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I. DERIVATION OF DL-SBL ALGORITHM

In this section, we provide the details of the EM-algorithm
development, explaining how to obtain (3)-(8), and the γk
update equations in Algorithm 1 and Algorithm 2. The EM
algorithm computes the unknown parameter set Λ by minimiz-
ing the negative log likelihood − log p(yK ; Λ). To compute
the likelihood, we first note that the SBL framework imposes a
Gaussian prior on the unknown vector xk ∼ N (0,Γk), where
Γk is an unknown diagonal matrix.. Thus, yk also follows a
Gaussian distribution: yk ∼ N (0, σ2I + AΓkA

T) because
the noise term wk ∼ N (0, σ2I). Therefore, we have

p(yK ; Λ) =

K∏
k=1

1√
(2π)m

∣∣∣σ2I +AΓkA
T
∣∣∣

× exp

(
−1

2
yT
k

(
σ2I +AΓkA

T
)−1

yk

)
. (97)

Hence, the negative log likelihood is computed as follows:

−log p(yK ; Λ) =
1

2

K∑
k=1

[
m log(2π) + log

∣∣∣σ2I +AΓkA
T
∣∣∣

+
1

2
yT
k

(
σ2I +AΓkA

T
)−1

yk

]
. (98)

Since the log(2π) term is a constant independent of Λ, we
omit that term and the scaling factor of 1

2 to obtain the cost
function T (Λ) in (3).

The EM algorithm treats the unknowns xK as the hidden
data and the observations yK as the known data. It is an
iterative procedure which updates the estimate of the parame-
ters Λ in every iteration using two steps: an expectation step
(E-step) and a maximization step (M-step). Let Λ(r) be the
estimate of Λ at the rth iteration. The E-step computes the
marginal log-likelihood of the observed data Q

(
Λ; Λ(r−1)

)
,

and the M-step computes the parameter tuple Λ that maxi-
mizes Q

(
Λ; Λ(r−1)

)
.

E-step: Q
(
Λ; Λ(r−1)

)
= ExK |yK ;Λ(r−1)

{
log p

(
yK ,xK ; Λ

)}
M-step: Λ(r) = arg max

Λ∈O×RNK
+

Q
(
Λ; Λ(r−1)

)
. (99)
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To simplify Q
(
Λ,Λ(r−1)

)
, we note that

p
(
yK ,xK ; Λ

)
=

K∏
k=1

p (yk|xk; Λ) p (xk; Λ) . (100)

Here, p (yk|xk; Λ) = N (Axk, σ
2I), and p (xk; Λ) =

N (0,Γk). Thus, we get,

log p
(
yK ,xK ; Λ

)
= log

{
K∏
k=1

1√
(2πσ)2m

exp

(
− 1

2σ2
‖yk −Axk‖

2

)

× 1√
(2π)N |Γk|

exp

(
−1

2
xT
kΓ−1

k xk

)}
(101)

= −Km
2

log((2π)N+1σ2)− 1

2

K∑
k=1

[
log |Γk|+Tr

{
Γ−1
k xkx

T
k

}]
− 1

2σ2

K∑
k=1

(yk −Axk)
T

(yk −Axk) . (102)

Therefore, eliminating the constant terms, we obtain (5) as
follows:

Q
(
Λ; Λ(r−1)

)
=

− 1

2

K∑
k=1

[
log |Γk|+ Tr

{
Γ−1
k E

{
xkx

T
k |yK ; Λ(r−1)

}}]
− 1

2σ2

K∑
k=1

E
{

(yk −Axk)
T

(yk −Axk) |yK ; Λ(r−1)
}
.

(103)

We notice that the expectation terms in the above expression
depend only on Λ(r−1), and are independent of Λ. Thus, the
dependence of Γk in Q

(
Λ; Λ(r−1)

)
is only through the kth

term in the first summation, and the dependence on A is only
through the last summation term. Therefore, the optimization
in the M-step is separable in its variables Γk and A. Hence,
the M-step reduces as follows:

γ
(r)
k = arg min

γ∈RN
+

log |Γk|+ Tr
{

Γ−1
k E

{
xkx

T
k |yk; Λ(r−1)

}}
(104)

A(r) = arg min
A∈O

K∑
k=1

E
{
(yk−Axk)

T
(yk−Axk) |yk; Λ(r−1)

}
.

(105)
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Here, we note that (105) is same as (7). Further, differentiating
the objective function, we get the update equation (6):

γ
(r)
k = Diag

{
E
{
xkx

T
k |yk; Λ(r−1)

}}
(106)

= Diag
{
µkµ

T
k + Σ(k)

}
, (107)

where we use the following facts:

µk , E
{
xk|yk; Λ(r−1)

}
(108)

Σ(k) , E
{

(xk − µk) (xk − µk)
T |yk; Λ(r−1)

}
(109)

= cov
{
xk|yK ; Λ(r−1)

}
. (110)

Next, we compute the conditional expectations terms needed
to find γ

(r)
k . We start with the following cross-covariance

matrix:

E
{
ykx

T
k |γk, σ2

}
= E

{
(Axk +wk)xT

k |γk, σ2
}

= E
{
Axkx

T
k |γk, σ2

}
= AΓk. (111)

Thus, the conditional mean and covariance are given as
follows:

cov
{
xk|yK ; Λ

}
= E

{
xkx

T
k |γk, σ2

}
− E

{
xky

T
k |γk, σ2

}
× E

{
yky

T
k |γk, σ2

}−1 E
{
ykx

T
k |γk, σ2

}
= Γk − ΓkA

T
(
σ2I +AΓkA

T
)−1

AΓk (112)

E
{
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}
= E

{
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}
+ E

{
xky

T
k |γk, σ2

}
× E

{
yky

T
k |γk, σ2
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{
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= ΓkA

T
(
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T
)−1
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(
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T
)−1

AΓkA
T

)
yk

= σ−2cov
{
xk|yK ; Λ

}
ATyk. (113)

Therefore, (106), (116) and (121) together gives the update
step for γk used in Algorithm 1 and Algorithm 2.

Similarly, the optimization problem corresponding the dic-
tionary update (105) reduces as follows:

arg min
A∈O

K∑
k=1

E
{

(yk −Axk)
T

(yk −Axk)
∣∣∣yk; Λ(r−1)

}
(114)

= arg min
A∈O

K∑
k=1

E
{
−yT

kAxk+
1

2
xT
kA

TAxk

∣∣∣∣yk; Λ(r−1)

}

= arg min
A∈O

− Tr

{(
K∑
k=1

µky
T
k

)
A+

1

2
AΣAT

}

= arg min
A∈O

Tr

{
−MY TA+

1

2
AΣAT

}
. (115)

Since A ∈ O, we can further simplify the second term here
as follows:

Tr
{
AΣAT

}
=

N∑
i,j=1;i 6=j

Σ[i, j]AT
i Aj +

N∑
i=1

Σ[i, i]AT
i Ai

(116)

= Tr
{
A (Σ−D {Σ})AT

}
+

N∑
i=1

Σ[i, i].

(117)

Here, the second term does not depend on A, and hence,
we remove the term from the objective function to get an
equivalent optimization objective function as in (8). Thus, the
derivation of algorithm development given by (3)-(8), and the
update equations for γk in Algorithm 1 and Algorithm 2 are
completed.

Learning the noise variance

Following a similar approach as the above, we can learn the
noise variance σ2 along with the dictionary A and covariance
matrices Γk. If σ2 is unknown, we have to incorporate its
update to the M-step by maximizing the Q function defined
in (103). Thus, considering the terms that depend on σ62, we
get(

σ2
)(r)

= arg min
σ2∈R+

Km log(σ2)

+
1

σ2

K∑
k=1

E
{

(yk −Axk)
T

(yk −Axk) |yK ; Λ(r−1)
}

=
1

Km

K∑
k=1

E
{

(yk −Axk)
T

(yk −Axk) |yK;Λ(r−1)
}

=
1

Km
Tr
{
Y TY − 2MY TA+AΣAT

}
, (118)

where the last step follows because of the same arguments
used to derive (125) from (122).

II. PROOF OF KURDYKA-ŁOJASIEWICZ PROPERTY BASED
CONVERGENCE RESULT

Theorem 6. A bounded sequence of iterates
{
A(r,u)

}
u∈N

generated by the ALS algorithm converges to a stationary point
of g̃ if the following four conditions hold:

(i) The objective function g̃(A) satisfies

inf
A∈Rm×N

g̃ (A) > −∞. (119)

(ii) There exist constants θ ∈ [0, 1), C, ε > 0 such that

|g̃ (A)− g̃ (A∗)|θ ≤ C ‖Z‖ (120)

for any stationary point A∗ of g̃, any A such that
‖A−A∗‖ ≤ ε, and any Z such that Z ∈ ∂g (A).
The constant θ is called the Łojasiewicz exponent of the
Łojasiewicz gradient inequality.

(iii) There exists C1 > 0 such that

g̃
(
A(r,u−1)

)
− g̃

(
A(r,u)

)
≥ C1

∥∥∥A(r,u−1) −A(r,u)
∥∥∥2

(121)
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(iv) There exist u0 > 1, C2 > 0 and Z ∈ ∂g
(
A(r,u)

)
such

that for all u > u0

‖Z‖ ≤ C2

∥∥∥A(r,u−1) −A(r,u)
∥∥∥ . (122)

The proof is adapted from the proof of [40, Theorem 2]. At
a high level, there are four steps to the proof:

A We first prove that the sequence
{
A(r,u)

}
u∈N

converges
to a bounded connected set G ⊆ crit(g̃) ⊆ O, where
crit(g̃) is the set of stationary points of g̃. Moreover, g̃ is
constant over the set G.

B Next, we connect the above result to Condition (ii). To
establish the connection, we define a new function ḡ :
O → R+ as ḡ(A) , g̃(A) − g̃(A(r)), where A(r) is a
limit point of the sequence

{
A(r,u)

}
u∈N

, and A is any
point in the set O. We note that the definition of ḡ is
unambiguous because Step A shows that g̃ is constant
over the set G. We then show that there exists a positive
integer U0 ∈ N and C̃ > 0 such that for all u ≥ U0,(

ḡ
(
A(r,u)

))θ
≥ C̃ ‖Z‖ , (123)

for any Z such that Z ∈ ∂g̃
(
A(r,u)

)
.

C Finally, using the above relation and other conditions of
the theorem, we show that the desired result follows.

Next, we present the details of the above steps:

A. Characterization of G
From Condition (iii), we get that
∞∑
u=1

∥∥∥A(r,u−1) −A(r,u)
∥∥∥2

≤ 1

C1

[
lim
u→∞

g̃
(
A(r,u−1)

)
− g̃

(
A(r,0)

)]
<∞, (124)

where the last step follows because limu→∞ g̃
(
A(r,u−1)

)
<

∞ due to Proposition 1. Further, [45, Theorem 1] states
that the set of subsequential limit points of a sequence{
A(r,u)

}
u∈N

in a compact metric space is a connected set
if it satisfies the following:

∞∑
u=1

∥∥∥A(r,u−1) −A(r,u)
∥∥∥2

<∞. (125)

Consequently, the result applies to any bounded sequence
satisfying (137). Since the sequence

{
A(r,u)

}
u∈N

generated
by the AM procedure belongs to the bounded set O, it
converges to a bounded connected set G ⊆ O. Also, since
the set of subsequential limits is closed, G is a connected
compact set.

Now, for any limit point A(r) ∈ G of the sequence{
A(r,u)

}
u∈N

, there exists a sequence {uj}j∈N of natu-

ral numbers such that
{(
A(r,uj),Z(r,uj), g̃

(
A(r,uj)

))}
j∈N

converges to the tuple
(
A(r),0, g̃

(
A(r)

))
. This is be-

cause the subsequence
{(
Z(r,uj), g̃

(
A(r,uj)

))}
j∈N

con-

verges to the same limit point as that of the sequence

{(
Z(r,u), g̃

(
A(r,u)

))}
u∈N

which is
(
0, g̃

(
A(r)

))
due to

(13) and Proposition 1. Therefore, we conclude that G ⊂
crit(g̃) and g̃ is constant over the set G, completing Step A.

B. Connection to Kurdyka-Łojasiewicz property

The compact set G can be covered with finite number of
closed balls Bj =

{
A ∈ O :

∥∥∥A−A∗(j)∥∥∥ ≤ εj} such that

Condition (ii) is satisfied by A(r,j) with constants C(j) and
εj > 0. Therefore, we have the following relation for A ∈ Bj :∣∣∣g̃ (A)− g̃

(
A∗(j)

)∣∣∣θj ≤ C(j) ‖Z‖ , (126)

for some θj and any Z such that Z ∈ ∂g̃ (A). Setting ε =
min
j
εj , C̃ = max

j
C(j), and θ = max

j
θj we get the following:

|g̃ (A)− g̃ (A∗)|θ ≤ C̃ ‖Z‖ , (127)

for any A∗ ∈ G of g̃, any A such that ‖A−G‖ ≤ ε, and
any Z such that Z ∈ ∂g̃ (A). Further, since

{
A(r,u)

}
u∈N

converges to G, for any ε > 0, there exists a positive integer
U0 such that for all u ≥ U0, we have

∥∥∥A(r,u) −G
∥∥∥ ≤ ε.

Therefore, for all u ≥ U0,∣∣∣ḡ (A(r,u)
)∣∣∣θ =

∣∣∣g̃ (A(r,u)
)
− g̃

(
A(r)

)∣∣∣θ ≤ C̃ ‖Z‖ .
(128)

Thus, Step B is completed.

C. Convergence to a single point

Since
{
g̃
(
A(r,u)

)}
u∈N

is a non-increasing sequence, we

have ḡ
(
A(r,u)

)
≥ 0, and the following relation holds.

lim
u→∞

ḡ
(
A(r,u)

)
= 0. (129)

We first note that the function h : R+ → R defined as
h(s) = −s1−θ is convex for all 0 ≤ θ ≤ 1. Thus, for all
u ∈ N and for θ in Condition (ii), it holds that[
ḡ
(
A(r,u−1)

)]1−θ
−
[
ḡ
(
A(r,u)

)]1−θ
= h

(
ḡ
(
A(r,u−1)

))
− h

(
ḡ
(
A(r,u)

))
(130)

≥ dh(s)

ds

∣∣∣∣
s=ḡ(A(r,u−1))

[
ḡ
(
A(r,u−1)

)
− ḡ

(
A(r,u)

)]
(131)

= (1− θ)
[
ḡ(A(r,u−1)

]−θ [
ḡ
(
A(r,u−1)

)
− ḡ

(
A(r,u)

)]
(132)

≥ C1(1− θ)
[
ḡ
(
A(r,u)

)]−θ ∥∥∥A(r,u−1) −A(r,u)
∥∥∥2

,

(133)

where we use Condition (iii) to obtain the last relation. Further,
from Step B, we get that[

ḡ
(
A(r,u−1)

)]1−θ
−
[
ḡ
(
A(r,u)

)]1−θ
≥ C1(1− θ)

C

∥∥∥A(r,u) −A(r,u−1)
∥∥∥2

‖Z‖
(134)
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≥ C1(1− θ)
CC2

∥∥∥A(r,u) −A(r,u−1)
∥∥∥2∥∥∥A(r,u−1) −A(r,u−2)
∥∥∥ , (135)

where we use Condition (iv).
Next, we fix a constant 0 < τ < 1. For some u ≥ U0,

if
∥∥∥A(r,u) −A(r,u−1)

∥∥∥ ≥ τ
∥∥∥A(r,u−1) −A(r,u−2)

∥∥∥, from
(147), we get the following:

CC2

rC1(1− θ)

{[
ḡ
(
A(r,u−1)

)]1−θ
−
[
ḡ
(
A(r,u)

)]1−θ}
≥
∥∥∥A(r,u) −A(r,u−1)

∥∥∥ . (136)

For all other values of u ≥ U0, we have the following relation:∥∥∥A(r,u) −A(r,u−1)
∥∥∥ ≤ τ ∥∥∥A(r,u−1) −A(r,u−2)

∥∥∥ . (137)

Combining (148) and (149), for all u ≥ U0, we get the upper
bound as given below:∥∥∥A(r,u) −A(r,u−1)

∥∥∥ ≤ τ ∥∥∥A(r,u−1) −A(r,u−2)
∥∥∥

+
CC2

rC1(1− θ)

{[
ḡ
(
A(r,u−1)

)]1−θ
−
[
ḡ
(
A(r,u)

)]1−θ}
.

(138)

Summing both sides, and using (141), we can simplify the
expression as follows:

∞∑
u=U0

∥∥∥A(r,u) −A(r,u−1)
∥∥∥

≤ τ

1− τ

∥∥∥A(r,U0−1) −A(r,U0−2)
∥∥∥

+
CC2

rC1(1− θ)

[
ḡ
(
A(r,U0)

)]1−θ
. (139)

Thus, we conclude that the series converges, and there exists
a finite constant κ <∞ such that the following holds:

∞∑
u=1

∥∥∥A(r,u) −A(r,u−1)
∥∥∥ = κ. (140)

Hence, for any ε > 0, there exists a positive integer U1 such
that for all U ≥ U1, we have

κ− ε/2 ≤
U∑
u=1

∥∥∥A(r,u) −A(r,u−1)
∥∥∥ ≤ κ+ ε/2 (141)

Thus, for any U1 ≤ u1 < u2, we have∣∣∣∥∥∥A(r,u2)
∥∥∥− ∥∥∥A(r,u1)

∥∥∥∣∣∣
≤

u2∑
u=u1+1

∣∣∣∥∥∥A(r,u)
∥∥∥− ∥∥∥A(r,u−1)

∥∥∥∣∣∣ (142)

≤
u2∑

u=u1+1

∥∥∥A(r,u) −A(r,u−1)
∥∥∥ (143)

=

u2∑
u=1

∥∥∥A(r,u) −A(r,u−1)
∥∥∥− u1∑

u=1

∥∥∥A(r,u) −A(r,u−1)
∥∥∥

(144)
≤ ε. (145)

Therefore, the sequence
{
A(r,u)

}
u∈N

is Cauchy, hence it
converges.


