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Computationally Tractable Algorithms for Finding
a Subset of Non-defective Items

from a Large Population
Abhay Sharma and Chandra R. Murthy

Abstract—In the classical non-adaptive group testing setup,
pools of items are tested together, and the main goal of a
recovery algorithm is to identify the complete defective set given
the outcomes of different group tests. In contrast, the main goal
of a non-defective subset recovery algorithm is to identify a subset
of non-defective items given the test outcomes. In this paper,
we present a suite of computationally efficient and analytically
tractable non-defective subset recovery algorithms. By analyzing
the probability of error of the algorithms, we obtain bounds on
the number of tests required for non-defective subset recovery
with arbitrarily small probability of error. Our analysis accounts
for the impact of both the additive noise (false positives) and
dilution noise (false negatives). By comparing with information
theoretic lower bounds, we show that the upper bounds on the
number of tests are order-wise tight up to a log2 K factor, where
K is the number of defective items. We also provide simulation
results that compare the relative performance of the different
algorithms and reveal insights into their practical utility. The
proposed algorithms significantly outperform the straightforward
approaches of testing items one-by-one, and of first identifying
the defective set and then choosing the non-defective items from
the complement set, in terms of the number of measurements
required to ensure a given success rate.

Index Terms—Non-adaptive group testing, boolean compressed
sensing, non-defective subset recovery, inactive subset identifica-
tion, linear program analysis, combinatorial matching pursuit,
sparse signal models.

I. INTRODUCTION

The general group testing framework [2], [3] considers a
large set of N items, in which an unknown subset of K
items possess a certain testable property, e.g., the presence
of an antigen in a blood sample, presence of a pollutant in an
air sample, etc. This subset is referred to as the “defective”
subset, and its complement is referred to as the “non-defective”
or “healthy” subset. A defining notion of this framework is
the group test, a test that operates on a group of items and
provides a binary indication as to whether or not the property
of interest is present collectively in the group. A negative
indication implies that none of the tested items are defective.
A positive indication implies that at least one of the items is
defective. In practice, due to the hardware and test procedure
limitations, the group tests are not completely reliable. Using
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the outcomes of multiple such (noisy) group tests, a basic
goal of group testing is to reliably identify the defective set of
items with as few tests as possible. The framework of group
testing has found applications in diverse engineering fields
such as industrial testing [4], DNA sequencing [3], [5], data
pattern mining [6]–[8], medical screening [3], multi-access
communications [3], [9], data streaming [10], [11], etc.

One of the popular versions of the above theme is non-
adaptive group testing (NGT), where different tests are con-
ducted simultaneously, i.e., the tests do not use information
provided by the outcome of any other test. NGT is especially
useful when the individual tests are time consuming, and
hence the testing time associated with adaptive, sequential
testing is prohibitive. An important aspect of NGT is how
to determine the set of individuals that go into each group
test. Two main approaches exist: a combinatorial approach,
see e.g., [12]–[14], which considers explicit constructions of
test matrices/pools; and a random pooling approach, see e.g.,
[11], [15], [16], where the items included in the group test
are chosen uniformly at random from the population. When
the test outcomes are unreliable, the latter is called noisy non-
adaptive group testing with random pooling (NNGT-R). It has
also been referred to as boolean compressed sensing in the
recent literature [17], [18].

In this work, in contrast to the defective set identification
problem, we study the healthy/non-defective subset identifi-
cation problem, in the NNGT-R framework. There are many
applications where the goal is to identify only a small subset
of non-defective items. For example, consider the spectrum
hole search problem in a cognitive radio (CR) network setup.
It is known that the primary user occupancy is sparse in the
frequency domain, over a wide band of interest [19], [20].
This is equivalent to having a small subset of defective items
embedded in a large set of candidate frequency bins. The
secondary users do not need to identify all the frequency bins
occupied by the primary users; they only need to discover a
small number of unoccupied sub-bands to setup the secondary
communications. This, in turn, is a non-defective subset iden-
tification problem when the bins to be tested for primary
occupancy can be pooled together into group tests [21]. In
[22], using information theoretic arguments, it was shown
that compared to the conventional approach of identifying
the non-defective subset by first identifying the defective
set, directly searching for an L-sized non-defective subset
offers a reduction in the number of tests, especially when
L is small compared to N − K. The achievability results
in [22] were obtained by analyzing the performance of the
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exhaustive search based algorithms which are not practically
implementable. In this paper, we develop computationally
efficient algorithms for non-defective subset identification in
an NNGT-R framework.

We note that the problem of non-defective subset identi-
fication is a generalization of the defective set identification
problem, in the sense that, when L = N−K, the non-defective
subset identification problem is identical to that of identifying
the K defective items. Hence, by setting L = N−K, the algo-
rithms presented in this work can be related to algorithms for
finding the defective set. In general, for the NNGT-R frame-
work, three broad approaches have been adopted for defective
set recovery [18]. First, the row based approach (also referred
to as the “naı̈ve” decoding algorithm) finds the defective set
by finding all the non-defective items. The survey in [23] lists
many variants of this algorithm for finding defective items.
More recently, the CoCo algorithm was studied in [18], where
an interesting connection of the naı̈ve decoding algorithm with
the classical coupon-collector problem was established for
the noiseless case. The second popular decoding approach,
also referred to as the Combinatorial Orthogonal Matching
Pursuit (COMP) in the literature, is based on the idea of
finding defective items iteratively (or greedily) by matching
the column of the test matrix corresponding to a given item
with the test outcome vector [3], [18], [24], [25]. For example,
in [24], column matching consists of taking set differences
between the set of pools where the item is tested and the set
of pools with positive outcomes. Another variant of matching
is considered in [18], where, for a given column, the ratio of
number of times an item is tested in pools with positive and
negative outcomes is computed and compared to a threshold.
A recent work, [26], investigates the problem of finding zeros
in a sparse vector in the compressive sensing framework,
and also proposes a greedy algorithm based on correlating
the columns of the sensing matrix (i.e., column matching)
with the output vector.1 The connection between defective
set identification in group testing and the sparse recovery
in compressive sensing was further highlighted in [8], [18],
[27], where relaxation based linear programming algorithms
have been proposed for defective set identification in group
testing. A class of linear programs to solve the defective set
identification problem was proposed by letting the boolean
variables take real values (between 0 and 1) and setting up
inequality or equality constraints to model the outcome of
each pool. We refer the interested reader to [3] for an excellent
collection of existing results and references on defective set
identification.

Non-defective subset identification is related to the problem
of group testing using list decoding [28]–[31], where the
decoder outputs a superset of the true defective set, i.e., a
list of items L (with |L| > K ) such that L contains the
defective set. In [30], list decoding has been studied as an
intermediate step while decoding the defective set in the
conventional group testing setup. A combinatorial approach

1Note that directly computing correlations between the column vector for
an item and the test outcome vector will not work in case of group testing, as
both the vectors are boolean. Furthermore, positive and negative pools have
asymmetric roles in the group testing problem.

employing list-disjunct matrices was used to derive bounds
on number of tests. These bounds are also applicable for
non-defective subset identification, since the complement of
the list output by the algorithm can be viewed as a non-
defective subset. A very recent work [31] focuses on the
|L| = o(N) case, and remarks that the list decoding viewpoint
is more suited when |L| = o(N) and the non-defective subset
identification is more suited when |L| = O(N).

In this work, we develop novel algorithms for identifying a
non-defective subset in an NNGT-R framework. We present er-
ror rate analysis for each algorithm and derive non-asymptotic
upper bounds on the average error rate. The derivation leads
to a theoretical guarantee on the sample complexity, i.e., the
number of tests required to identify a subset of non-defective
items with arbitrarily small probability of error. We summarize
our main contributions as follows:
• We propose a suite of computationally efficient and

analytically tractable algorithms for identifying a non-
defective subset of given size in a NNGT-R framework:
RoAl (row based), CoAl (column based) and RoLpAl,
RoLpAl++, CoLpAl (Linear Program (LP) relaxation
based) algorithms.

• We derive bounds on the number of tests that guarantee
successful non-defective subset recovery for each algo-
rithm. The derived bounds are a function of the number
of defective items, the size of non-defective subset, the
population size, and the noise parameters.

– For our suite of LP based algorithms, we present a
novel analysis technique based on characterizing the
recovery conditions via the dual variables associated
with the LP, which may be of interest in its own
right.

• We also derive a lower bound, based on Fano’s inequality,
characterizing the number of tests required to identify L
inactive variables.

– The upper bounds on the number of tests for dif-
ferent algorithms are within O(log2K) factor of the
presented lower bounds.

• Finally, we present numerical simulations to compare the
relative performance of the algorithms. The results also
illustrate the significant benefit in finding non-defective
items directly, compared to using the existing defective
set recovery methods or testing items one-by-one, in
terms of the number of group tests required.

The rest of the paper is organized as follows. Section II
describes the NNGT-R framework and the problem setup.
The proposed algorithms and the main analytical results are
presented in Section III. Lower bounds on the number of
tests are presented in Section IV. In Section V, we discuss
the theoretical guarantees obtained and contrast them with
available results on defective set recovery. Proofs of the main
results are provided in Section VI. Section VII discusses
numerical simulation results, and Section VIII presents some
concluding remarks. We conclude this section by presenting
the notation followed throughout the paper.
Notation: For any positive integer a, [a] , {1, 2, . . . , a}.
For any set A, Ac denotes complement operation and |A|
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denotes the cardinality of the set. For any two sets A and
B, A\B = A ∩ Bc. {∅} denotes the null set. Scalar random
variables (RVs) are represented by capital non-bold alphabets,
e.g., {Z1, Z3, Z5, Z8} represent a set of 4 scalar RVs. If
the index set is known, we also use the index set as sub-
script, e.g., ZS , where S = {1, 3, 5, 8}. Matrices are denoted
using uppercase bold letters and vectors are denoted using an
underline. For a given matrix A, a(r)

i and ai denote the ith row
and column, respectively. For a given index set S, A(S, :)
denotes a sub-matrix of A where only the rows indexed
by set S are considered. Similarly, A(:, S) or AS denotes
a sub-matrix of A that consists only of columns indexed
by set S. For a vector a, a(i) denotes its ith component;
supp(a) , {j : a(j) > 0}; {a = c} denotes the set
{j : a(j) = c} for any c. In the context of a boolean vector,
ac denotes the component wise boolean complement of a.
1n and 0n denote an all-one and all-zero vector, respectively,
of size n × 1. We denote the component wise inequality as
a 4 b, i.e., it means a(i) ≤ b(i) ∀ i. Also, a ◦ b denotes the
component-wise product, i.e., (a ◦ b)(i) = a(i)b(i), ∀ i. The
boolean OR operation is denoted by

∨
. For any q ∈ [0, 1],

B(q) denotes the Bernoulli distribution with parameter q. IA
denotes the indicator function and returns 1 if the event A
is true, else returns 0. Note that, x(n) = O(y(n)) implies
that ∃ B > 0 and n0 > 0, such that |x(n)| ≤ B|y(n)| for
all n > n0. Further, x(n) = Ω(y(n)) implies that ∃ B > 0
and n0 > 0, such that |x(n)| ≥ B|y(n)| for all n > n0.
Also, x(n) = o(y(n)) implies that for every ε > 0, there
exists an n0 > 0 such that |x(n)| ≤ ε|y(n)| for all n > n0.
All logarithms in this paper are to the base e. Also, for any
p ∈ [0, 1], Hb(p) denotes the binary entropy in nats, i.e.,
Hb(p) , −p log(p)− (1− p) log(1− p).

II. SIGNAL MODEL

In our setup, we have a population of N items, out of
which K are defective. Let Sd ⊂ [N ] denote the defective
set, such that |Sd| = K. We consider a non-adaptive group
testing framework with random pooling [3], [17], [18], [32],
where the items to be pooled in a given test are chosen at
random from the population. The group tests are defined by
a boolean matrix, X ∈ {0, 1}M×N , that assigns different
items to the M group tests (pools). The jth pool tests the
items corresponding to the columns with 1 in the jth row
of X. We consider an independent and identically distributed
(i.i.d.) random Bernoulli measurement matrix [17], where each
Xij ∼ B(p) for some 0 < p < 1. Thus, M randomly generated
pools are specified. In the above, p is a design parameter that
controls the average group size, i.e., the average number of
items being tested in a single group test. In particular, we
choose p = α

K , and a specific value of α is chosen based on
the analysis of different algorithms.

If the tests are completely reliable, then the output of the
M tests is given by the boolean OR of the columns of X
corresponding to the defective set Sd. However, in practice, the
outcome of a group test may be unreliable. Two popular noise
models that are considered in the literature on group testing
are [17], [18], [24]: (a) An additive noise model, where there
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Fig. 1. Impact of different types of noise on the group testing signal model.

is a probability, q ∈ (0, 0.5), that the outcome of a group test
containing only non-defective items turns out to be positive
(Fig. 1); (b) A dilution model, where there is a probability,
u ∈ (0, 0.5), that a given item does not participate in a given
group test (see Fig. 1). Let di ∈ {0, 1}M . Let di(j) ∼ B(1−u)
be chosen independently for all j = 1, 2, . . . ,M and for all
i = 1, 2, . . . , N . Let Di , diag(di). The output vector y ∈
{0, 1}M can be represented as

y =
N∨
i=1

DixiI{i∈Sd}
∨
w, (1)

where xi ∈ {0, 1}M is the ith column of X, w ∈ {0, 1}M is
the additive noise with the ith component w(i) ∼ B(q). Note
that, for the noiseless case, u = 0, q = 0. Given the test output
vector, y, our goals are as follows:
(a) To find computationally efficient algorithms to find L non-

defective items, i.e., an L-sized subset of [N ]\Sd.
(b) To analyze the performance of the proposed algorithms

with the objective of (i) finding the number of tests
required, and (ii) choosing the appropriate design param-
eters that leads to non-defective subset recovery with high
probability of success.

In the literature on defective set recovery in group testing
or on sparse vector recovery in compressed sensing, there
exist two types of recovery results: (a) Non-uniform/Per-
Instance recovery results: These derive conditions under which
a randomly chosen test matrix leads to non-defective subset
recovery with high probability of success for a given fixed
defective set, and, (b) Uniform/Universal recovery results:
These derive conditions under which a randomly chosen test
matrix leads to a successful non-defective subset recovery with
high probability for all possible defective sets. It is possible
to easily extend non-uniform results to the uniform case
using union bounds. Hence, we focus mainly on non-uniform
recovery results, and show the extension to the uniform case
for one of the proposed algorithms (see Corollary 1).

For later use, we summarize some key facts pertaining to the
above signal model in the lemma below. For any l ∈ [M ] and
k ∈ [N ], let Xlk denote the (l, k)th entry of the test matrix
X and let Yl , y(l) denote the lth test output. With u, q
and p as defined above, let Γ , (1− q) (1− (1− u)p)

K and
γ0 , u

(1−(1−u)p) . We claim that,
Lemma 1. (a) P(Yl = 0) = Γ.
(b) For any j /∈ Sd, P(Yl|Xlj) = P(Yl).
(c) For any i ∈ Sd, P(Yl = 0|Xli = 1) = γ0Γ and

P(Yl = 0|Xli = 0) = Γ
1−(1−u)p . Further, using Bayes’

rule, P(Xli = 1|Yl = 0) = pγ0.
(d) Given Yl, Xli is independent of Xlj for any i ∈ Sd and

j /∈ Sd.
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(e) For a given output vector y, the metric T (i, y) computed
in (2) (see Section III-B) is a sum of independent RVs.

The proof is provided in Appendix A.

III. ALGORITHMS AND MAIN RESULTS

We now present several algorithms for non-defective/healthy
subset recovery. Each algorithm takes the observed noisy test-
output vector y ∈ {0, 1}M and the test matrix X ∈ {0, 1}M×N
as inputs, and outputs a set of L items, ŜL, that have been de-
clared non-defective. The recovery is successful if the declared
set does not contain any defective item, i.e., ŜL ∩ Sd = {∅}.
For each algorithm, we derive upper bounds on the average
probability of error, which are further used to obtain sufficient
conditions on the number of tests required for successful non-
defective subset recovery.

A. Row Based Algorithm

Our first algorithm to find non-defective items makes use
of the fact that, in the noiseless case, if the test outcome is
negative, then all the items being tested are non-defective.

RoAl (Row based algorithm):
• Compute z(y) =

∑
j∈supp(yc) x

(r)
j , where x(r)

j is the
jth row of the test matrix.

• Order entries of z(y) in descending order.
• Declare the items indexed by the top L entries as the

non-defective subset.

That is, declare the L items that have been tested most
number of times in pools with negative outcomes as non-
defective items. The above decoding algorithm proceeds by
only considering the tests with negative outcomes. Note
that, when the test outcomes are noisy, there is a nonzero
probability of declaring a defective item as non-defective. In
particular, the dilution noise can lead to a test containing
defective items in the pool being declared negative, leading to
a possible misclassification of the defective items. On the other
hand, since the algorithm only considers tests with negative
outcomes, additive noise does not lead to misclassification of
defective items as non-defective. However, the additive noise
does lead to an increased number of tests as the algorithm
has to possibly discard many of the pools that contain only
non-defective items.

We note that existing row based algorithms for finding the
defective set [3], [18], can be obtained as a special case of
the above algorithm by setting L = N −K, i.e., by looking
for all non-defective items. However, the analysis in the past
work does not quantify the impact of the parameter L and that
is our main goal here. We characterize the number of tests,
M , that are required to find L non-defective items with high
probability of success using RoAl in Theorem 1.

B. Column Based Algorithm

The column based algorithm is based on matching the
columns of the test matrix with the test outcome vector. A
non-defective item does not impact the output and hence the

corresponding column in the test matrix should be “uncorre-
lated” with the output. On the other hand, “most” of the pools
that test a defective item should test positive. This forms the
basis of distinguishing a defective item from a non-defective
one. The specific algorithm is as follows:

CoAl (Column based algorithm): Let ψcb ≥ 0 be any
constant.
• For each i = 1, . . . , N , compute

T (i, y) = xTi y
c − ψcb(xTi y), (2)

where xi is the ith column of X.
• Sort T (i, y) in descending order.
• Declare the items indexed by the top L entries as the

non-defective subset.

We note that, in contrast to the row based algorithm,
CoAl works with pools of both the negative and positive test
outcomes (when the parameter ψcb > 0; its choice is explained
below). For both RoAl and CoAl, by analyzing the probability
of error, we can derive the sufficient number of tests required
to achieve arbitrarily small error rates. We summarize the main
result in the following theorem:
Theorem 1. (Non-Uniform recovery with RoAl and CoAl) Let
Γ , (1 − q) (1− (1− u)p)

K and γ0 , u
(1−(1−u)p) . Suppose

K > 1 and let p be chosen as α
K with α = 1

(1−u) . For RoAl,
let ψ0 , 0. For CoAl, choose ψ0 , γ0Γ

1−γ0Γ and set ψcb =
ψ0. Let c0 > 0 be any constant. Then, there exist constants
Ca1, Ca2, c

′
0 > 0 independent of N , L and K, and different

for each algorithm, such that, if the number of tests is chosen
as

M ≥ (1 + c0)
K(1− u)

(1− q)(1− γ0)2(1 + ψ0)

×

Ca1 log
[
K
(
N−K
L−1

)]
(N −K)− (L− 1)

+ Ca2 logK

 , (3)

then, for a given defective set, the algorithms
RoAl and CoAl find L non-defective items with
probability exceeding 1 − exp

(
−c0 log

(
K
(
N−K
L−1

)))
− exp(−c0 logK)−2 exp (−c′0K logK) .

The following corollary extends Theorem 1 to uniform
recovery of a non-defective subset using RoAl and CoAl.
Corollary 1. (Uniform recovery with RoAl and CoAl) For any
positive constant c0 > 0, there exist constants Ca1, C

′
a2 > 0

independent of N , L and K, and different for each algorithm,
such that if the number of tests is chosen as

M ≥ (1 + c0)
K(1− u)

(1− q)(1− γ0)2(1 + ψ0)

×

Ca1 log
[
K
(
N−K
L−1

)(
N
K

)]
(N −K)− (L− 1)

+ C ′a2 logN

 , (4)

then for any defective set, the algorithms RoAl and
CoAl find L non-defective items with probability ex-
ceeding 1 − exp

(
−c0 log

(
K
(
N−K
L−1

)))
− exp(−c0 logN)

−2 exp(−c0K logN).

The proof of the above theorem and corollary is presented
in Section VI-A. It is tempting to compare the performance of
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RoAl and CoAl by comparing the sufficient number of tests
as presented in (3). However, such comparisons must be done
keeping in mind that the bound on the number of tests in (3) is
based on an upper bound on the average probability of error.
The main objective of these results is to provide a guarantee
on successful non-defective subset recovery and highlight the
order-wise dependence of the number of tests on the system
parameters. For the comparison of the relative performance of
the algorithms, we refer the reader to Section VII, where we
present numerical results obtained from simulations. From the
simulations, we observe that CoAl performs better than RoAl
for most scenarios of interest. This is because, in contrast
to RoAl, CoAl uses the information obtained from pools
corresponding to both negative and positive test outcomes.

C. Linear program relaxation based algorithms

In this section, we consider linear program (LP) relaxations
to the non-defective subset recovery problem and identify
conditions under which such LP relaxations lead to recovery
of a non-defective subset with high probability of success.
These algorithms are inspired by analogous algorithms studied
in the context of defective set recovery in the literature [18],
[27]. However, past analysis on the number of tests for the
defective set recovery do not carry over to the non-defective
subset recovery because the goals of the algorithms are very
different. Let Yz , {l ∈ [M ] : y(l) = 0}, i.e., Yz is the
index set of all the pools whose test outcomes are negative,
and let Mz , |Yz|. Similarly, let Yp , {l ∈ [M ] : y(l) = 1}
and Mp , |Yp|. Define the following linear program, with
optimization variables z ∈ RN and η

z
∈ RMz :

minimize
z,η

z

1TMz
η
z

(5)

(LP0) subject to X(Yz, :)(1N − z)− ηz = 0Mz
, (6)

0N 4 z 4 1N , η
z
< 0Mz

,

1TNz ≤ L.
Consider the following algorithm:2

RoLpAl (LP relaxation with negative outcome pools
only)
• Setup and solve LP0. Let ẑ be the solution of LP0.
• Sort ẑ in descending order.
• Declare the items indexed by the top L entries as the

non-defective subset.

The above program relaxes the combinatorial problem of
choosing L out of N items by allowing the boolean variables
to acquire “real” values between 0 and 1 as long as the
constraints imposed by negative pools, specified in (6), are
met. Intuitively, the variable z (or the variable [1N − z])
can be thought of as the confidence with which an item is
being declared as non-defective (or defective). The constraint
1TNz ≤ L forces the program to assign high values (close to
1) for “approximately” the top L entries only, which are then
declared as non-defective.

2The other algorithms presented in this sub-section, namely, RoLpAl++
and CoLpAl, have the same structure and differ only in the linear program
being solved.

For the purpose of analysis, we first derive sufficient condi-
tions for correct non-defective subset recovery with RoLpAl
in terms of the dual variables of LP0. We then derive the
number of tests required to satisfy these sufficiency conditions
with high probability. The following theorem summarizes the
performance of the above algorithm:
Theorem 2. (Non-Uniform recovery with RoLpAl) Let K > 1
and let p be chosen as α

K with α = 1
(1−u) . If the number

of tests is chosen as in (3) with ψ0 = 0, then for a given
defective set there exist constants Ca1, Ca2 > 0 independent
of N , L and K, such that RoLpAl finds L non-defective items
with probability exceeding 1 − exp

(
−c0 log

(
K
(
N−K
L−1

)))
− exp(−c0 logK)−2 exp (−c′0K logK) .

The proof of the above theorem is presented in Sec-
tion VI-B. Note that LP0 operates only on the set of pools
with negative outcomes and is, thus, sensitive to the dilution
noise which can lead to a misclassification of a defective item
as non-defective. To combat this, we can leverage the infor-
mation available from the pools with positive outcomes also,
by incorporating constraints for variables involved in these
tests. Consider the following linear program with optimization
variables z ∈ RN and η

z
∈ RMz :

minimize
z,η

z

1TMz
η
z

(7)

(LP1) subject to X(Yz, :)(1N − z)− ηz = 0Mz

X(Yp, :)(1N − z) < (1− ε0)1Mp
(8)

0N 4 z 4 1N , η
z
< 0Mz

1TNz ≤ L.
In the above, 0 < ε0 � 1 is a small positive constant.
Note that (8) attempts to model, in terms of real variables,
a boolean statement that at least one of the items tested in
tests with positive outcomes is a defective item. We refer to the
algorithm based on LP1 as RoLpAl++. We expect RoLpAl++
to outperform RoLpAl, as the constraint (8) can provide
further differentiation between items that are indistinguishable
just on the basis of negative pools. Note that, due to the
constraint 1TNz ≤ L, the entries of ẑ in [N ]\ŜL are generally
assigned small values. Hence, when L is small, for many of the
positive pools, the constraint (8) may not be active. Thus, we
expect RoLpAl++ to perform better than RoLpAl as the value
of L increases; this will be confirmed via simulation results
in Section VII. Due to the difficulty in obtaining estimates for
the dual variables associated with the constraints (8), it is hard
to derive theoretical guarantees for RoLpAl++.

Motivated by the connection between RoAl and RoLpAl,
as revealed in the proof of Theorem 2 (see Section VI-B), we
now propose another LP based non-defective subset recovery
algorithm that incorporates both positive and negative pools,
which, in contrast to RoLpAl++, turns out to be analytically
tractable. By incorporating (8) in an unconstrained form and
by using the same weights for all the associated Lagrangian
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multipliers in the optimization function, we get
minimize

z
1TMz

X(Yz, :)(1N − z)

− ψlp
[
1TMp

X(Yp, :)(1N − z)
]

(9)

(LP2) subject to 0N 4 z 4 1N ,

1TNz ≤ L,
where ψlp > 0 is a positive constant that assigns appropriate
weight to the two different type of cumulative errors. Note
that, compared to LP1, we have also eliminated the equality
constraints in the above program. The intuition is that, by
using (8) in an unconstrained form, i.e., by maximizing∑
j∈Yz

X(j, :)(1N−z), the program will tend to assign higher
values to (1−ẑ(i)) (and hence lower values to ẑ(i)) for i ∈ Sd
since for random test matrices with i.i.d. entries, the defective
items are likely to be tested more number of times in the
pools with positive outcomes. Also, in contrast to LP1 where
different weight is given to each positive pool via the value
of the associated dual variable, LP2 gives the same weight to
each positive pool, but it adjusts the overall weight of positive
pools using the constant ψlp. We refer to the algorithm based
on LP2 as CoLpAl. The theoretical analysis for CoLpAl
follows on similar lines as RoLpAl and we summarize the
main result in the following theorem:
Theorem 3. (Non-Uniform recovery with CoLpAl) Let Γ ,
(1 − q) (1− (1− u)p)

K and γ0 , u
(1−(1−u)p) . Let K > 1

and let p be chosen as α
K with α = 1

(1−u) . Let ψ0 , γ0Γ
1−γ0Γ

and set ψlp = ψ0. Then, for any positive constant c0, there
exist constants Ca1, Ca2, c

′
0 > 0 independent of N , L and

K, such that, if the number of tests is chosen as in (3), then
for a given defective set CoLpAl finds L non-defective items
with probability exceeding 1 − exp

(
−c0 log

(
K
(
N−K
L−1

)))
− exp(−c0 logK)−2 exp (−c′0K logK) .

The proof of the above theorem is presented in Sec-
tion VI-C.

IV. NECESSARY NUMBER OF OBSERVATIONS

In this section, we derive information theoretic lower bounds
on the number of tests required to identify L non-defective
items. We consider the general sparse signal model employed
in [17], [32] in the context of support recovery problem. It is
a generalization of the signal models employed in some of the
popular non-adaptive measurement system signal models such
as compressed sensing and non-adaptive group testing. Thus,
the lower bounds obtained here are more general, and can be
applied in a variety of practical scenarios. We start by briefly
describing the signal model before presenting the main result
of this section. For more details on the signal model, we refer
the reader to [17], [22], [32].

Let X[N ] =
[
X1, X2, . . . , XN

]
denote a set of N inde-

pendent and identically distributed input random variables (or
items). Let each Xj belong to a finite alphabet denoted by
X and be distributed as Pr{Xj = x} = Q(x), x ∈ X ,
j = 1, 2, . . . , N . For a group of input variables, e.g., X[N ],
Q(X[N ]) =

∏
j∈[N ]Q(Xj) denotes the known joint distri-

bution for all the input variables. We consider a sparse signal
model where only a subset of the input variables are active (or

defective), in the sense that only a subset of the input variables
contribute to the output. Let S ⊂ [N ] denote the set of active
input variables, with |S| = K. We assume that K is known.
Let Sc , [N ]\S denote the set of variables that are inactive
(or non-defective). Let the output belong to a finite alphabet
denoted by Y . We assume that Y is generated according to
a known conditional distribution P (Y |X[N ]). Then, in our
observation model, we assume that given the active set, S, the
output signal, Y , is independent of the other input variables.
That is, for every Y ∈ Y ,

P (Y |X[N ]) = P (Y |XS). (10)
We observe the outputs corresponding to M independent

realizations of the input variables, and denote the inputs and
the corresponding observations by {X,y}. Here, X is an
M ×N matrix, with its ith row representing the ith realization
of the input variables, and y is an M × 1 vector, with its
ith component representing the ith observed output. Note that,
the independence assumption across the input variables and
across different observations implies that entries of X are
i.i.d. Let L ≤ N − K. We wish to find a set of L inactive
variables, i.e., an index set SH ⊂ Sc such that |SH | = L,
given the observation set, {X,y}. In this setting, our goal is
to derive an information theoretic lower bound on the number
of observations (measurements/group tests) required to find
a set of L inactive variables with the probability of error
exponentially decreasing with the number of observations.
Here, an error event occurs if the chosen inactive set contains
one or more active variables (or items).

We now relate this model to the group testing signal model
described in (1) in Section II. Note that, X = {0, 1}, Y =
{0, 1}. Each item in the group testing framework corresponds
to one of the N input covariates. The ith row of the test
matrix, which specifies the ith random pool, corresponds to
the ith realization of the input covariates. From (1), given the
defective set Sd, the ith test outcome y(i) is independent of
values of input variables from the set [N ]\Sd. That is, with
regards to test outcome, it is irrelevant whether the items
from the set [N ]\Sd are included in the test or not. Thus, Sd
corresponds to the active set S. The probability distribution
functions P (y|XSd

) for any Sd, are fully determined from
(1) and the statistical models for the dilution and additive
noise. Thus, it is easy to see that the group testing framework
is a special case of the general sparse model that we have
considered, and, the number of group tests correspond directly
to the number of observations in the context of sparse models.

We now derive lower bound on the number of observations
required to find a set of L inactive variables, in the sense that
if the number of observations is lower than the bound, the
probability of error will be bounded strictly away from zero,
regardless of the decoding algorithm used. Here, we need to
lower bound the probability of error in choosing a set of L
inactive variables. To this end, we employ an adaptation of
Fano’s inequality [33], [34].

Let ω ∈ Id ,
{

1, 2, . . . ,
(
N
K

)}
denote the index of

the defective set such that Sω ⊂ [N ] and |Sω| = K.
For each ω ∈ Id let us associate a collection of sets,

Shω ,

{
Sα1 , Sα2 , . . . , Sα(N−K

L )

}
, such that |Sαi | = L and
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Sαi
∩ Sω = {0}, i ∈ Ihω ,

{
1, 2, . . . ,

(
N−K
L

)}
. That is, Shω

is the collection of all L-sized subsets of all-inactive variables
when Sω represents the active set. Also, let SH denote the set
of all L-sized subsets of [N ]. Note that |SH | =

(
N
L

)
. Given

the observation vector, y ∈ YM , let φ : YM ×XM×N → SH
denote a decoding function, such that Ŝ = φ(y,X) is the
decoded set of L inactive variables. Given an active set ω and
an observation vector y, an error occurs if Ŝ /∈ Shω . Define,

Pe = Pr(Ŝ /∈ Shω). (11)
Define a binary error random variable E , I{Ŝ /∈Sh

ω}. Note
that Pe = Pr(E = 1). Finally, we define a mutual in-
formation term that will be used in the result below. Let
S be a given active set. For any 1 ≤ j ≤ K, let S(j)

and S(K−j) represent a partition of S such that S(j) ∪
S(K−j) = S, S(j) ∩ S(K−j) = {∅} and |S(j)| = j. Define
I(j) , I(Y,XS(K−j) ;XS(j)) = I(Y ;XS(j) |XS(K−j)) as the
mutual information between {Y,XS(K−j)} and XS(j) [33],
[34]. Mathematically,

I(j) =
∑
Y ∈Y

∑
X

S(K−j)∈XK−j

∑
X

S(j)∈X j

P (Y,XS(K−j) |XS(j))

×Q(XS(j)) log
P (Y,XS(K−j) |XS(j))

P (Y,XS(K−j))
. (12)

Using the independence assumptions in the signal model, by
the symmetry of construction of the test matrix X, for a given
j, I(j) is independent of the specific choice of S, and of the
specific partitions of S.

We state a necessary condition on the number of observa-
tions in the following theorem.
Theorem 4. Let N , M , L and K be as defined before. Let I(j)

and Pe be as defined in (12) and (11), respectively. A necessary
condition on the number of observations M required to find
L inactive variables with asymptotically vanishing probability
of error, i.e., limN→∞ Pe = 0, is given by

M ≥ max
1≤j≤K

Γl(L,N,K, j)

I(j)
(1− η),

where Γl(L,N,K, j) , log

[ (
N−K+j

j

)(
N−K+j−L

j

)] , (13)

for some η > 0.
The proof is provided in Section VI-D.
Given a specific application, we can bound I(j) for each

j = 1, 2, . . . ,K, and obtain a characterization on the necessary
number of observations/group tests. To compute the lower
bounds on the number of tests, we need to upper bound the
mutual information term, I(j), for the group testing signal
model given in (1). Using the bounds on I(j) [35], with3

p = 1
K and u ≤ 0.5, we summarize the order-accurate lower

bounds on the number of tests to find a set of L non-defective
items in Table I. A brief sketch of the derivation of these
results is provided in Appendix E.

V. DISCUSSION ON THE THEORETICAL GUARANTEES

We now present some interesting insights by analyzing
the number of tests required for correct non-defective subset

3In general, p = α
K

, with α depending upon u and q, is useful for bounding
the mutual information terms I(j) [17], [35].

identification by the proposed recovery algorithms. We note
that the expression in (3) adapted for different algorithms
differs only on account of the constants involved. This allows
us to present a unified analysis for all the algorithms.

(a) Asymptotic analysis of M as N → ∞: We consider the
parameter regimes where K,L→∞ as N →∞. We note
that, under these regimes, when the conditions specified in
the theorems are satisfied, the probability of decoding error
can be made arbitrarily close to zero. In particular, we con-
sider the regime where K

N → β0, L
N → α0, as N → ∞,

where 0 ≤ β0 < α0 < 1, α0 + β0 < 1. Define ζ , L−1
N−K ,

and note that ζ → ζ0 , α0

1−β0
as N →∞. Also, note that

γ0 → u as N → ∞. Using Stirling’s formula, it can be

shown that limN→∞
log (N−K

L−1 )
(N−K)−(L−1) ≤

Hb(ζ0)
1−ζ0 (see [22]),

where Hb(·) is the binary entropy function. Further, let
g(ζ) , Hb(ζ)

1−ζ . Now, since g(ζ0) is a constant, the sufficient
number of tests M for the proposed algorithms depends on
K as M ≥ C0

K
(1−u)(1−q) (Ca1g(ζ0) + Ca2 logK + o(1)).

Here, C0, Ca1 and Ca2 are constants independent of
N,K,L, u and q.
We compare the above with the sufficient number of test
required for the defective set recovery algorithms. When
K grows sub-linearly with N (i.e., β0 = 0), the sufficient
number of tests for the proposed decoding algorithms is
O(K logK), which is better than the sufficient number
of tests for finding the defective set, which scales as
O(K logN) [18], [24]. On the other hand, when K grows
linearly with N (i.e., β0 > 0), the performance of the
proposed algorithms is order-wise equivalent to defective
set recovery algorithms.
We also compare the uniform recovery results. The suf-
ficient number of tests for uniform recovery as given
in Corollary 1 for the algorithm RoAl and CoAl is
M = O(K logN), which is significantly better than the
defective set recovery algorithms, where the sufficient
number of tests scale as O(K2 log(NK )) [24].

(b) Variation of M with L: Let ζ and g(ζ) be as defined
above. We note that the parameter L impacts M only
via the function g(ζ). Lemma 3 in Appendix F shows
that for small values (or even moderately high values)
of ζ, g(ζ) is upper bounded by an affine function in ζ.
This, in turn, shows that the sufficient number of tests is
also approximately affine in L; this is also confirmed via
simulation results in Section VII.

(c) Comparison with the information theoretic lower bounds:
We compare with the lower bounds on the number of tests
for non-defective subset recovery, as tabulated in Table I.
For the noiseless case, i.e., u = 0, q = 0, the sufficient
number of tests are within O(log2K) factor of the lower
bound. For the additive noise only case, M depends on
q via the multiplicative term 1

1−q . In contrast, the lower
bounds indicate that the number of tests is insensitive to
additive noise, when q is close to 0 (in particular, when
q < 1/K). For the dilution noise case, M depends on u
via a multiplicative factor 1

(1−u) , which is the same as in
the lower bound. We have also compared the number of
tests obtained via simulations with an exact computation
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of the lower bounds, and, interestingly, the algorithms
appear to fall within O(logK) factor of the lower bounds
(see Figure 4, Section VII).
Finally, we also compare our uniform recovery results
(from Corollary 1) with the lower bound presented in [30,
Theorem 5]. For the noiseless case, and in the parameter
regime of interest, i.e.,KN → β0, L

N → α0, as N → ∞,
the sufficient number of tests are within O(logN) of the
lower bound presented in [30, Theorem 5].

(d) Defective set recovery via non-defective subset recovery:
It is interesting to note that by substituting L = N −K in
(3), we get M = O

(
K log(N−K)
(1−u)(1−q)

)
, which is order-wise

the same as the number of tests required for defective set
identification derived in the existing literature [18], [24].

(e) Robustness under uncertainty in the knowledge of K:
The theoretical guarantees presented in the above theo-
rems hold provided the design parameter p is chosen as
O( 1

(1−u)K ). This requires the knowledge of u and K.
Note that the implementation of the recovery algorithms
do not require us to know the values of K or u. These
system model parameters are only required to choose the
value of p for constructing the test matrix. If u and K
are unknown, similar guarantees can be derived, with a
penalty on the number of tests. For example, choosing
p as O(1/K), i.e., independent of u, results in a 1

1−u
times increase in the number of tests. The impact of
using an imperfect value of K can also be quantified.
Let K̂ be the value used to design the test matrix and
let ∆k > 0 be such that K̂ = ∆kK. That is, ∆k

parametrizes the estimation error in K. The number of
measurements M depend on p as M ∝ 1

pΓ .
4 Using the fact

that (1−α/n)n ≈ exp(−α) for large n to simplify Γ, with
p = O( 1

∆kK
), the number of tests increases approximately

by a factor of fM (∆k) , ∆k exp
(

(1− u)
(

1
∆k
− 1
))

compared to the case with perfect knowledge of K, i.e.,
with p = O(1/K). Thus, the proposed algorithms are
robust to uncertainty in the knowledge of K. For example,
with u = 0.05, fM (1.5) = 1.09, i.e., a 50% error in the
estimation of K leads to an increase in the number of tests
by a factor of 1.09. Furthermore, the asymmetric nature
of fM (∆k) (e.g., fM (1.5) = 1.09 and fM (0.5) = 1.3)
suggests that the algorithms are more robust when ∆k > 1
as compared to the case when ∆k < 1. We corroborate
this behavior via numerical simulations, see Table III.

(f) Operational complexity: The execution of RoAl and CoAl
requires O(MN) operations, where M is the number of
tests. The complexity of the LP based algorithms RoLpAl,
RoLpAl++ and CoLpAl are implementation dependent,
but are, in general, much higher than RoAl and CoAl. For
example, an interior-point method based implementation
will require O(N2(M+N)3/2) operations [36]. Although
this is higher than that of RoAl and CoAl, it is still
attractive in comparison to the brute force search based
maximum likelihood methods, due to its polynomial-time
complexity.

4This follows from the proof for the Theorem 1 in section VI-A; see e.g.,
(25), (28).

TABLE I
FINDING A SUBSET OF L NON-DEFECTIVE ITEMS: ORDER RESULTS FOR
NECESSARY NUMBER OF GROUP TESTS WHICH HOLD ASYMPTOTICALLY

AS N →∞, K
N
→ β0 , L

N
→ α0 AND α0 + β0 < 1 (SEE THEOREM 4 AND

APPENDIX E).

No Noise (u = 0, q = 0) Ω
(

K
logK

log 1−β0
1−α0−β0

)
Dilution Noise (u > 0, q = 0) Ω

(
K

(1−u) logK log 1−β0
1−α0−β0

)
Additive Noise (u = 0, q > 0) Ω

(
K

min
{
log 1

q
,logK

} log 1−β0
1−α0−β0

)

TABLE II
FINDING A SUBSET OF L NON-DEFECTIVE ITEMS: RESULTS FOR

SUFFICIENT NUMBER OF GROUP TESTS FOR THE PROPOSED ALGORITHMS
WHICH HOLD ASYMPTOTICALLY AS (N,K,L)→∞, K

N
→ β0 , L

N
→ α0

WITH 0 < β0 ≤ α0 < 1 AND α0 + β0 < 1. DEFINE g(ζ0) , Hb(ζ0)
1−ζ0

,
WHERE ζ0 , α0

1−β0
. THE CONSTANTS C0, Ca1, Ca2 > 0 MAY DIFFER FOR

DIFFERENT ALGORITHMS AND ARE INDEPENDENT OF N,L,K, u AND q.

No Noise C0K [Ca1g(ζ0) + Ca2 logK + o(1)]

Dilution Noise (u > 0, q = 0) C0K
1−u [Ca1g(ζ0) + Ca2 logK + o(1)]

Additive Noise (u = 0, q > 0) C0K
1−q [Ca1g(ζ0) + Ca2 logK + o(1)]

VI. PROOFS OF THE MAIN RESULTS

We begin by defining some quantities and terminology that
is common to all the proofs. In the following, we denote the
defective set by Sd, such that Sd ⊂ [N ] and |Sd| = K.
We assume that Sd is fixed (but arbitrary) and unknown.
We denote the set of L non-defective items output by the
decoding algorithm by ŜL. For a given defective set Sd,
E ,

{
ŜL ∩ Sd 6= {∅}

}
denotes the error event, i.e., the

event that a given decoding algorithm outputs an incorrect
non-defective subset, and Pr(E) denotes its probability. Also,
let E(y) denote the error event for a given output y, i.e.,
Pr(E(y)) = Pr(E|y). Define N0 , (N − K) − (L − 1).
We further let Sz ⊂ [N ]\Sd denote any set of non-defective
items such that |Sz| = N0. Also, we let Sz denote all such
sets possible. Note that |Sz| =

(
N−K
L−1

)
. Finally, recall from

Lemma 1 (Section II), Γ , (1 − q) (1− (1− u)p)
K and

γ0 , u
(1−(1−u)p) .

A. Proof of Theorem 1 and Corollary 1

The proof involves upper bounding the probability of non-
defective subset recovery error of the decoding algorithms,
RoAl and CoAl, and identifying the parameter regimes where
they can be made sufficiently small.

For CoAl, recall that for a given output y we compute the
metric T (i, y) , xTi y

c − (ψcb)x
T
i y for each item i and output

the set of items with the L largest metrics as the non-defective
set. Clearly, for any item i ∈ Sd, if i ∈ ŜL, then there exists
a set Sz of non-defective items such that for all items j ∈ Sz ,
T (j, y) ≤ T (i, y). Thus, for CoAl,

E(y)⊂ ∪
i∈Sd

{i ∈ ŜL} ⊂ ∪
i∈Sd

∪
Sz∈Sz

[
∩

j∈Sz

{T (j, y) ≤ T (i, y)}
]
.

(14)
The algorithm RoAl succeeds when there exists a set of at

least L non-defective items that have been tested more number
of times than any of the defective items, in the tests with
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negative outcomes. The number of times an item i is tested
in tests with negative outcomes is given by z(i, y) = xTi y

c,
which is computed by RoAl. Hence, for any item i ∈ Sd,
if i ∈ ŜL, then there exists a set Sz of non-defective items
such that for all items j ∈ Sz , z(j, y) ≤ z(i, y). Thus, (14)
applies for RoAl also, except with T replaced with z. Also,
note that z(i, y) = T (i, y)|ψcb=0. This allows us to unify the
subsequent steps in the proof for the two algorithms. We first
work with the quantity T (i, y) and later specialize the results
for each algorithm.

The overall intuition for the proof is as follows: For a given
output and any i, since T (i, y) is a sum of independent random
variables, it will tend to concentrate around its mean value.
For any i ∈ Sd and j /∈ Sd, we will show that the mean value
of T (j, y) is larger than that of T (i, y). Thus, we expect the
probability of the error event defined in (14) to be small.

Define Gy , {y : (1 − η)MΓ ≤ ‖yc‖1 ≤ (1 + η)MΓ}.
That is, Gy denotes the set of all y’s where the number of tests
with negative outcome lie between [(1− η)MΓ (1 + η)MΓ].
We claim that

Pr(E) ≤
∑
y∈Gy

Pr(E(y))Pr(y) + Pr({y ∈ Gcy}). (15)

Let us now analyze Pr(E(y)) for any y ∈ Gy . Let y
L

be an
arbitrary observation vector such that ‖yc

L
‖1 = (1−η)MΓ and

y
H

be such that ‖yc
H
‖1 = (1 + η)MΓ.5 For any i ∈ Sd and

for any j /∈ Sd, define µi , E(T (i, y
H

)), µj , E(T (j, y
L

)),
σ2
i , Var(T (i, y

H
)) and σ2

j , Var(T (j, y
L

)). We claim that

µj = Mp
(

Γ
′ − ψcb(1− Γ

′
)
)

and µi = Mp

(
γ0Γ

′′ − ψcb(1− Γ
′′
)
1− γ0Γ

1− Γ

)
, (16)

σ2
j ≤Mp

(
Γ
′
+ ψ2

cb(1− Γ
′
)
)

and σ2
i ≤Mp

(
γ0Γ

′′
+ ψ2

cb(1− Γ
′′
)
1− γ0Γ

1− Γ

)
, (17)

where Γ
′

= (1− η)Γ and Γ
′′

= (1 + η)Γ. An explanation of
the above equations in presented in Appendix B. To simplify
(15) further, we present the following proposition:
Proposition 1. Define τ , (µj+µi)

2 . Let ε0 > 0. Then, for all
y ∈ Gy ,

Pr(E(y)) ≤ K
(
N −K
L− 1

)
(Peh)

N0 +KPed, (18)

where Peh , Pr
(
{T (j, y

L
) < τ + ε0}

)
for any j ∈ Sz and

Ped , Pr
(
{T (i, y

H
) > τ}

)
for any i ∈ Sd.

The proof of Proposition 1 is presented in Section VI-A3.
The above definitions of Peh and Ped are unambiguous
because the corresponding probabilities are independent of
the specific choice of indices j and i, respectively. From
Proposition 1, the upper bound on Pr(E(y)) applies to all

5Ideally, we should work with y
L

and y
H

such that ‖yc
L
‖1 = d(1 −

η)MΓe and ‖yc
H
‖1 = b(1+η)MΓc. As will become clear in the subsequent

analysis, the remainder terms due to the floor and ceiling operations are small
and asymptotically vanish. Hence, for clarity of exposition, we present our
analysis assuming that (1 + η)MΓ and (1− η)MΓ are integers.

y ∈ Gy , and thus, from (15), we get

Pr(E) ≤ K
(
N −K
L− 1

)
(Peh)

N0 +KPed + Pr({y ∈ Gcy}).
(19)

To analyze Pr({y ∈ Gcy}), let us define Zl , I{y(l)=0} for l =

1, 2, . . . ,M . We need to bound the probability that
∑M
l=1 Zl

lies outside [(1 − η)MΓ (1 + η)MΓ]. Since the rows of
the test matrix are i.i.d., Zl are also i.i.d. with E(Zl) = Γ
(see Lemma 1). Thus, by using the multiplicative form of the
Chernoff bound [37], [38]6, we get

Pr({y ∈ Gcy}) ≤ 2 exp

(
−Mη2 Γ

3

)
. (20)

Our next task is to bound Peh and Ped defined in the
above proposition. For a given y and any k, since T (k, y) is
a sum of M independent random variables (see Lemma 1),
each bounded by max(1, ψcb), we can use Bernstein’s in-
equality [37] (also see Appendix G) to bound the probability
of their deviation from their mean values. The choice of
ψcb = γ0Γ

1−γ0Γ ensures that ψcb < 1.7 Thus, for any i ∈ Sd,
with δ0 , τ − µi =

µj−µi

2 ,

Ped = Pr
(
T (i, y

H
) > τ

)
= Pr

(
T (i, y

H
) > µi + δ0

)
≤ exp

(
− δ2

0

2σ2
i + 2

3δ0

)
. (21)

Similarly, for any j ∈ Sz , we choose ε0 =
µj−τ

2 =
µj−µi

4 ,
and get

Peh = Pr
(
T (j, y

L
) < τ + ε0

)
= Pr

(
T (j, y

L
) < µj − ε0

)
≤ exp

(
− ε20

2σ2
j + 2

3ε0

)
. (22)

We now proceed separately for each algorithm to arrive
at the final results. Before that, by choosing p = α

K with

α = 1
(1−u) ,

[
1− (1−u)α

K

]K
≥ exp (−2α(1− u)) = e−2. This

follows from the fact that for 0 < b < 1, (1−b) ≤ e−b ≤ 1− b
2 .

Thus, (1−q)e−1 ≥ Γ ≥ (1−q)e−2. We also note that γ0 < 1
for any u < 0.5 and for all K > 1.

1) Proof for RoAl

For RoAl, ψcb = 0. From (16) and (17), µj − µi =

MpΓ ((1− γ0)− η(1 + γ0)). Thus, for η = β
1− γ0

1 + γ0
for

some 0 < β < 1, µj − µi = (1 − β)(1 − γ0)MpΓ > 0.
Recall, δ0 =

µj−µi

2 and ε0 =
µj−µi

4 . Since σ2
j ≤Mp(1−η)Γ

and σ2
i ≤Mp(1 + η)γ0Γ, we have

2σ2
i + (2/3)δ0 < MpΓ (2(1 + η)γ0

+[(1− η)− (1 + η)γ0]/3) < 2MpΓ. (23)
Similarly,

2σ2
j + (2/3)ε0 < MpΓ (2(1− η)

+[(1− η)− (1 + η)γ0]/6) < 3MpΓ. (24)

6For ease of reference, we have stated it in Appendix G.
7Since u < 0.5, it follows that γ0Γ < 0.5.
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Thus, from (21) and (22), we have

Ped ≤ exp

(
−MpΓ(1− β)2(1− γ0)2

8

)
and Peh ≤ exp

(
−MpΓ(1− β)2(1− γ0)2

48

)
. (25)

Thus, choosing p = 1
(1−u)K and noting that Γ ≥ e−2(1− q),

from (19) and (20) we get,

P(E) ≤ exp

[
−M(1− γ0)2(1− q)N0

Ca1K(1− u)

+log

(
K

(
N −K
L− 1

))]
+ 2 exp

[
−Mβ2(1− γ0)2Γ

3(1 + γ0)2

]
+ exp

[
−M(1− γ0)2(1− q)

Ca2K(1− u)
+ logK

]
, (26)

with Ca1 = 48e2

(1−β)2 and Ca2 = 8e2

(1−β)2 . Thus, if M
is chosen as specified in (3), with the constants Ca1,
Ca2 chosen as above, then the error probability is upper
bounded by exp

(
−c0 log

[
K
(
N−K
L−1

)])
+ exp(−c0 logK) +

2 exp(−c′0K logK), where c′0 ≥ Ca2(1−u)
(1−γ0)2(1−q)

β2(1−γ0)2Γ
3(1+γ0)2 >

β2

3(1−β)2 .
2) Proof for CoAl

We first note that with ψcb = ψ0, where ψ0 , γ0Γ
1−γ0Γ , we

have (see Appendix B)

µj − µi = MpΓ(1 + ψ0)

[
(1− γ0)− η

(
1 + γ0

1− γ0Γ

1− Γ

)]
.

(27)

Thus, for η = β
1− γ0

1 + γ0
1−γ0Γ
1−Γ

for any 0 < β < 1, µj −

µi = MpΓ(1 + ψ0)(1− γ0)(1− β) > 0. With ψcb = ψ0, we
have σ2

i ≤ Mpγ0Γ
(

1 + η + ψ0
1−Γ

′′

1−Γ

)
≤ 2Mpγ0Γ(1 + ψ0).

Also, we note that ψ0 < 1. Thus, 2σ2
i + (2/3)δ0 < MpΓ(1 +

ψ0) (4γ0 + (1− β)(1− γ0)/3) ≤ 4MpΓ(1+ψ0). Thus, from
(21), we get

Ped ≤ exp

(
−MpΓ(1 + ψ0)(1− β)2(1− γ0)2

32

)
. (28)

With ψ0 as above, σ2
j ≤MpΓ(1+ψ0)(1+γ0) and thus, 2σ2

j +

(2/3)ε0 < MpΓ(1 + ψ0)
(

2 + 2γ0 + (1−γ0)
6

)
< 4MpΓ(1 +

ψ0), since 1 + ψ0 = 1
1−γ0Γ . Thus, from (22), we get

Peh ≤ exp

(
−MpΓ(1 + ψ0)(1− β)2(1− γ0)2

64

)
. (29)

The next steps follow exactly as for RoAl. Hence, if M is
chosen as specified in (3), with the constant Ca1 and Ca2

chosen as 64e2

(1−β)2 and 32e2

(1−β)2 , respectively, then the error

probability remains smaller than exp
(
−c0 log

[
K
(
N−K
L−1

)])
+

exp(−c0 logK) + exp(−c0 logK) + 2 exp(−c′0K logK).
3) Proof of Proposition 1

For i ∈ Sd, define Hi(y) , {T (i, y) ≤ τ}. The error event
in (14) is a subset of the right hand side in the following
equation:

E(y) ⊂ ∪
i∈Sd

(
{ ∪
Sz∈Sz

∩
j∈Sz

(Eij(y) ∩Hi(y))} ∪ Hi(y)

)
,

(30)
where Eij(y) , {T (j, y) ≤ T (i, y)} for any i ∈ Sd and
j ∈ Sz . In the above, we have used the fact that, for any two
sets A and B, A ⊂ {A∩B}∪B. Further, using monotonicity

properties, we have{
Eij(y) ∩Hi(y)

}
⊂ {T (j, y) ≤ τ} ⊂ {T (j, y) < τ + ε0},

(31)
where ε0 > 0 is any constant.

We note that given y, T (l, y) for any item l (see (2)),
can be represented as a difference of sums of i.i.d. random
variables. The number of variables involved in each sum
depends only on the number of zeros in y, which is restricted
to [(1 − η)MΓ (1 + η)MΓ] for y ∈ Gy due to the way the
set Gy was chosen. Thus, for any i ∈ Sd, j /∈ Sd and for all
y ∈ Gy ,

Pr({T (j, y) < τ + ε0}) ≤ Pr({T (j, y
L

) < τ + ε0})
and Pr({T (i, y) > τ}) ≤ Pr({T (i, y

H
) > τ}). (32)

Further, we note that given y, T (j1, y) is independent of
T (j2, y) for any j1, j2 ∈ Sz , j1 6= j2 as these can be
represented as a function of only xj1 and xj2 , respectively, and
y does not depend upon xj1 and xj2 (see Lemma 1). Using
this observation, the claim in the proposition now follows
from (30), (31) and (32) by accounting for the cardinalities
of different sets involved in the union bounding.
4) Proof of Corollary 1

For the uniform case, we use the union bound over all
possible choices of the defective set. The proof of the corollary
follows the same steps as the proof of Theorem 1; the only
difference comes on account of the additional union bounding
that has to be done to account for all possible choices of the
defective set. Here, we discuss the multiplicative factors that
have to be included because of this additional union bound.
Let Sd denote the set of all possible defective sets. Note that
|Sd| =

(
N
K

)
. First, from (30) in the proof of Proposition 1, for

a given y,

E(y) ⊂
{
∪

Sd∈Sd
∪

i∈Sd

∪
Sz∈Sz

∩
j∈Sz

(
Eij(y) ∩Hi(y)

)}
⋃{

∪
Sd∈Sd

∪
i∈Sd

Hi(y)

}
, (33)

The first and second term above correspond to the first and
second term in (19), respectively. Thus, for the first term in
(19), an additional multiplicative factor of

(
N
K

)
is needed to

account for all possible defective sets. For the second term,
observe that

∪
Sd∈Sd

∪
i∈Sd

Hi ⊆ ∪
i∈[N ]

Hi. (34)

Thus, for the second term in (19), the multiplicative factor of
K in (18) gets replaced by a factor of N , and no additional
combinatorial multiplicative factors are needed. Similarly, an
additional multiplicative factor of

(
N
K

)
is needed for the

third term in (19). We also note a change in the third term
in (26): 2 exp

[
−M(1−γ0)2(1−q)

Ca3
+K logN

]
, where Ca3 is

some positive constant. Here, we have used the fact that
log
(
N
K

)
≤ K logN . The corollary now follows by noting that

C ′a2 can be chosen as max
{
Ca2,

Ca3(1+ψ0)
1−u

}
.

B. Proof of Theorem 2

Let X ∈ {0, 1}M×N denote the random test matrix, y ∈
{0, 1}M the output of the group test, Yz(y) , {l ∈ [M ] :

y(l) = 0} with Mz , |Yz(y)|, and Yp(y) , {l ∈ [M ] : y(l) =
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1} with Mp , |Yp(y)|. Let Xz , X(Yz(y), :) ∈ {0, 1}Mz×N

and Xp , X(Yp(y), :) ∈ {0, 1}Mp×N . Although Xz and Xp

depend upon y, we omit explicitly denoting this dependence
to keep the notation light.

For the ease of analysis of the LP described in (5), we work
with the following equivalent program:

minimize
z

1TMz
Xz z (35)

(LP0a) subject to 0N 4 z 4 1N ,

1TNz ≥ (N − L).
The above formulation has been arrived at by eliminating the
equality constraints and replacing the optimization variable z
by (1N−z). Hence, the non-defective subset output by (35) is
indexed by the smallest L entries in the solution of (LP0a) (as
opposed to largest L entries in the solution of (LP0)). We know
that strong duality holds for a linear program and that any pair
of primal and dual optimal points satisfy the Karush-Kuhn-
Tucker (KKT) conditions [39]. Hence, a characterization of the
primal solution can be obtained in terms of the dual optimal
points by using the KKT conditions. Let λ1, λ2 ∈ RN and
ν ∈ R denote the dual variables associated with the inequality
constraints in (LP0a). The KKT conditions for any pair of
primal and dual optimal points corresponding to (LP0a) can
be written as follows:
1TMz

Xz − λ1 + λ2 − ν1N = 0N (36)

λ1 ◦ z = 0N ; λ2 ◦ (z − 1N ) = 0N ; ν(1TNz − (N − L)) = 0;
(37)

0N 4 z 4 1N ; 1TNz ≥ (N − L); λ1 < 0N ; λ2 < 0N ; ν ≥ 0;
(38)

Let (z, λ1, λ2, ν) be the primal, dual optimal point, i.e., a
point satisfying the set of equations (36)-(38). Let Sd denote
the set of defective items. Further, let ŜL denote the index
set corresponding to the smallest L entries, and hence the
declared set of non-defective items, in the primal solution
z. We first derive a sufficient condition for successful non-
defective subset recovery with RoLpAl.
Proposition 2. If λ2(i) > 0 ∀ i ∈ Sd, then for a given output
y, ŜL ∩ Sd = {∅}.
Proof: See Appendix C.

Define θ0 , max{i:λ1(i)=0} 1TMz
Xz(:, i) and θ1 ,

min{i:λ1(i)>0} 1TMz
Xz(:, i). We relate θ0, θ1 and ν as follows:

Proposition 3. The dual optimal variable ν satisfies
θ0 ≤ ν < θ1.

Proof: See Appendix D.

Let E(y), P(E(y)), Sz and Sz be as defined at the beginning
of this section. The sufficiency condition presented in propo-
sition 2 for successful non-defective subset recovery, in turn,
leads to the following:
Proposition 4. For a given output y, the error event associated
with RoLpAl satisfies
E(y) ⊆ ∪

i∈Sd

∪
Sz∈Sz

{
1TMz

Xz(:, i) ≥ 1TMz
Xz(:, j),∀j ∈ Sz

}
.

(39)

Proof: Define E0(i, y) , {λ2(i) = 0}. We first note, from
(36), that for any i ∈ [N ]

λ2(i) = 0 =⇒ 1TMz
Xz(:, i) = λ1(i) + ν ≥ ν. (40)

From proposition 3 and (40),
E0(i, y) ⊆

{
1TMz

Xz(:, i) ≥ θ0

}
. (41)

We note that there exist strictly less than L items for which
λ1(i) > 0; otherwise, from (37), the solution would violate
the primal feasibility constraint: 1TNz(i) ≥ (N − L). Thus,
there exist at least (N − K) − (L − 1) non-defective items
in the set {i : λ1(i) = 0}. From (41), there exists a
set Sz of (N − K) − (L − 1) non-defective items such
that

{
1TMz

Xz(:, i) ≥ 1TMz
Xz(:, j),∀j ∈ Sz

}
. Taking the union

bound over all possible Sz , we get
E0(i, y) ⊆ ∪

Sz∈Sz

{
1TMz

Xz(:, i) ≥ 1TMz
Xz(:, j),∀j ∈ Sz

}
,

(42)
and (39) now follows since using Proposition 2 we have
E(y) ⊆ ∪i∈Sd

E0(i, y).
Note that, for a given y and i, the quantity 1TMz

Xz(:, i) is
the same as the quantity T (i, y) with ψcb = 0 as defined
in the proof of Theorem 1, and (39) is the same as (14).
Thus, following the same analysis as in Section VI-A, if
M satisfies (3) with ψ0 = 0, the LP relaxation based algo-
rithm RoLpAl succeeds in recovering L non-defective items
with probability exceeding 1 − exp

(
−c0 log

[
K
(
N−K
L−1

)])
+

exp(−c0 logK)+ exp(−c0 logK) + 2 exp(−c′0K logK).

C. Proof for Theorem 3

We use the same notation as in Theorem 2 and analyze
an equivalent program that is obtained by replacing (1 − z)
by z. We note that LP2 differs from LP0 only in terms
of the objective function, and the constraint set remains the
same. Thus, the complimentary slackness and the primal dual
feasibility conditions are the same as given in (37) and (38),
respectively. The zero gradient condition for LP2 is given by

1TMz
Xz − ψlp1TMp

Xp − λ1 + λ2 − ν1N = 0N . (43)
Let i ∈ Sd, and for a given y, define Ei(y) , {i ∈

ŜL}. Note that E(y) ⊆ ∪i∈Sd
Ei(y). Further, Ei(y) ⊆

Ai(y) ∪ Bi(y), where Ai(y) , {λ2(i) = 0} and Bi(y) ,{
Ei(y) ∩ {λ2(i) > 0}

}
. Let us first analyze Bi(y). Using

similar arguments as in Propositions 2 and 3, it can be shown
that,
Bi(y) ⊆ {ν = 0}
⊆ ∪
Sz∈Sz

{
1TMz

Xz(:, j)− ψlp1TMp
Xp(:, j) ≤ 0,∀j ∈ Sz

}
,

(44)
and

∪
i∈Sd

Bi(y) ⊆ ∪
i∈Sd

∪
Sz∈Sz

{
T (j, y) ≤ 0,∀j ∈ Sz

}
. (45)

Further, using similar arguments as in the proof of Theorem
2, it can be shown that

Ai(y) ⊆ ∪
Sz∈Sz

{
1TMz

Xz(:, i)− ψlp1TMp
Xp(:, i)

≥ 1TMz
Xz(:, j)− ψlp1TMp

Xp(:, j),∀j ∈ Sz
}
,

and
∪

i∈Sd

Ai(y) ⊆ ∪
i∈Sd

∪
Sz∈Sz

{
T (i, y) ≥ T (j, y),∀j ∈ Sz

}
.

(46)
We note that (46) is the same as (14) and we analyze
it in a manner similar to Theorem 1. In particular, in
proposition 1 we assert that:

{
T (i, y) ≥ T (j, y),∀j ∈ Sz

}
⊆
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{T (i, y) > τ} ∪ {T (j, y) ≤ τ,∀j ∈ Sz} for some τ . We note
that {T (j, y) ≤ 0,∀j ∈ Sz} ⊂ {T (j, y) ≤ τ,∀j ∈ Sz} for
any τ > 0. That is, if τ > 0, then we would have already
accounted for the event Bi(y) while upper bounding Ai(y).
It is easy to verify from the parameters chosen in the proof
of Theorem 1 that the value of τ is indeed greater than zero.
Thus, following the analysis as in Section VI-A, if M satisfies
(3) with ψ0 , γ0Γ

1−γ0Γ , the LP relaxation based algorithm
CoLpAl succeeds in recovering L non-defective items with
probability exceeding 1 − exp

(
−c0 log

[
K
(
N−K
L−1

)])
+

exp(−c0 logK)+ exp(−c0 logK) + 2 exp(−c′0K logK).
This concludes the proof.

D. Proof of Theorem 4: Necessary Number of Observations

For the purpose of this proof, recall that Pe was defined in
(11). We need to prove that limN→∞ Pe = 0 implies the bound
on the number of observations as given by (13). Towards that
end, we first find, by lower bounding Pe, the conditions on
M that will lead to the error probability being bounded away
from zero. We consider a genie-aided lower bound, where we
assume that the active set is partially known. Let ω denote
the index of the defective set, which is distributed uniformly
over the set Id. Suppose K − j items from the defective set
are revealed to us, with the K − j items chosen uniformly
at random from the K defective items. Define a partition for
Sω as Sω = S(j) ∪S(K−j), where |S(j)| = j and |S(K−j)| =
K−j and S(j)∩S(K−j) = {∅}. Let the set S(K−j) correspond
to the set of defective items revealed to us. Conditioned on
S(K−j), ω is uniformly distributed over the set of K sized
subsets of indices in Id containing the known set S(K−j).
Now consider H(ω,E|y,X, S(K−j)):
H(ω,E|y,X, S(K−j))

= H(E|y,X, S(K−j)) +H(ω|E,y,X, S(K−j)) (47)
(a)
≤ Hb(Pe) + (1− Pe)H(ω|E = 0,y,X, S(K−j))

+ PeH(ω|E = 1,y,X, S(K−j)) (48)
(b)
≤ Hb(Pe) + (1− Pe) log

(
N −K + j − L

j

)
+ PeH(ω|X, S(K−j)) (49)

(c)
≤ Hb(Pe) + (1− Pe) log

(
N −K + j − L

j

)
+ Pe log

(
N −K + j

j

)
. (50)

In the above, (a) follows since E is a binary RV and
H(E|y,X, S(K−j)) ≤ H(E) = Hb(Pe) ≤ 1. Since the
entropy of any discrete valued RV is bounded by the logarithm
of the alphabet size, the second term in (b) is obtained
by considering the cardinality of the remaining number of
outcomes conditioned on the outcome of E. When E = 0,
i.e., when there is no error, the number of ways of choosing
the set S(j) is

(
N−K+j−L

j

)
. The third term in (b) follows since

conditioning reduces entropy. We obtain (c) by using the fact

that H(ω|X, S(K−j)) = log
(
N−K+j

j

)
. Also,

H(ω,E|y,X, S(K−j))

= H(ω|y,X, S(K−j)) +H(E|ω,y,X, S(K−j))

= H(ω|y,X, S(K−j)), (51)
since the decoder output is a function of (y,X) and hence,
H(E|ω,y,X, S(K−j)) = 0. Thus, we get

log

(
N −K + j

j

)
= H(ω|X, S(K−j))

= H(ω|y,X, S(K−j)) + I(ω;y|X, S(K−j))

(a)
≤ H(ω|y,X, S(K−j)) + I(XSω

;y|X, S(K−j)) (52)
(b)
≤ Hb(Pe) + log

(
N −K + j − L

j

)
+ PeΓl(L,N,K, j) + I(XS(j) ;y|X, S(K−j)), (53)

where (a) follows from data-processing inequality [34],
and (b) follows from (50), (51) and using the fact that
I(XSω

;y|X, S(K−j)) = I(XS(j) ;y|X, S(K−j)). Further, we
have

I(XS(j) ;y|X, S(K−j))

= H(y|X, S(K−j))−H(y|XS(j) ,X, S(K−j)) (54)
(a)
≤ H(y|XS(K−j))−H(y|XS(j) ,XS(K−j))

= I(XS(j) ;y|XS(K−j)), (55)
where (a) follows since conditioning reduces entropy and y de-
pends on (XS(j) ,X, S(K−j)) only through (XS(j) ,XS(K−j)).
Using basic properties of entropy, mutual information and the

i.i.d. assumption across observations, it can be shown that [17]:
I(XS(j) ;y|XS(K−j)) ≤MI(XS(j) ;Y |XS(K−j)) = MI(j).

(56)
Thus, we get a genie aided lower bound on the probability

of error as

Pe ≥ 1− Hb(Pe) +MI(j)

Γl(L,N,K, j)
∀ j = 1, 2, . . . ,K. (57)

This further implies

M ≥ (1− Pe)Γl(L,N,K, j)−Hb(Pe)

I(j)
∀ j = 1, 2, . . . ,K.

(58)
The above equation holds for all j = 1, 2, . . . ,K and thus,
the lower bound on the number of observations follow easily
by noting that Hb(Pe)→ 0 as Pe → 0. Hence the proof.

VII. SIMULATIONS

In this section, we present numerical results illustrating
the performance of the algorithms proposed in this work
for non-defective subset recovery. We empirically find the
number of tests required to achieve a given performance level,
which helps to highlight the practical ability of the proposed
algorithms to recover a non-defective subset using significantly
fewer measurements compared to the indirect method of first
identifying the defective subset and then choosing the required
number of items from the complement set. The simulation
results validate the general theoretical trends, and facilitate a
direct comparison of the presented algorithms.

Our setup is as follows. For a given set of operating
parameters, i.e., N , K, u, q and M , we choose a defective set
Sd ⊂ [N ] randomly such that |Sd| = K and generate the test
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output vector y according to (1). We then recover a subset of
L non-defective items using the different recovery algorithms,
i.e., RoAl, CoAl, RoLpAl, RoLpAl++ and CoLpAl, and com-
pare it with the defective set. The empirical probability of error
is set equal to the fraction of the trials for which the recovery
was not successful. The recovery is deemed unsuccessful if
the output non-defective subset contains at least one defective
item. This experiment is repeated for different values of M and
L. For each trial, the test matrix X is generated with random
Bernoulli i.i.d. entries, i.e., Xij ∼ B(p), where p = 1/K.
Also, for CoAl and CoLpAl, we set ψcb = ψlp = γ0Γ

1−γ0Γ .
Unless otherwise stated, we set N = 256, K = 16, u = 0.05,
q = 0.1 and we vary L and M .

Figure 2 shows the variation of the empirical probability
of error with the number of tests, for L = 64 and L = 128.
These curves demonstrate the theoretically expected exponen-
tial decay of the average error rates with the number of tests.
They also show the similarity of the error rate performance of
RoAl and RoLpAl, and the performance improvement offered
by RoLpAl++ at higher values of L. We also note that, as
expected, the algorithms that use tests with both positive and
negative outcomes perform better than the algorithms that use
only tests with negative outcomes.

Figure 3 presents the number of tests M required to achieve
a target error rate of 10% as a function of the size of the
non-defective subset, L. We note that for small values of L,
the algorithms perform similarly, but, in general, CoAl and
CoLpAl are the best performing algorithms across all values
of L. We also note that, as argued in Section III-C, RoLpAl++
performs similar to RoLpAl for small values of L and for
large values of L the performance of the former is the same
as that of CoLpAl. Also, as mentioned in Section V, we
note the linear increase in M with L, especially for small
values of L. We also compare the algorithms proposed in this
work with an algorithm that identifies the non-defective items
by first identifying the defective items, i.e., we compare the
“direct” and “indirect” approach [22] of identifying a non-
defective subset. We first employ a defective set recovery
algorithm for identifying the defective set and then choose
L items uniformly at random from the complement set. This
algorithm is referred to as “InDirAl” in Figure 3. In particular,
we have used “No-LiPo-” algorithm [18] for defective set
identification. It can be easily seen that the “direct” approach
significantly outperforms the “indirect” approach. We also
compare against a non-adaptive scheme that tests items one-
by-one. The item to be tested in each test is chosen uniformly
at random from the population. We choose the top L items
tested in all the tests with negative outcomes as the non-
defective subset. This algorithm is referred to at “NA1by1”
(Non-Adaptive 1-by-1) in Figure 3. It is easy to see that the
group testing based algorithms significantly outperform the
NA1by1 strategy.

Figure 4 compares the number of tests required to achieve
a target error rate of 10% for CoAl with the information
theoretic lower bound for two different values of K. It can
be seen that the empirical performance of CoAl is within
O(logK) of the lower bound. The performance of the other
algorithms is found to obey a similar behavior.
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Fig. 2. Average probability of error (APER) vs. number of tests M . The
APER decays exponentially with M .

TABLE III
ROBUSTNESS OF THE NON-DEFECTIVE SUBSET IDENTIFICATION
ALGORITHMS TO UNCERTAINTY IN THE KNOWLEDGE OF K . THE

NUMBERS IN THE TABLE ARE ∆M (K̂,Kt).

Kt = 16, N = 256, L = 128, q = 0.1, u = 0.05
∆K = 0.75 ∆K = 1.5 ∆K = 2.0

RoAl 1.13 1.06 1.20
CoAl 1.13 1.04 1.17
RoLpAl 1.09 1.04 1.17
RoLpAl++ 1.04 1.00 1.17
CoLpAl 1.11 1.03 1.19

As discussed in Section V, the parameter settings require
the knowledge of K. Here, we investigate the sensitivity of
the algorithms on the test matrix designed assuming a nominal
value of K to mismatches in its value. Let the true number
of defective items be Kt. Let M(K̂,Kt) denote the number
of tests required to achieve a given error rate when the test
is designed with K = K̂. Let ∆M (K̂,Kt) , M(K̂,Kt)

M(Kt,Kt)
.

Thus, ∆M (K̂,Kt) represents the penalty paid compared to
the case when the test is designed knowing the number of
defective items. Table III shows the empirically computed
∆M for different values of uncertainty factor ∆K , K̂

Kt
for

the different algorithms. We see that the algorithms exhibit
robustness to the uncertainty in the knowledge of K. For
example, even when K̂ = 2Kt, i.e., ∆k = 2, we only pay
a penalty of approximately 17% for most of the algorithms.
Also, as suggested by the analysis of the upper bounds in
Section V, the algorithms exhibit asymmetric behavior in
terms of robustness and are more robust for ∆k > 1 compared
to when ∆k < 1.

Figure 5 shows the performance of different algorithms
with the variations in the system noise parameters. Again, in
agreement with the analysis of the probability of error, the
algorithms perform similarly with respect to variations in both
the additive and dilution noise.

VIII. CONCLUSIONS

In this work, we have proposed analytically tractable and
computationally efficient algorithms for identifying a non-
defective subset of a given size in a noisy non-adaptive
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Fig. 3. Number of tests vs. size of non-defective subset. Algorithm CoLpAl
performs the best among the ones considered. The direct approach for finding
non-defective items significantly outperforms both the indirect approach
(“InDirAl”), where defective items are identified first and the non-defective
items are subsequently chosen from the complement set [22], as well as the
item-by-item testing approach (“NA1by1”).
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Fig. 4. Comparison of CoAl with the scaled information theoretic lower
bounds. Here, the lower bounds have been scaled by a multiplicative factor of
log(K). The close agreement of the scaled lower bound with the performance
of the algorithm shows that CoAl is within a log(K) factor of the lower
bounds.

group testing setup. We have derived upper bounds and lower
bounds on the number of tests for correct non-defective subset
identification, and we have shown that the upper bounds and
information theoretic lower bounds are order-wise tight up to
a poly-log factor. The algorithms are robust to the uncertainty
in the knowledge of system parameters. Also, algorithms that
use both positive and negative outcomes, namely CoAl and the
LP relaxation based CoLpAl, gave the best performance for
a wide range of values of the size of non-defective subset
to be identified, L. In this work, we have considered the
randomized pooling strategy. It will be interesting to study
deterministic constructions for the purpose of non-defective
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Fig. 5. Variation of the average probability with (a) additive noise (q) and
(b) dilution noise (u).

subset identification; this could be considered in a future
extension of this work.

APPENDIX

A. Proof of Lemma 1

We note that a test outcome is 0 only if none of the
K defective items participate in the test and the output is
not corrupted by the additive noise. We get (a) by noting
that the probability that an item does not participate in the
group test is given by (1 − p) + pu; (b) follows from (1).
For (c), given that Xli = 1 for any i ∈ Sd, the outcome
is 0 only if the ith item does not participate in the test
(despite Xli = 1) and none of the remaining K − 1 defective
items participate in the test (either the entry of the test
matrix is zero or the item gets diluted out by noise) and
the test outcome is not corrupted by additive noise. That is,
P(Yl = 0|Xli = 1) = u(1− (1− p)u)K−1(1− q) = γ0Γ. The
other part follows similarly. To obtain (d), note that for any
i ∈ Sd and j /∈ Sd, P(Yl|Xli, Xlj) = P(Yl|Xli). By Bayes’
rule and part (b) in this lemma, we get: P(Xli, Xlj |Yl) =
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P(Yl|Xli,Xlj)
P(Yl)

P(Xli)P(Xlj) = P(Xli|Yl)P(Xlj |Yl). Since the
rows of the test matrix X are i.i.d., part (e) follows by noting
that for a given y and any item i,
T (i, y) =

∑
j∈{k : y(k)=0}

xi(j)− ψcb
∑

j∈{k : y(k)=1}

xi(j),

i.e., it can be represented as a difference of sums of i.i.d.
random variables. Hence the proof.

B. Proof of (16), (17) and (27)

Given y, T (i, y) can be written as a linear combination of
independent Bernoulli random variables (see Lemma 1). For
y = y

H
, there will be MΓ

′′
zeros and M(1 − Γ

′′
) ones in

y. For any i ∈ Sd, the expressions for µi and σ2
i now follow

from Lemma 1: Pr(Xli = 1|Yl = 0) = pγ0 and Pr(Xli =

1|Yl = 1) = p (1−γ0Γ)
1−Γ for any i ∈ Sd. Similarly, for y = y

L
,

the expressions for µj and σ2
j hold because Pr(Xlj = 1|Yl =

0) = p and Pr(Xlj = 1|Yl = 1) = p for any j ∈ Sz .
For (27), with ψcb = ψ0 = γ0Γ

1−γ0Γ , µj − µi =

MpΓ
[
(1− η)− γ0

(
(1 + η) + 1−Γ

′

1−γ0Γ − 1−Γ
′′

1−Γ

)]
, where

Γ
′

= (1−η)Γ and Γ
′′

= (1+η)Γ. Note that (1+η)− 1−Γ
′′

1−Γ =
η

1−Γ and (1− η)− γ0
1−Γ

′

1−γ0Γ = (1− η)(1 +ψ)− γ0
1−γ0Γ . Thus,

µj − µi = MpΓ
(

(1− η)(1 + ψ)− γ0
1−γ0Γ −

η
1−Γ

)
. Equation

(27) now follows by using the fact that 1
1−γ0Γ = 1 + ψ0.

C. Proof of Proposition 2

We first prove that, for all i ∈ ŜL, λ2(i) = 0. The proof is
based on contradiction. Suppose there exists j ∈ ŜL such that
λ2(j) > 0. This implies, from the complimentary slackness
conditions (37), z(j) = 1 and thus, λ1(j) = 0. Since this item
is in ŜL, it implies that 1TNz > (N −L). Hence, ν = 0. From
the zero gradient condition in (36), we get 1TMz

Xz(:, j) =
−λ2(j) < 0, which is not possible, as all entries in X are
nonnegative. It then follows that ∀ i ∈ ŜL, λ2(i) = 0. Thus,
if λ2(i) > 0 ∀ i ∈ Sd, then these items cannot belong to the
first L entries in the primal solution z, i.e., Sd ∩ ŜL = {∅}.

D. Proof of Proposition 3

Suppose ν < θ0. Then, by definition of θ0, there exists
i such that λ1(i) = 0 and ν < 1TMz

Xz(:, i). Thus, from
(36), λ2(i) = ν − 1TMz

Xz(:, i) < 0, which violates the dual
feasibility conditions (38). Thus, ν ≥ θ0. Similarly, let ν ≥ θ1.
Then, there exists i such that λ1(i) > 0 and ν ≥ 1TMz

Xz(:, i).
Thus, from (36), λ2(i) = λ1(i) + ν− 1TMz

Xz(:, i) > 0, which
is a contradiction, since, by (37), λ1(i) > 0 implies λ2(i) = 0.
Thus, ν ≥ θ1 is not possible.

E. Order-Tight Results for Necessary and Sufficient Number
of Tests with Group Testing

In this section, we present a brief sketch of the derivation of
the order results for the necessary number of tests presented in
Table I. First, I(j) = H(Y |XS(K−j))−H(Y |XS(K−j) , XS(j))

[17], where H(·|·) represents the entropy function [34]. From
(1), we have

H(Y |XS(K−j)) =

K−j∑
l=0

[(
K − j
l

)
pl(1− p)K−j−l

Hb

(
(1− q)ul(1− p(1− u))j

)]
, (59)

H(Y |XS(K−j) , XS(j))

=

K∑
i=0

[(
K

i

)
pi(1− p)K−iHb

(
(1− q)ui

)]
. (60)

We use the results from [35] for bounding the mutual infor-
mation term. We collect the required results from [35] in the
following lemma.
Lemma 2. Bounds on I(j) [35]: Let p = δ

K . I(j) can be
expressed as I(j)

1 + I
(j)
2 , where

I
(j)
1 = δe−δ(1−u)(1− q) (u log u+ 1− u)

j

K
+O

(
1

K2

)
.

(61)
For the case with u = 0 and q > 0 we have:

I
(j)
2 = δe−δ

(
log(

1

q
)− (1− q)

)
j

K
+O

(
1

K2

)
, (62)

and for q = 0, u ≥ 0 we have:

δe−δ
(

(1− u)

[
log

K

jδ(1− u)

]
− u
)
j

K
+O

(
1

K2

)
≤ I(j)

2 ≤ δe−δ(1−u2)

(
(1− u)

[
log

K

jδ(1− u)

]
−u+ u2

) j
K

+O

(
1

K2

)
. (63)

Thus, with δ = 1 and large K, neglecting O(1/K2) terms,
(a) For u = 0, q > 0, we get I(j) ≈ j

eK log( 1
q ); and (b) For

q = 0, 0 ≤ u ≤ 0.5, simplifying further, we get
j

eK
(1− u) log

K

j
/ I(j) /

j

e1/2K
(1− u)

(
log

K

j
+ 1

)
.

(64)
In the above, we have used the notation “≈” and “/”
to highlight the fact that O( 1

K2 ) terms have been ne-
glected in the above expressions for I(j). The order re-
sults for the lower bounds now follow by first not-
ing that max1≤j≤K

Γl(L,N,K,j)
I(j)

≥ Γl(L,N,K,1)
I(1)

, and, for
the scaling regimes under consideration the combinato-
rial term, Γl(L,N,K, 1) can be asymptotically bounded as
limN→∞ Γl(L,N,K, 1) ≥ log 1−β0

1−α0−β0
.

F. Affine characterization of the function Hb(α)
1−α

Lemma 3. Let Hb(·) represent the binary entropy function.
Then, for 0 < α ≤ αh < 1, there exist positive constants
c0, c1 > 0, with c1 depending on αh, such that

Hb(α)

1− α ≤ c0α+ c1. (65)
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To establish (65), we note that
Hb(α)

1− α = − α

1− α log(α)− log(1− α)

=
α

1− α
∞∑
i=1

(1− α)i

i
+

∞∑
i=1

αi

i
(66)

≤ α
(

1 +
(1− α)

2
+

(1− α)2

3

)
+
α(1− α)3

4

( ∞∑
i=1

(1− α)i−1

)
(67)

+ α+
α2

2
+
α3

3
+
α4

4

( ∞∑
i=1

αi−1

)

≤ 17

6
α+

1

4

[
(1− α)3 +

α4

1− α

]
≤ c0α+ c1,

where c0 = 17/6 and c1 is obtained by appropriately bounding
the second term when 0 ≤ α ≤ αh. In particular, for αh ≤ 0.5,
c1 = 0.25 will satisfy (65).

G. Chernoff Bounds

Theorem 5. ( [38], Ch. 4) Let X1, X2, . . . , Xn be independent
B(p) random variables. Let X =

∑n
i=1Xi and let µ = E(X).

Then, for any 0 < δ < 1, the following Chernoff bounds hold:

P (X ≥ (1 + δ)µ) ≤ exp

(
−δ

2µ

3

)
(68)

P (X ≤ (1− δ)µ) ≤ exp

(
−δ

2µ

2

)
. (69)

Theorem 6. (Bernstein Inequality [37]) Let X1, X2, . . . , Xn

be independent real valued random variables, and assume that
|Xi| < c with probability one. Let X =

∑n
i=1Xi, µ = E(X)

and σ = Var(X). Then, for any δ > 0, the following hold:

P (X > µ+ δ) ≤ exp

(
− δ2

2σ2 + 2
3cδ

)
(70)

P (X < µ− δ) ≤ exp

(
− δ2

2σ2 + 2
3cδ

)
. (71)
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