation inspired

update given by (24).

For each trial, the node connectivity in the network is dictated

by a randomly generated Erdős-Renyi graph with a connection

probability of p = 0.8. The joint sparse vectors x1,x2, . . . ,xL

to be estimated are assumed to be of length n = 50 and

sharing a common nonzero support which is obtained by

randomly selecting s = 5 distinct indices out of the set [n].
Unless specified otherwise, the nonzero coefficients of the joint

sparse vectors are drawn independently from the Rademacher

distribution.

Among the algorithms compared here, DCOMP and DCSP

require prior knowledge of s, i.e., the size of nonzero support.

In the final step of CB-DSBL and FB-DSBL algorithms, the

active support is identified by element-wise thresholding the

local hyperparameter vector γj at node j using the thresholds

1The prefix pseudo here emphasizes the fact that the stochastic updates are
driven by repeated use of the same observations at every node.
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Fig. 4. Normalized mean squared error of the signals (nonzero coefficients
from the Rademacher distribution) reconstructed by different algorithms
versus the measurement SNR. Other simulation parameters: n = 50,m = 10,
s = 5 and L = 10 nodes, and 200 trials.

4σ2
j and 0.25σ2

j , respectively, where σ2
j denotes the local

measurement noise variance. For FB-DSBL, the per index

probability of false detection, α, is set to 10−4 for all the

nodes. In FB-DSBL†, the step size ak is set to k−0.51, where

k is the iteration index.

A. Performance vs. SNR

In the first set of experiments, we compare the average

normalized mean squared error (NMSE) of the signals recon-

structed by different algorithms over a wide range of SNRs.

The performance benchmark is set by the support-aware linear

minimum mean squared error (SA-LMMSE) estimator which

assumes knowledge of the true support S. We define the

NMSE as

NMSE =
1

L

L
∑

j=1

||xj − x̂j ||22
||xj ||22

. (28)

Here, the size of the network is fixed to L = 10 nodes. Fig. 4

compares the NMSE achieved by the different algorithms,

averaged over 200 trials. Both CB-DSBL and the proposed

FB-DSBL closely match the benchmark performance of SA-

LMMSE at moderate to high SNRs. It is interesting to note that

despite exchanging only O(s logn) sized messages between

the nodes, FB-DSBL is able to outperform DCSP, DRL-1

and DCOMP, which are of similar or higher communication

complexity. Fig. 5 shows a similar trend in the relative

performances of the algorithms when the nonzero coefficients

of the unknown sparse vectors are drawn from the standard

Gaussian distribution. The plots also highlight that even when

the number of available measurements is not sufficient for

independent signal reconstruction as depicted by the complete

breakdown of the standalone SBL algorithm, the decentralized

algorithms are able to recover the signals by exploiting their

joint sparsity. Although not shown in the plots to avoid clutter,

FB-DSBL† matches the performance of FB-DSBL in case of

both the source distributions.

5 10 15 20 25 30
−25

−20

−15

−10

−5

0

5

SNR (dB)

N
o

rm
a

liz
e

d
 M

S
E

 (
d

B
)

 

 

Standalone SBL

DCOMP

DCSP

DRL−1

FB−DSBL

CB−DSBL

Centralized MSBL

Support aware LMMSE

Fig. 5. Normalized mean squared error of the signals (nonzero coefficients
from the standard Gaussian distribution) reconstructed by different algorithms
versus the measurement SNR. Other simulation parameters: n = 50, m = 10,
s = 5, L = 10 nodes, and 100 trials.
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(m/n) for different decentralized algorithms. Other simulation parameters:
n = 50, s = 5, L = 10 nodes, SNR = 15 dB, α = 10−4 and number of
trials = 400.

B. Support Recovery Performance

In the second set of experiments, we compare the support

recovery performance of the decentralized algorithms consid-

ered here. From Fig. 6, it is evident that FB-DSBL is able

to recover the correct support of the unknown sparse vectors

using fewer number of measurements per node compared

to DRL-1, DCOMP and DCSP. Its stochastic approximation

inspired variant FB-DSBL† performs equally well. CB-DSBL

has the best support recovery performance among all the

decentralized algorithms discussed here, but also has a much

higher communication cost compared to FB-DSBL (see Ta-

ble II).

C. Phase Transition Characteristics

Here, we compare the phase transition characteristics [36]

of the different algorithms under MSE and support recovery
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reconstruction error. Other simulation parameters: n = 50, L = 5 nodes,
SNR = 30 dB, α = 10−4 and number of trials = 200.

based pass/fail criteria. Fig. 7 plots the MSE phase transition

of different algorithms. Any point below the phase transition

curve represents a sparsity rate (k/n) and measurement rate

(m/n) tuple which results in less than 1% signal recon-

struction error. Similarly, in Fig. 8, points below the support

recovery phase transition curve represent (k/n,m/n) tuples

which result in more than 90% accurate nonzero support

reconstruction across all the nodes. From their phase transition

behaviors, we conclude that the proposed FB-DSBL is able

to recover the support and nonzero signal coefficients from

fewer measurements per node compared to DRL-1, DCSP and

DCOMP. As before, the CB-DSBL algorithm has the best

phase transition characteristics, at the cost of the O(nL2)
communication complexity per iteration. An interesting ob-

servation is that FB-DSBL† has slightly better NMSE and

support recovery phase transition characteristics compared to

FB-DSBL. This is not surprising, as the filtered updates used

in FB-DSBL† are more robust in the presence of measurement

noise.

D. Communication Complexity

We also compare the communication overhead of the afore-

mentioned decentralized algorithms. From Fig. 9, the overall

communication complexity of FB-DSBL is lower than CB-

DSBL, DRL-1, DCOMP and FB-DSBL†, while DCSP still

remains the most communication efficient algorithm amongst

all the algorithms compared here. As pointed out in Sec-

tion III-D, in the proposed FB-DSBL algorithm, the nonzero

coefficients of the censored vector gj broadcast by node j
can be represented using a finite number of bits. We study

the impact of quantization of the nonzero coefficients of gj

on the performance of the FB-DSBL algorithm. Here, we have

assumed uniform quantization of gj in the logarithmic domain

in the range 10−10−105. From the MSE phase transition plot

in Fig. 10, we observe that there is negligible drop in signal
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Fig. 8. Support recovery phase transition for the different algorithms. For a
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recovered with at least 90% accuracy. Other simulation parameters: n = 50,
L = 5 nodes, SNR = 30 dB, α = 10−4 and number of trials = 200.
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Fig. 9. Average number of messages exchanged between the nodes versus
the size of the network. Simulation parameters: n = 50, m = 10, s = 5,
SNR = 20 dB.

reconstruction performance when 4 or more bits are used to

represent the nonzero coefficients of the censored vector.

E. Comparison of Convergence Rates

For a decentralized algorithm, the total cost of inter node

communication also depends on the number of iterations

required for convergence. The centralized M-SBL on which

the proposed FB-DSBL is based inherits the convergence

guarantees of the underlying EM iterations, which always

converge to a local minimum of the log-likelihood objective.

Analyzing the convergence of FB-DSBL is non-trivial due to

use of censored hyperparameter estimates in the decentralized

implementation of (7). However, in practice, it converges

within 10-30 iterations, as shown in Fig. 11. FB-DSBL†, on

the other hand, converges slower than FB-DSBL, but is faster
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Fig. 10. MSE phase transition for FB-DSBL variants using 2, 3, 4 bit
quantization and analog transmission to encode the nonzero coefficients of soft
support estimates exchanged between the nodes. Other simulation parameters:
n = 50, L = 5 nodes, SNR = 30 dB, α = 10−4 and number of trials
= 1000.

than CB-DSBL and DRL-1. In comparison to CB-DSBL, the

variance hyperparameters belonging to the non-active support

set converge to zero significantly faster in the FB-DSBL,

resulting in its faster overall convergence. As expected, due to

their greedy approach towards support estimation, both DCSP

and DCOMP require the least number of iterations to converge.

From Fig. 12, we observe a small improvement in FB-

DSBL’s convergence speed as the network becomes increas-

ingly densely connected, with fastest convergence observed

in the case of a fully connected network. More importantly,

the reconstruction error (measured in NMSE) remains constant

independent of the density of node connections in the network,

which is a highly desirable attribute for a distributed algorithm.

From these experiments, we conclude that FB-DSBL exhibits

stable performance and converges under wide variations in net-

work size and node connection density, provided the network

remains connected.

F. Selection of parameter α

The FB-DSBL parameter α has a direct impact on the

size of messages exchanged between the nodes. As described

in section III-A, α represents the probability of false alarm

used in the index-wise LLRTs for generation of hard support

estimates at each node. Choosing a lower value for α biases

the index-wise LLRTs towards the H0 hypothesis, leading to

sparser hard/soft support estimates, and consequently, smaller

message size. Likewise, higher values of α lead to larger

message size. In fact, for α = 1, there is no censoring of

the locally estimated hyperparameters γ exchanged between

the nodes. In this case, the FB-DSBL algorithm reverts to a

local averaging based distributed implementation of the M-

SBL update rule (7). Fig. 13 illustrates the effect of α on

the MSE performance and the communication cost of the FB-

DSBL algorithm. As seen in the plots, there exists a stable

range of α between 10−2 to 10−4, where one can obtain
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the twin benefits of low communication complexity and good

reconstruction performance. A good rule-of-thumb value of

α is 0.01/n, which corresponds to approximately 1% chance

of observing a false alarm in one of the n hypothesis tests

performed at each node.

VI. CONCLUDING REMARKS

Most of the existing decentralized algorithms for joint

sparse signal recovery entail inter node exchange of mes-

sages whose size is proportional to n, the ambient signal

dimension, which is typically very large. This requires the

nodes to expend a significant share of their limited time/energy

resources for inter node communication. In this work, we

address this issue, by proposing a highly communication

efficient, decentralized joint sparse signal recovery algorithm
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Fig. 13. Plot illustrating the sensitivity of FB-DSBL’s performance and
communication complexity with respect to the PFA parameter α. Simulation
parameters: n = 50, m = 10, s = 5 and L = 10 nodes.

called FB-DSBL which requires exchange of only O(s logn)
sized messages between the network nodes. We showed that

the proposed algorithm is a degenerate case of a distributed

consensus based stochastic approximation algorithm. From

the extensive simulation results presented in this work, we

conclude that the proposed FB-DSBL algorithm outperforms

existing decentralized algorithms DRL-1, DCSP and DCOMP.

In our future work, we plan to exploit the connection of our

proposed algorithm with stochastic approximation to derive

rigorous convergence guarantees.

APPENDIX

A. Index-wise LLRT for Hard Support Estimation

Due to the zero mean Gaussian measurement noise and the

Gaussian prior N (0,Γj) for the unknown sparse vector xj at

node j, the likelihood p(yj ;γ
k
j ) is given by

p(yj ;γj) = N (0, σ2
j Im +ΦjΓjΦ

T
j ). (29)

Using (29), we setup the LLRT for ith index at node j as:

Decide in favor of H1 for index i if,

log
p(yj ;γ

k
j ,γ

k
j (i) 6= 0)

p(yj ;γk
j ,γ

k
j (i) = 0)

≥ θ (30)

or equivalently,

log
N (yj ; 0, σ

2
j Im +ΦjΓ

k
jΦ

T
j )

N (yj ; 0, σ2
j Im +ΦjΓ̃

k
j,iΦ

T
j )

≥ θ (31)

where Γ̃k
j,i=diag(γk

j (1), ....γ
k
j (i− 1), 0,γk

j (i + 1), ...γk
j (n)).

Using the determinant property: det(I+AB) = det(I+BA)

and Woodbury matrix identity, (31) simplifies to

− 1
2 log

(

1 + γj(i)Φ
T
j,i

(

σ2
j Im +ΦjΓ̃

k
j,iΦ

T
j

)−1

Φj,i

)

+

(

ΦT
j,i

(

σ2
j Im +ΦjΓ̃

k
j,iΦ

T
j

)−1

yj

)2

2

(

γj(i)
−1 +ΦT

j,i

(

σ2
j Im +ΦjΓ̃

k
j,iΦ

T
j

)−1

Φj,i

) ≥ θ

Moving terms independent of yj to the RHS and dividing both

sides by the term ΦT
j,i

(

σ2
j Im +ΦjΓ̃

k
j,iΦ

T
j

)−1

Φj,i yields the

Neyman-Pearson test given below

(

ΦT
j,i

(

σ2
j Im +ΦjΓ̃

k
j,iΦ

T
j

)−1

yj

)2

ΦT
j,i

(

σ2
j Im +ΦjΓ̃

k
j,iΦ

T
j

)−1

Φj,i

≥ h(θ,γk
j (i))

×

{

1

γj(i)
+ΦT

j,i

(

σ2
j Im +ΦjΓ̃

k
j,iΦ

T
j

)−1

Φj,i

}

(32)

where

h(θ,γk
j (i)) ,









2θ + log

(

1 + γj(i)Φ
T
j,i

(

σ2
j Im +ΦjΓ̃

k
j,iΦ

T
j

)−1

Φj,i

)

ΦT
j,i

(

σ2
j Im +ΦjΓ̃

k
j,iΦ

T
j

)−1

Φj,i









.
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