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Abstract

This thesis proposes and analyzes data fusion algorithms that operate on the physi-

cal layer of a wireless sensor network, in the context of three applications of cognitive

radios: 1. Cooperative spectrum sensing via binary consensus; 2. Multiple transmit-

ter localization and communication footprint identification; 3. Target self-localization

using beacon nodes.

For the first application, the problem of achieving binary consensus among a set of

nodes using physical layer communication over noisy wireless links is considered. The

channel state information (CSI) available at the nodes are imperfect due to practical

estimation errors. Two schemes for updating the majority bit estimates at the nodes

are contrasted: a linear minimum mean squared error (LMMSE) based scheme and a

co-phased combining scheme. The evolution of network consensus is modeled as a

Markov chain, and the average transition probability matrix (TPM) is analytically de-

rived for the co-phased combining scheme, whereas, for LMMSE based scheme, the

average TPM is computed through Monte Carlo simulations. The co-phased combin-

ing scheme is found to perform better at low to intermediate pilot SNRs, in addition

to being analytically tractable and having lower computational complexity, compared

to the LMMSE-based scheme. Also, to further characterize the consensus behavior, the

probability of accurate consensus, the second eigenvalue of the TPM, the average hit-

ting time to the first consensus state, and the average consensus duration are derived

for the co-phased combining scheme. The power allocation between the pilot and data

symbols is optimized, subject to a total power constraint. It is found that the optimal

power allocation can lead to a significant improvement in the consensus performance.

Monte Carlo simulation results validate the theoretical results, and provide insights

into the complexity and performance trade-offs involved.
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Next, the problem of whitespace identification is considered. Whitespace identifi-

cation is a crucial step in the practical implementation of cognitive radios, where the

problem is to determine the communication footprint of active primary transmitters

in a given geographical area. To do this, a number of sensors are deployed at known

locations chosen uniformly at random within the given area. The sensors’ individual

decisions regarding the presence or absence of a signal at their location is transmitted to

a fusion center, which then combines the received information to construct the spatial

spectral usagemap. Under this model, several innovations are presented in this work to

enable fast identification of the available whitespace. First, using the fact that a typical

communication footprint map is a sparse image, two novel compressed sensing based

reconstruction methods are proposed to reduce the number of transmissions required

from the sensors compared to a round-robin querying scheme. Second, a new method

based on a combination of the K-means algorithm and a circular fitting technique is

proposed for determining the number of primary transmitters. Third, the design pro-

cedure to determine the power thresholds for signal detection at sensors is discussed.

The proposed schemes are experimentally compared with the round-robin scheme in

terms of the average error in footprint identification relative to the area under consider-

ation. Simulation results illustrate the improved performance of the proposed schemes

relative to the round-robin scheme.

Finally, an algorithm is proposed for self-localization of a target node using power

measurements from beacon nodes transmitting from known locations. The geograph-

ical area is overlaid with a virtual grid, and the problem is treated as one of testing

overlapping subsets of grid cells for the presence of the target node. The benefit of con-

sidering the problem in this framework is that it then becomes one of group testing,

where, in each test, subsets of individuals (grid locations) are tested for the presence

of defective individuals (targets). From the vast literature on group testing, a column

matching algorithm is considered for devising the target localization algorithm. The

average probability of localizing the target within a grid cell is derived using the tools

from Poisson point processes and order statistics. This quantity is used to determine

the minimum required node density to localize the target within a grid cell with high

probability. The proposed design procedure is validated using the Monte Carlo simu-

lations.



Glossary

AP : Access Point
BLE : Bluetooth Low Energy
cdf : Cumulative Distribution Function
CH : Calinski-Harbasz
COTS : Commercial Off-the-shelf
CSI : Channel State Information
CR : Cognitive Radio
FC : Fusion Center
FCC : Federal Communications Commission
HSA : Hierarchical Spectrum Access
i.i.d. : Independent and Identically Distributed
ISM : Industrial, Scientific and Medical
IoT : Internet-of-Things
LMMSE : Linear Minimum Mean Squared Error
LR : Likelihood Ratio
LLR : Log-Likelihood Ratio
M2M : Machine-to-Machine
MC : Markov Chain
MEC : Minimum Enclosing Circle
ML : Maximum Likelihood
MIMO : Multiple-Input Multiple-Output
MSE : Mean Squared Error
NGT : Non-Adaptive Group Testing
NP : Neyman Pearson
OMP : Orthogonal Matching Pursuit
OSA : Opportunistic Spectrum Access
pdf : Probability Density Function
PMSE : Program Making and Special Event
PPP : Poisson Point Process
PU : Primary User
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r.v. : Random Variable
RF : Radio Frequency
RSS : Receive Signal Strength
SNR : Signal-to-Noise Ratio
SU : Secondary User
TPM : Transition Probability Matrix
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WSD : White Space Device
WSN : Wireless Sensor Network
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Chapter 1

Introduction

The wireless radio spectrum is the primary infrastructure for various communication

services like television and radio broadcasting, mobile and data communication, satel-

lite communication, military applications, air-traffic control, emergency services, etc.

Dedicated frequencies are allocated to these services to ensure that they do not inter-

fere with each other, thereby ensuring good quality of service (QoS). However, in the

last decade, fueled by market demand for multimedia services and rapid advancement

in the device technology, the QoS requirement has increasedmany-fold in most of these

sectors. For example, there is a demand for higher data rates in television broadcast-

ing due to the high definition video technology. The demand for mobile data services

has also exploded, far exceeding most predictions. It is estimated that, because of the

proliferation of smart phones and Wi-Fi devices, the demand for mobile and wireless

data services will grow by a factor of over 80 times, between 2012 and 2030 [1]. Al-

though transmission techniques like multiple-input and multiple-output (MIMO), en-

hanced modulation and coding, coordinated multi-point transmission, small-cells, and

1
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carrier aggregation can enhance the data rate, they are limited by factors like inter-

ference, hardware requirements, etc. Thus, the increasing data rate requirement can

only be met by allocating larger bandwidth to a given sector. Also, the future need of

bandwidth for emerging services like machine-to-machine (M2M) communication and

Internet-of-Things (IoT), adds to the burden of the scarce spectrum. Therefore, it is es-

sential to utilize and reuse the spectrum efficiently to meet the ever-increasing demand

for data and related services.

The dedicated allotment of frequencies to different services is fundamentally ineffi-

cient, because, practically, the spectrum is not used at all times and at all locations by

any one service [2]. Sharing the same frequency among various services in time and

space would alleviate this problem. One of the most successful example of spectrum

sharing is Wi-Fi on 2.4 GHz and 5 GHz industrial, scientific and medical (ISM) radio

bands. In Wi-Fi, the access points (APs) use a detect-and-avoid mechanism before oc-

cupying a frequency sub-band, and the devices use a listen-before-speak approach to

communicate. This happens over the unlicensed ISM bands using network layer proto-

cols in a homogeneous environment, where all the devices are cooperating. However,

replicating the same over the rest of the spectrum where bulk of the band is licensed

and heterogeneous is quite a challenge. To this end, the hierarchical spectrum access [3]

envisioned as part of cognitive radios by Joseph Mitola [4, 5], is the future of spectrum

sharing.
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1.1 Hierarchical Spectrum Access and Cognitive Radios

The hierarchical spectrum access (HSA) model categorizes the licensed users and the

unlicensed spectrum seekers as primary users (PU) and secondary users (SU), respec-

tively. The secondary users are cognitive radios (CR), which are conceptualized as

context-aware, autonomously reconfigurable intelligent radios, capable of adapting to

the communication environment through learning. To share the spectrum, CRs must

communicate by limiting their interference to the incumbent (primary) receivers. In [6],

it was suggested that the CRs can opportunistically access a frequency band from a

spectrum pool when primary users are absent. To do that, CRs should actively look

for spectrum holes temporally and spatially. This is also known as white space detection.

Another spectrum sharing paradigm under the HSA model is the underlay approach,

where the CR users coexist with primary users by employing spread spectrum tech-

niques [7] or ultra-wideband (UWB) [8] transmissions under the noise floor of primary

receivers. The authors in [9] consider an improved underlay system by avoiding in-

terference to the primary users. The CRs adapt their UWB transmissions by notching

or suppressing their signals in the incumbent narrow-bands [10–13]. Again, this also

involves detecting the occupancy of spectrum. Consequently, the task of finding the

spectrum holes is an important block in CRs to enable opportunistic spectrum access

(OSA) and spectrum underlay with interference avoidance. This has spiraled research

in the area of spectrum sensing, which falls under the detection theory framework [14].

Also, to start with, the spectrum regulators have chosen a geo-location database based

approach to enable CR operation in TV white spaces [15]. These topics are discussed in

the next two sections.
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1.2 Spectrum Sensing

The problem of detecting the presence or absence of PU is, at its core, a binary hy-

pothesis testing problem. The received signal at the nth time instant y[n] under the two

hypotheses is given by

H0 : y[n] = w[n], n = 1, 2, . . . , N,

H1 : y[n] = x[n] + w[n], n = 1, 2, . . . , N, (1.1)

where x[n] is PU signal at the CR and w[n] is the receiver noise, assumed indepen-

dent and identically distributed (i.i.d.) as CN (0, σ2). Under both the Neyman Pearson

(NP) framework and Bayesian framework [14], the test statistic Λ(y) is the likelihood

ratio (LR), Pr(y|H1)
Pr(y|H0)

, where y , [y[1] y[2] . . . y[N ]]. The test statistic is compared with

a threshold η to decide between hypotheses H0 and H1. The probability of detection,

PD = Pr (Λ(y) ≥ η|H1), and the probability of false alarm, PFA = Pr (Λ(y) ≥ η|H0), are

the key performance metrics of interest. In the literature, various (sub-optimal, but

computationally efficient) sensing techniques like the energy detector, cyclo-stationary

feature based detector and matched filter detector have been considered [16–19]. An

energy detector [20, 21] compares measured energy in a finite interval
∑N

i=1(y[n])
2 to

the threshold η. The choice of η depends on the noise variance σ2. It has been shown

that, the energy detector is asymptotically optimal when the symbols are i.i.d. and

the probability density functions under both hypotheses are known [22, 23]. But, un-

der noise variance uncertainty, the energy detector suffers from the so-called SNR wall
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problem [24], i.e., there exists a lower limit on the detection SNR below which reli-

able detection is not possible, even if infinitely many samples are available. However,

in practice, structure in the modulated symbols in the form of pilot signals, spread-

ing codes, cyclic prefixes in OFDM, etc. can be exploited to circumvent the problem of

SNRwall. This structure in the primary signals is exploited in auto-correlation function

based detectors [25, 26] and cyclo-stationary feature based detectors [18, 27, 28]. On the

other hand, if the PU signal x is perfectly known at the secondary detector, the out-

put of the matched filter Re[xHy] is the test static, but this requires perfect timing and

frequency synchronization with the PU transmitter. All these local sensing schemes re-

quire the CR receivers to be of high sensitivity compared to PU receivers, as they are

based on sensing the PU transmitters, and not the PU receivers. This is a difficult re-

quirement, as it is challenging to design wideband radios with high sensitivity. Due to

this, the local sensing schemes suffer from what is known as the hidden terminal problem,

where a CR may not detect the PU transmitter as the PU signal may be in a deep fade,

but the CR’s transmissions may not be blocked from the PU receiver. Cooperative de-

cision making by a group of spatially distributed sensors offers the benefit of diversity,

making it robust to the hidden terminal problem.

1.2.1 Cooperative Spectrum Sensing

In the paradigm of decentralized detection based cooperative sensing, a central node

makes a unified decision by fusing the data from local sensors, and then broadcasts the

decision back to the sensors. The data fusion is primarily carried out in two ways: soft

combining and hard combining. In soft combining schemes, the sensors report their
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individual log-likelihood ratios (LLRs) to the central node, where the sum of LLRs is

used as the decision variable. Due to the energy constraints on the CR nodes, sending

the real-valued, full-precision LLRs to the central node may be expensive. Thus, in hard

combining, binary decisions are reported by local sensors, which are combined at the

central node using a k-out-of-L rule, i.e., if at least k out L sensors report a 1, then the

PU is declared to be present. The cases of k = 1, k = L, and k = ⌈L/2⌉ are called as the

OR rule, AND rule, andmajority rule, respectively. When energy detection is employed

at the local sensors, the majority rule turns out to be optimal in terms of probability of

error, when the local PFA is of the order of 1 − PD, whereas the AND rule is optimal

when PFA ≫ 1 − PD, and the OR rule is optimal in the PFA ≪ 1 − PD regime [29].

Hence, the majority rule is optimal in terms of CR network throughput in the desirable

PD range [30], and is shown to be robust to reporting channel errors [31].

Unlike the central node-based schemes described above, in distributed schemes, the

L sensors converge to a consensus decision by repeated exchange of data among them-

selves. As depicted in Fig. 1.1, the L nodes sense a given frequency band to arrive at

a local binary decision, and then they employ a consensus mechanism on a low-rate

control channel to ascertain the presence of primary. If the frequency band is found

free, L nodes form a secondary network on that band, otherwise they carry out the

same procedure on another frequency band. The study of one such majority rule based

distributed consensus scheme is a focus area of this thesis.
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Figure 1.1: Distributed and cooperative spectrum sensing via consensus

1.3 Geo-location Database Approach

Universally, the VHF and UHF bands of the radio spectrum are allocated to terrestrial

TV broadcasting because of their good propagation characteristics. In the USA, it was

found that the terrestrial TV bands were, in reality, highly under utilized [2]. Hence,

the Federal Communications Commission (FCC) has allowed unlicensed devices with

geo-location capability to access the TV spectrum. These devices are required to use

central databases to regulate the interference caused by them [32, 33]. This is done as

follows. First, the spectrum-seeking white space device (WSD) communicates its lo-

cation to the database. The database determines the allowable frequency bands and

maximum transmit powers, and returns this information to the WSD. This process is

pictorially shown in Fig. 1.2. The trials of this approach have been carried out to pro-

vide services like low cost broadband and public hot spots in the city of Wilmington,

North Carolina, and for smart grids in Plumas County, California [33]. Similarly, Of-

com in the UK has allowed the use of TV white spaces in the UHF band in 2014 [34].
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In India, terrestrial TV white spaces are abundantly available as satellite TV is the pri-

mary means of broadcasting, and deployment of a test bed has been planned to provide

broadband in rural areas of Palghar district of Maharashtra [35, 36].

Central database

Secondary node

Location of CR node

Allowed frequency bands

Max. transmit power etc.

Figure 1.2: Geolocation Database Approach

Two important problems in this approach are localization of the WSDs, and the cre-

ation and maintenance of the database. The database should contain the information

like TV station coordinates, their transmit powers, information about wireless micro-

phone devices and program making and special event (PMSE) devices, their locations

and time of usage, etc. To start with, FCC and Ofcom have placed a requirement on

the frequency of database update as once in a day and every 2 hours, respectively. As a

next step, Ofcom is aiming at WSDs that can avoid interference to other CRs along with

PUs. It is planning to extend the geo-databases to a wide range of frequencies [1, 34].

Therefore, in the long term, to extend the functionality of databases to facilitate mobil-

ity, better coordination among users, and improvement in QoS, it is important to create

and maintain accurate and up-to-date databases. Thus, another focus area of this thesis

is that of identifying the communication footprint of primary users.
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Further, as mentioned earlier, the WSD needs to convey its location to the central

database. In the absence of global positioning system (GPS), for example, in indoor en-

vironments, or when GPS capability is unavailable at the receiver, one can rely on the

already available infrastructure for localizing the WSD. For e.g., in a fully-networked

city, a set of cellular base-stations or the Wi-fi access points can be used to enable local-

ization. Thus, this thesis considers an infrastructure based localization of WSDs using

receive signal strength measurements. The contributions of the thesis are discussed in

detail in the next section.

1.4 Contributions of the Thesis

This thesis develops novel physical layer algorithms for the following three applica-

tions of CR:

A1. Cooperative sensing through physical layer binary consensus.

A2. Efficient identification of the primary communication footprint.

A3. Network assisted self-localization of CRs or WSDs.

The problem setup for applications A1-A3 consists of a set of sensors deployed uni-

formly at random locations in a geographical area. In case of A1 and A2, the sensors

locally detect the presence or absence of the primary and employ binary signaling to

transmit their local binary decisions to the other nodes or to a central node, respec-

tively. For A3, where the goal is self-localization of target, these sensors are used as

beacon transmitters. The transmissions by the beacon nodes are carried out on a noisy

control channel. The signals received at the WSD from the beacon nodes is used for
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self-localization of the WSD. The key contributions of the thesis in the three problem

areas A1-A3 are elaborated upon in the following paragraphs.

In Chapter 2, the problem of achieving binary consensus among a set of wireless nodes

using physical layer protocols is considered. A co-phased combining based scheme is

studied under imperfect channel state information at the nodes due to practical esti-

mation errors. The evolution of network consensus is modeled as a Markov chain,

and the average transition probability matrix (TPM) is analytically derived for the co-

phased combining scheme. The average hitting time to the consensus state and average

consensus duration are derived, and the average stopping time of the consensus proce-

dure is characterized. Also, the power allocation between the pilot and data symbols is

optimized, subject to a total power constraint. It is found that optimizing power allo-

cation significantly improves the consensus performance compared to naı̈ve allocation

schemes. The co-phased combining scheme is compared with a linear minimum mean

squared error (LMMSE) based scheme in terms of the probability of accurate consen-

sus, the second largest eigen value of the TPM, the average hitting time and the average

consensus duration. The co-phased combining scheme is found to perform better at

low-to-intermediate pilot SNRs compared to the LMMSE-based scheme.

The focus of Chapter 3 is the problem of spectrum cartography using 1-bit decisions

from sensors deployed in a geographical area. Using the fact that a typical communi-

cation footprint is a sparse image, two novel compressed sensing based reconstruction

methods are proposed to reduce the number of transmissions required from the sen-

sors compared to a round-robin querying scheme. Second, a new method based on a

combination of the K-means algorithm and a circular fitting technique is proposed for
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determining the number of primary transmitters. Third, a design procedure to deter-

mine the power thresholds for signal detection at sensors is proposed. The proposed

schemes are experimentally compared with the round-robin scheme in terms of the

average error in footprint identification relative to the area under consideration. Simu-

lation results illustrate the improved performance of the proposed schemes compared

to the round-robin scheme.

In Chapter 4, an algorithm is proposed for self-localization of a target node using

power measurements from beacon nodes transmitting from known locations. The geo-

graphical area is overlaid with a virtual grid, and the problem is treated as one of testing

overlapping subsets of grid cells for the presence of the target node. The proposed algo-

rithm is validated both by Monte Carlo simulations as well as using experimental data

collected from commercially-off-the-shelf bluetooth low energy (BLE) beacon nodes.
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Chapter 2

Performance Analysis of Co-phased

Combining for Achieving Binary

Consensus over Fading Wireless

Channels with Imperfect CSI

This work considers the problem of achieving binary consensus among a set of nodes,

where, starting with an initial binary value, the nodes exchange messages, with the

goal of agreeing upon the majority value among them. Majority consensus has many

applications, for example, in cooperative spectrum sensing in cognitive radios [37, 38]

and throughput optimization in sensor networks [30]. The classical approach to achiev-

ing consensus considers error-free exchange of data between neighboring nodes in the

form of packets. In wireless sensor networks (WSNs), one can avoid the control infor-

mation overhead required for a packet [39] by broadcasting the binary symbols over

the wireless medium. This constitutes achieving binary consensus in the physical layer

itself. However, the estimation of the fading channel and the errors due to the noise at

the receiver lead to a new set of challenges in achieving accurate consensus, due to the

13
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unreliable communication between the nodes. In this context, our goal in this chapter

is to study the performance of binary consensus protocols that involve bit exchanges

among the nodes over fading wireless channels, when the channel state information

(CSI) at the nodes is imperfect.

Most of the existing literature on consensus problems, starting from the thesis of Tsit-

siklis [40] to the more recent studies involving gossip algorithms [41–47], is mainly

concerned with distributed averaging. Here, the nodes attain consensus by repeatedly

computing a weighted average of the values of their neighbors. This requires nodes

to exchange real-valued estimates. On the other hand, several recent studies have also

considered the transmission of quantized states to the neighbors and then attaining the

average quantized consensus state [48–57]. However, all of these works consider mes-

sage exchange over the network layer of the protocol stack. In contrast, the idea of

achieving binary consensus over the physical layer itself has only been explored more

recently [58–63]. The exchange of a real-valued test statistic over fading channels to

arrive at consensus on the global average was considered in [54,58–60], with the goal of

performing distributed hypothesis testing. In [61–63], the authors considered a scheme

where the nodes iteratively broadcast their majority-bit estimates over a noisy channel

in a round-robin manner and update their majority-bit estimates using the received sig-

nals, to achieve consensus among the nodes. Further, this scheme has been extended to

networks with link failures in [63]. However, these studies assumed perfect CSI to be

available at the nodes, which is impractical in low power sensor network applications.

In [61], the authors consider an AWGN channel, and use a sum of votes estimator at

every node to detect the majority bit. The evolution of the network state is modeled as
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a Markov chain, and the second largest eigenvalue of its transition probability matrix

is used to characterize the consensus behavior. A key finding of this work is that the

network asymptotically loses memory of the initial state. However, in the transient

period, the network can be in accurate consensus with high probability and can stay in

consensus for a long duration.

In [63], the authors studied binary consensus with i.i.d. fading channels between the

nodes. A linear MMSE (LMMSE) estimator was proposed for updating the sum of

votes at the nodes as a weighted combination of the received samples. The weights

are computed based on the channel magnitudes, which were assumed to be perfectly

known at the nodes. An alternative way to estimate sum of votes is to simply compute

the sum of the co-phased received samples (akin to equal gain combining). To estimate

the sum of votes, which is a key quantity in determining the majority bit update at the

nodes, the physical layer protocols considered in this work and related literature are

based on spatial diversity combining, of which, LMMSE-based scheme and co-phased

combining scheme are robust across a wide range of SNRs. Other techniques, namely,

maximum ratio combining and selective gain combining are not suitable under non-

identical inputs [64]. Thus, the two schemes considered, the LMMSE-based scheme

and the co-phased combining are the relevant protocols in the scope of this work. Fur-

thermore, in the context of decentralized detection, the co-phased combining scheme is

known to be robust to channel estimation errors [64].

In this work, we study the efficacy of the two aforementioned options for achieving

binary consensus over i.i.d. fading channels. Specifically, and for the first time in the

literature to the best of our knowledge, our analysis accounts for the effect of channel
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estimation errors on physical layer consensus protocols. Further, while the analysis

in [63] focused on the second largest eigenvalue of the average transition probability

matrix (TPM) of the Markov chain, we analyze metrics that are more directly related

to the consensus performance, such as the probability of detecting the correct majority

bit, the time to reach first consensus, and the average consensus duration, all for the

co-phased combining scheme. In addition, we study the allocation of power between

the pilot and data symbols, under a total power constraint, to optimize the consensus

performance. We also study the performance of the co-phased combining schemewhen

the network is not fully connected.

Our key findings are as follows. The co-phased combining scheme is simple from an

implementation perspective, and also makes the average probability of detecting the

correct majority bit analytically tractable. The latter is necessary for computing the av-

erage TPM of the Markov chain. The second largest eigenvalue of the TPM governs

the consensus behavior of the underlying protocol. We also characterize the average

hitting time and the average consensus duration, which jointly determine the time re-

quired for the network to achieve consensus with high probability. We also find that,

while the co-phased combining scheme is simpler than the LMMSE scheme, somewhat

surprisingly, it offers better performance at low to moderate SNRs. This is due to its

lesser dependence on the channel estimates, which makes it a robust scheme in the

presence of errors in estimation. Finally, we find that optimizing the power allocation

between pilot and data symbols is important, as it can lead to a significant improvement

in the consensus performance compared to naı̈ve allocation schemes.

The rest of the chapter is organized as follows. We discuss the problem setup and
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system model in the next section. We present the update rules employed after the bit

exchange in Sec. 2.2. In Sec. 2.3, we derive the average probability of majority bit detec-

tion, average consensus duration and average hitting time for the proposed co-phased

combining based scheme. In Sec. 2.4, we provide simulation results comparing the

proposed and the existing consensus protocols. We conclude the chapter in Sec. 2.5.

Notation: In this chapter, we use boldface capital letters to denote matrices and bold-

face small letters to denote vectors. We use (.)T to denote the transpose of a matrix. The

function fH(h) represents the probability density function (pdf) of a random variable

H , and h denotes its realization.

2.1 SystemModel and Problem Set-up

Our setup consists of a fully-connected network with N nodes, with the nodes denoted

by S , {s1, s2, . . . , sN}. Each node starts with an initial binary data bit bl(0) ∈ {0, 1}, l =

1, . . . , N . The goal is for the nodes to achieve consensus on the bit value corresponding

to the majority of their initial values. To this end, nodes broadcast their data bit in

a round-robin manner over noisy fading channels. Then, nodes utilize the received

signals to detect and update a local majority bit estimate. This process is repeated over

multiple cycles, as consensus may not be attained in a single cycle of bit exchange and

bit update due to the noisy communication between the nodes. The physical layer

protocol considered in this work is schematically illustrated in Fig. 2.1.

In the tth update cycle, node sk ∈ S broadcasts a known pilot symbol followed by its

current majority bit estimate, denoted by bk(t − 1). This is received by the other N − 1

nodes sl ∈ S \{sk}. The wireless channel from sk to sl, denoted by hkl , |hkl|ejθkl , is
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assumed to be Gaussian CN (0, σ2) distributed, remain constant over a given update

cycle, and vary in an i.i.d. fashion across the nodes and across update cycles. We note

that the consensus protocols considered in the sequel are directly applicable to non-

i.i.d. fading channels. The performance the analysis can also be extended to the non-

i.i.d. case, by using the techniques in recent work in the context of the outage analysis of

relay selection schemes [65,66]. However, in the sequel, we restrict to the i.i.d. model for

simplicity of exposition and because it is sufficient to bring out the critical importance

of the system parameter settings, for example, the power allocation for the pilot and

data symbols, on the performance of physical layer consensus protocols. The node sl

estimates the channel hkl using the received pilot symbol

y
(p)
kl = hkl

√

Ep + w
(p)
kl , (2.1)

where Ep is the pilot power and w
(p)
kl ∼ CN (0, σ2

w) is the circularly symmetric complex

additive white Gaussian noise at the receiver1, with zero mean and variance σ2
w. The

maximum likelihood estimate of the channel is given by ĥkl = hkl + w
(p)
kl /
√
Ep. With

BPSK signaling employed for broadcasting the data bits, the received signal at sl is

given by

y
(d)
kl = hklxk

√

Ed + w
(d)
kl , where xk = 2bk(t− 1)− 1

and Ed is the data power and w
(d)
kl ∼ CN (0, σ2

w). At the end of a cycle, sl has N − 1 data

samples {y(d)kl } and corresponding channel estimates {ĥkl}, k = 1, 2, . . . , N , k 6= l. These

samples are used to find the bit-update of the tth cycle. The majority-bit update rules

1The distance dependent effects can be accounted in the analysis by zero forcing the path loss factor
at the receiver. This can be realized by substituting the noise variance term σ2

w with σ2
wd

η
kl throughout

the analysis. Here, dkl is the distance between the sensor nodes sk and sl and η is the path loss exponent.
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Figure 2.1: Illustration of the physical layer consensus protocol. Node s2 broadcasts
a pilot symbol followed by a BPSK data symbol x2 ∈ {−1,+1}. In each bit-exchange
cycle, all nodes employ the same mechanism, in a round-robin manner.

considered in this work are discussed in the next section. This is followed by a rigorous

theoretical analysis of the consensus procedure.

2.2 Majority Bit Detection

In this section, we discuss the bit-update procedure at each node sl. First, the received

data y
(d)
kl is pre-processed using an estimate of the phase of the channel hkl, as follows:

rkl = Re{y(d)kl e
−jθ̂kl}, k ∈ {1, 2, . . . , N}, k 6= l,

rkl = |hkl| cos θ̃klxk

√
Ed + vkl, (2.2)
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where the estimated channel ĥkl is written as ĥkl , |ĥkl|ejθ̂kl , θ̃kl , θkl − θ̂kl is the phase

estimation error2, and vkl , Re{wkle
−jθ̂kl} ∼ N (0, σ2

w/2) is the AWGN at the receiver.

The samples {rkl}, k = 1, 2, . . . , N, k 6= l are used to detect and update the majority bit

at node sl.
3 Since the sum of votes, ∆l ,

∑N
k=1, k 6=l xk is indicative of the majority bit at

node sl, where xk ∈ {−1,+1} is the BPSK symbol corresponding to bk(t−1), we use the

majority bit decision rule:

g(∆̂l) ,







1 ∆̂l ≥ 0

0 otherwise,
(2.3)

where ∆̂l is an estimate of sum of votes, computed at node sl. In this work, two schemes

are considered for obtaining ∆̂l: 1) an LMMSE-based scheme and 2) a co-phased com-

bining scheme.

LMMSE-based scheme [63]

Here, a weighted linear combination of the processed samples {rkl} is considered as

an estimate of ∆l, i.e., ∆̂
(wc)
l = α

T
l rl, where αl , [α1l α2l . . . αkl . . . αNl]

T
k 6=l and rl ,

[r1l r2l . . . rkl . . . rNl]
T
k 6=l. Here, the superscript wc stands for weighted combining. The

optimal weight vector α∗
l is evaluated by solving the MMSE estimation problem

α
∗
l = argmin

αl

E[(∆̂
(wc)
l −∆l)

2]. (2.4)

2The distribution of the channel phase error |θ̃kl| is derived in [67] and is given by

F|θ̃kl|
(x) = 1−

∫ π−x

0

Lkl

(
γp sin

2 x

sin2 β

)
dβ

π
, 0 ≤ x < π, where Lkl(s) = 1/(1 + sE[|hkl|2]).

3For simplicity, we ignore the lth sensor’s own data bit, xl. This is fine when the bit distribution across
the nodes is such that any one node’s data bit does not alter the majority vote. In Sec. 2.4, we will show
through simulations that ignoring the self-bit only marginally affects the consensus performance.
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On substituting the MMSE solution α∗
kl =

|ĥkl|
|ĥkl|2+σ2

w/2
, the sum of votes estimate can be

expressed as

∆̂
(wc)
l =

N∑

k=1, k 6=l

[

α∗
kl|hkl| cos θ̃klxk

√

Ed + α∗
klvkl

]

. (2.5)

We note that the above LMMSE-based scheme uses the estimated channels ĥkl to com-

pute the combining weights, in contrast to the scheme in [63], which assumed the avail-

ability of perfect channel state information hkl at the nodes.

Co-phased combining scheme

In this scheme, the sum of co-phased samples rkl is used as an estimate of ∆l, i.e.,

∆̂
(cc)
l =

N∑

k=1, k 6=l

[

|hkl| cos θ̃klxk

√

Ed + vkl

]

. (2.6)

The sum of votes estimate in (2.6) only requires the channel phase, while (2.5) depends

on both the gain and the phase. Due to this, the consensus behavior of the two schemes

in the face of fading and the imperfect CSI at the nodes can be different. It is of interest

to study their relative performance.

Note that, ∆̂
(wc)
l and ∆̂

(cc)
l can be compactly expressed as

∆̂l = h
√

Ed + v, (2.7)

where we term h ,
∑N

k=1, k 6=l βkl|hkl| cos θ̃klxk as the effective channel-symbol, and the

noise v ∼ N (0, σ2
v) with σ2

v =
∑N

k=1, k 6=l(βkl)
2σ2

w/2. The parameter βkl = α∗
kl for the

LMMSE-based scheme, and βkl = 1 for the co-phased combining scheme.
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2.3 Performance Analysis

We define the state of the network at time t as an ordered collection of decision bits

(majority bit estimates), [b1(t) b2(t) . . . bN (t)]. After each bit-update, the network can

attain any one of the M = 2N possible states with a probability that depends solely on

the previous state and the current received pilot and data samples at the nodes. That is,

the network state evolves as a first order discrete-timeMarkov chain (MC). The accurate

consensus state of the MC is either the all-ones state or the all-zeros state, depending

on whether the initial majority bit is one or zero. This MC is time inhomogeneous,

as the channels are time-varying across cycles. For time inhomogeneous MCs with

independent random transition probability matrices across the time steps, the marginal

state distribution of the MC, i.e., the state distribution averaged over the randomness of

the transition probability matrices, is precisely that of a time homogeneous MC with the

average TPM [68]. Therefore, the average of the TPM over the distribution of the channel

states is used to analyze the consensus behavior of the network.4 The average state

distribution vector at time t, denoted by π̄(t) ∈ [0, 1]N , is thus given by π̄(t) = (P̄)tπ(0).

Here, P̄ ,
[
P̄ij

]
is the average TPM, π(0) is the initial state distribution vector, and P̄ij

is the average probability of transition (averaging over the channel state distribution)

from state φ(j) to state φ(i) in one cycle, where {φ(i), i ∈ {1, 2, . . . ,M}} represents the

different possible states of the MC.

For example, when three sensor nodes are involved in the consensus procedure, the

4An alternative model, under slowly varying channels, is to assume that the channel stays fixed for
the duration of the consensus cycles. In this case, we would work with the TPM conditioned on the joint
channel states between the nodes. The resulting MC is time homogeneous, making the analysis easier
than the case considered in this chapter.
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states of the Markov chain are ‘000’, ‘001’, . . ., ‘111’. Let, p0, p1 and p2 denote the proba-

bility of detecting bit ‘1’ at a sensor when two other sensors transmit bits ‘(0, 0)’, ‘(0, 1)’,

and ‘(1, 1)’, respectively. Then, by combining equivalent states (for e.g., state ‘001’ is

equivalent to ‘100’ and ‘010’), a concise form of the average TPM is given by










p32 3p0p
2
2 3p20p2 p30

p21p2 p21p0 + 2p21p2 p21p2 + 2p21p0 p21p0

p21p0 p21p2 + 2p21p0 p21p0 + 2p21p2 p21p2

p30 3p20p2 3p0p
2
2 p32










. (2.8)

Due to the additive noise term in (2.1), 0 < P̄ij < 1 ∀ i, j ∈ {1, 2, . . . ,M} (see Appendix

A.6 for proof), and hence, theMC is irreducible and aperiodic. Thus, the stationary state

distribution π̄∞ , limt→∞ π̄(t) is independent of the initial state [69], as π̄∞ = P̄π̄∞

and 1T
π̄∞ = 1. However, the network can still achieve accurate consensus with high

probability in the transient period of the MC.

From Perron’s andGershgorin’s theorems [70], it is known that, for the positive stochas-

tic matrix P̄, the largest eigenvalue λ1 is 1 and is of multiplicity one, and the absolute

value of all the other eigenvalues is strictly less than 1. The second largest eigenvalue

λ2 of P̄ characterizes the transient duration of the MC [71]. The closer λ2 is to unity, the

longer the transient period, and the higher the probability that the network attains and

stays in consensus for a long duration. Thus, λ2, along with the probability of attaining

accurate consensus starting from an arbitrary state, are important performance metrics

for understanding the consensus behavior of the network.

In this work, two more quantities, the average hitting time and the average consensus

duration, are analyzed. There are no absorbing states due to the noisy channels, and

hence the average hitting time and average consensus duration are important metrics
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to study the consensus behavior. The average hitting time is the average number of cy-

cles required to attain the consensus for the first time starting from an initial state φ(j).

The average consensus duration is the average number of cycles for which the network

will stay in consensus once it is attained. These metrics are used to compare the perfor-

mance of the two bit-update procedures and quantify the effect of channel estimation

errors on the consensus performance. Finally, the tradeoff between the power allowed

for pilot and data symbols on the consensus behavior is studied.

As discussed above, the consensus behavior of the network is determined by the aver-

age TPM of the MC. However, in the presence of channel estimation errors, the average

TPM is analytically intractable for the LMMSE-based scheme because of its dependence

on the channel gain estimates. The analysis for the co-phased combining scheme is pre-

sented below.

2.3.1 Probability of Detecting the Majority Bit

The probability of correctly detecting the majority bit from the received data symbols

is necessary to determine the TPM of the MC, and is critical to the consensus behavior

of the network. Since the noise is Gaussian distributed, conditioned on K, the number

of sensors transmitting a +1, the average probability p̄l of detecting the majority bit as

‘1’ at node sl is given by

p̄l = E

[

Pr{∆̂l ≥ 0|H = h}
]

=

∫ ∞

−∞
Q
(−h

√
Ed

σv

)

fH(h) dh, (2.9)

where fH(h) is the pdf of the effective channel-symbol H and Q(.) is the Gaussian Q-

function.
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Suppose a subset of the nodes, K ⊆ S \{sl}, |K| = K, transmit +1, and the remain-

ing N − K − 1 nodes in Kc , S \{K, sl} transmit −1. Then, the effective channel-

symbol h in (2.7) can be expressed as h = hp − hn, where hp ,
∑

sk∈K |hkl| cos θ̃kl and

hn ,
∑

sk∈Kc |hkl| cos θ̃kl. Let Hp and Hn be random variables corresponding to the re-

alizations hp and hn, respectively. The pdf of the sum of K weighted i.i.d. Rayleigh

r.v.s, Hp, is unfortunately not available in closed-form. However, it is well approxi-

mated by the pdf of a Nakagami r.v. with shape parameter,m1 = (E[H2
p ])

2/Var[H2
p ], and

spread parameter, Ω1 = E[H2
p ]. Similarly, hn can be approximated as a Nakagami r.v.

with shape and spread parameters m2 and Ω2, respectively. At high pilot SNRs, the

weights are of nearly unit magnitude and approximation error turns out to be particu-

larly small. Also, as found through simulations, the approximation error reduces with

increasing K. The derivation of E[H2
p ] and Var[H2

p ], required for evaluating the param-

etersm1, m2,Ω1 and Ω2, is presented in Lemma 1. The resulting analytical expression of

the approximated pdf fH(h) is presented in Lemma 2.

Lemma 1. For a given pilot SNR, SNRp , σ2Ep/σ
2
w, and with the second moment of i.i.d.

Rayleigh r.v.sHkl, E[H
2
kl] = σ2, the mean and variance of the r.v.H2

p defined above are given by

E[H2
p ] =

Kσ2 (2 + (4 + (K − 1)π)γpσ
2)

1 + γpσ2
(2.10)

V ar[H2
p ] = KE[G4

kl] + 3K(K − 1)(E[G2
kl])

2

+K(K − 1)(K − 2)(K − 3)(E[Gkl])
4

+ 6K(K − 1)(K − 2)(E[Gkl])
2
E[G2

kl]

+ 4K(K − 1)E[G3
kl]E[Gkl]− (E[H2

p ])
2, (2.11)
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where γp , Ep/σ
2
w and Gkl , |Hkl| cos θ̃kl; and closed form expressions for E[Gkl], E[G

2
kl],

E[G3
kl] and E[G4

kl] are provided in the proof.

Proof. See Appendix A.1.

Lemma 2. The pdf of the effective channel-symbol is given by

fH(h) =
2
(

m1

Ω1

)m1
(

m2

Ω2

)m2

e−
h2m1m2

m

Γ(m1)Γ(m2)
(
m
Ω

)m1+m2− 1

2

2m1−1∑

i=0

2m2−1∑

j=0

(
2m1 − 1

i

)(
2m2 − 1

j

)

(
m2Ω1h√

mΩ

)2m1−1−i(−m1Ω2h√
mΩ

)2m2−1−j

Γ

(
i+ j + 1

2
,
(m1Ω2h)

2

mΩ

)

, (2.12)

for h ≥ 0, where m , m1Ω2 + m2Ω1, Ω , Ω1Ω2 and Γ(., .) is the upper incomplete Gamma

function. For h < 0, fH(h) can be evaluated by swapping the parameters m1, Ω1 with m2, Ω2,

respectively.

Proof. See Appendix A.2.

To obtain the result in Lemma 2, the parameters 2m1 and 2m2 are rounded-off to the

nearest integers. The fH(h) given by Lemma 2 can now be substituted into (2.9) to

evaluate p̄l as a single integral, this is discussed in Appendix A.3. Note that, the average

probability p̄l is conditioned on K, the number of sensors transmitting +1, but this

dependence is not explicitly indicated to keep the notation light.

2.3.2 Average Transition Probability Matrix

Suppose the network is in a state φ(j) at time t−1 and φ(i) , [b
(i)
1 b

(i)
2 . . . b

(i)
N ] at time t. Let

us denote the average probability of node sl detecting bit ‘1’ at time t, conditioned on

φ(j), by p̄
(j)
l . At node sl, the average probability of the bit being updated to b

(i)
l is given by

b
(i)
l p̄

(j)
l +(1−b

(i)
l )(1−p̄

(j)
l ). The update decisions b

(i)
l at each of the nodes sl, l = 1, 2, . . . , N ,
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are independent, as the receiver thermal noise and the wireless channels between the

nodes are independent. Thus, the average probability of going from φ(j) to φ(i) in one

cycle is given by

P̄ij =
N∏

l=1

[

b
(i)
l p̄

(j)
l + (1− b

(i)
l )(1− p̄

(j)
l )
]

, (2.13)

for i, j ∈ {1, 2, . . . ,M}. The average probability of going from φ(j) to an all-one state

φ(M) or to an all-zero state φ(1) is given by

P̄Mj =

N∏

l=1

p̄
(j)
l (2.14)

P̄1j =

N∏

l=1

(1− p̄
(j)
l ). (2.15)

We have thus determined the average TPM P̄ of the MC. Note that, the average prob-

ability of detecting bit ‘1’ conditioned on the all-zero state, p̄
(1)
l , is the same for all the

nodes. Thus, hereafter, p̄
(1)
l is denoted as p̄(1), and similarly, p̄

(M)
l is denoted as p̄(M).

In [63], a simple approximation to the second largest eigenvalue λ2 of the average TPM

P̄ is shown to be 1−2p̄(1). This approximation is derived for the Rayleigh fading channel

by linearizing the Q-function. Moreover, whenN = 2 or 3 sensors, it can be shown that

λ2 is exactly 1−2p̄(1). The derivation of the second largest eigenvalue for N = 3 sensors

is discussed in Appendix A.4. With larger N , the second eigen value would be much

closer to 1. This is because, the probability of detecting bit 1 when all the nodes have

bit 0, p̄(1), tends to zero roughly exponentially with increasing N , and consequently,

the second largest eigen value tends to 1. As mentioned earlier, the closer the second

largest eigenvalue to unity, the better the consensus behavior of the network.
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2.3.3 Average Hitting Time

Starting from a state φ(j), the average number of cycles taken to reach a consensus state

for the first time is termed as the average hitting time. The probability of reaching state

φ(i) for the first time starting from state φ(j) after exactly n cycles, denoted by f
(n)
ij , can

be recursively expressed as

f
(n)
ij =

M∑

k=1
k 6=i

P̄kjf
(n−1)
ik . (2.16)

In other words, the R.H.S. of (2.16) represents probability of the network reaching any

state φ(k), k = 1, 2, . . . ,M , k 6= i, in the first cycle, and reaching the state φ(i) exactly after

next n− 1 cycles. The vector of probabilities f
(n)
i , [f

(n)
i1 f

(n)
i2 . . . f

(n)
ij . . . f

(n)
iM ]T , j 6= i can

be expressed as

f
(n)
i = QT f

(n−1)
i , (2.17)

where Q is the TPM obtained by removing the ith row and ith column of average TPM

P̄. Simplification of (2.17) leads to

f
(n)
i = (QT )n−1f

(1)
i = (QT )n−1pT

i , (2.18)

where pi is ith row of the average TPM P̄ with the (i, i)th entry removed. Then, the

average hitting time is given by

τh =
∞∑

n=1

nf
(n)
ij . (2.19)

Setting φ(i) to be the appropriate consensus state, i.e., either the all zeros state or the

all ones state depending on the initial distribution of the data bits, we can compute the

average hitting time using the above equation.
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2.3.4 Average Consensus Duration

The average consensus duration, τc, is the average number of cycles for which the net-

work stays in the same consensus state once it has reached consensus. Suppose the

network is in consensus at the end of tth0 cycle. Let the random variable Tc represent

the number of consecutive cycles for which the network stays in consensus. Assuming

channel independence between any two cycles, the average probability (here, the av-

eraging is over the channel states) that the network is in consensus for n consecutive

cycles is simply given by

Pr{Tc = n} = (P̄c)
n(1− P̄c), (2.20)

where P̄c is the average probability of being in consensus after the next cycle once the

network is already in consensus. The expected number of cycles for which the network

stays in consensus is thus

τc =
∞∑

n=1

n
(
P̄c

)n
(1− P̄c) =

P̄c

1− P̄c

. (2.21)

The average probability P̄c for an all-one consensus state is given by P̄MM = (p̄(M))N

(see (2.14)). Similarly, for the all-zero consensus state, P̄c = P̄11 = (1 − p̄(1))N . The

average probabilities p̄(1) and p̄(M) are derived in Appendix A.5. Thus, we can use

the above equation to obtain the average consensus duration of the network. Note

that, the average hitting time decreases and average consensus duration increases with

increase in data SNR, SNRd ,
Edσ

2

σ2
w/2

, and pilot SNR, SNRp ,
Epσ2

σ2
w
. The SNR values

determine the entries of the TPM via the Q-function, which determines the average

probabilities of the different states. The average probabilities, in turn, determine the
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average hitting time and the average consensus duration via the analysis presented in

the chapter. Due to the intricate nature of the analysis, it is unfortunately difficult to

directly relate the performance of the protocol to the data and pilot SNRs. Hence, we

study the performance via simulations.

2.3.5 Data Power and Pilot Power Allocation

In a given consensus cycle, under a total power constraint, the optimization of the

power allotted to the data and pilot transmission can be carried out, for example, by

maximizing the average consensus duration, or, by minimizing the average hitting

time. To do this, the average probability for the all-ones consensus state, P̄MM , equiv-

alently, p̄(M), can be used as the cost function. Therefore, the optimal data and pilot

powers are obtained by solving

E∗
d , E

∗
p = arg max

Ed, Ep

p̄(M) subject to Ed + Ep = E. (2.22)

As shown in Appendix A.5, the average probability p̄(M) can be obtained in closed

form as

p̄(M) = 0.5 +

√
γd
2π

Γ(m1 + 0.5)

Γ(m1)
√

m1/Ω1
2F1

(

0.5, m1 + 0.5; 1.5;− γd
2m1/Ω1

)

, (2.23)

where γd = Ed/σ
2
v , σ

2
v = σ2

w(N − 1)/2 and 2F1 is the Gaussian hypergeometric function.

Note that the parameters of the Nakagami r.v. Hp, namely, m1 = (E[H2
p ])

2/Var[H2
p ] and

Ω1 = E[H2
p ], are functions of the pilot power Ep. Substituting (2.23) in (2.22) leads to

a one dimensional optimization problem, which can be solved numerically to obtain

the optimal values of Ed and Ep. The importance of optimizing the power allocation to
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Figure 2.2: Second largest eigenvalue vs. Data SNR (denoted by SNRd) for different
pilot SNRs (denoted by SNRp), with N = 8 nodes.

training and data symbols is illustrated in the next section.

2.4 Simulation Results

The simulation set-up consists of N = 8 sensor nodes. The receiver noise and the chan-

nels between the sensors are drawn i.i.d. from CN (0, 1). The average TPM is evaluated

by averaging over 20, 000 channel instantiations.

We start with presenting results on the second largest eigenvalue, λ2, of the average

TPM of the state space of the Markov chain. In Fig. 2.2, the value of λ2 obtained by

the two schemes is compared, along with their approximation, 1 − 2p̄(1), presented in

Sec. 2.3.2. It can be seen that λ2 gets closer to 1 with increasing data and pilot SNRs.

At lower pilot SNRs, the co-phased combining scheme outperforms the LMMSE-based
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scheme from [63], i.e., λ2 of the former is closer to 1 than the latter. This is because,

the co-phased combining depends only on the channel phase estimates, whereas the

LMMSE-based scheme depends on both magnitude and phase estimates of the channel.

This leads to larger errors in the sum of votes estimate for the LMMSE-based scheme.

However, with increasing pilot power, the two schemes result in nearly the same value

of λ2. Also, we see that the approximate expression for λ2 is a lower bound on the actual

eigenvalue when N = 8, although it is accurate for the N = 2 and the N = 3 case. The

approximation captures the relative behavior of the LMMSE and co-phasing schemes

well. Finally, the excellent agreement between the theoretical and experimental values

of λ2 for the co-phased combining scheme is clear from the plot.

Next, we evaluate the average consensus duration performance of the two schemes,

in Fig. 2.3. At low SNRs, the average consensus duration increases linearly, whereas

at high SNRs, the increase in average consensus duration is roughly quadratic. At low

to intermediate pilot SNRs, the co-phased combining scheme stays longer in consensus

state than the LMMSE-based scheme, as expected. The overall consensus performance

depends both on the pilot SNR and data SNR, and therefore, evenwith accurate channel

estimates (high pilot SNRs), the co-phased combining scheme outperforms the LMMSE

scheme at low tomoderate data SNRs. The LMMSE-based scheme starts outperforming

the co-phased combining scheme only at high pilot SNR and high data SNR. Also, for

the co-phased combining scheme, the average consensus duration obtained through

simulations matches the theoretical results obtained through (2.21).

The average hitting time and the average probability of accurate consensus perfor-

mance of the two schemes is plotted in Figs. 2.4 and 2.5, respectively. In Fig. 2.4, the



Chapter 2. 33

−6 −3 0 3 6 9
10

−1

10
0

10
1

10
2

10
3

10
4

Data SNR (SNR
d
) in dB

A
v
e

ra
g

e
 c

o
n

s
e

n
s
u

s
 d

u
ra

ti
o

n
 (

N
u

m
b

e
r 

o
f 

c
y
c
le

s
)

 

 
LMMSE, τ

c
 (Sim.)

LMMSE, τ
c
 (Th.), TPM (Sim.)

Co−Phasing, τ
c
 (Sim.)

Co−Phasing, τ
c
 (Th.), TPM (Sim.)

Co−Phasing, τ
c
 (Th.), TPM (Th.)

SNR
p
=9dB

SNR
p
=3dB

SNR
p
=0dB
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average hitting time is evaluated by averaging the time to hit the all-ones consensus

state over the initial states ‘11111110’, ‘11111100’, and ‘11111000’. In Fig. 2.5, the average

probability of accurate consensus is plotted as a function of the number of cycles of the

update procedure, when the initial state across the nodes is ‘00011111’. The conclusions

from the figure are similar to that of the average consensus duration: the performance

improves with increasing data and pilot SNRs; at low to intermediate pilot SNRs, the

co-phased combining outperforms the LMMSE-based scheme; and, for the co-phased

combining scheme, the theoretical expressions in (2.19) match the simulation results.

Also, the importance of accounting for the channel estimation errors in evaluating the

relative performance of different consensus protocols is clear from the plot. At high

pilot SNRs, the channel estimates are accurate, the two schemes offer similar perfor-

mance, while at intermediate or lower pilot SNRs, the co-phasing scheme outperforms

the LMMSE-based scheme.

Figure 2.6 shows the average probability of accurate consensus for various numbers

of nodes, as a function of the number of consensus cycles. The probability of accurate

consensus is much higher for N = 22 sensors with SNRp = 0 dB and SNRd = 3 dB

compared to N = 4 sensors and a higher receive SNR, SNRp = 3 dB and SNRd = 6 dB.

This is because of the linear scaling of the average effective SNR with the number of

sensors. Also, for the co-phased combining scheme, with increase in the number of

nodes, the theoretical curves matches well with simulations.

In developing the consensus protocol, the self-bit was ignored for simplicity of pre-

sentation. Figure 2.7 shows the second largest eigenvalue for the co-phased combining

scheme when the sensors’ own data bit is considered. The sum of votes estimate is
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Figure 2.5: Probability of accurate consensus vs. number of consensus cycles, starting
from an initial state of ‘00011111’.

computed by adding the self-bit with a scaling of
√
Ed to (2.6). Accounting for the

self-bit clearly improves the performance, but the loss due to the approximation gets

smaller as the number of sensors is increased. Also, as data SNR increases, the sum

of votes estimate improves. This leads to the second largest eigenvalue without the

self-bit to be close to that with self-bit. Hence, when the SNR and the number of nodes

are moderately large, it is reasonable to ignore the self-bit in evaluating the consensus

performance.

Next, we consider the allocation of the pilot and data power to optimize the consensus

performance. In Figs. 2.8 and 2.9, the average consensus duration and average hitting

time of the co-phased combining scheme are plotted as a function of the ratio of data

power to pilot power, under a total power constraint. The average consensus duration

is maximum and the average hitting time is minimum for Ed

Ep
= 1.3 and Ed

Ep
= 1.45, when
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state, for example, the initial state of the 4 nodes network is ‘0111’.

the total power available is 6 dB and 9 dB, respectively. This indicates that, at higher

total powers, the data symbol has to be given a larger share of the total power compared

to the pilot symbol. At lower total powers, the best average consensus performance

is obtained for nearly equal sharing of the available power. Similar conclusions are

obtained from optimizing the other metrics such as the second largest eigenvalue or

probability of accurate consensus; they are not presented here to avoid repetition.

Next, Fig. 2.10 shows the average probability of accurate consensus for the co-phased

combining scheme when the path-loss (with path-loss exponent of 2) is also considered,

along with the Rayleigh fading. A linear arrangement of 8 sensors that are uniformly

spaced on a stretch of 10m and a reference distance of 1m is considered for the simula-

tions. At higher transmit powers for pilot and data symbol, Ep = 15 dB andEd = 15 dB,
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Figure 2.7: Second largest eigenvalue vs. Data SNR for the co-phased combining
scheme at a pilot SNR of 0 dB, when the sensors’ self-bit is taken into account.

the probability of accurate consensus is close to 1. Also, the network attains its consen-

sus state within about 5 cycles.

Finally, in Fig. 2.11, we show the probability of accurate consensus performance of the

co-phased combining scheme when the network is not fully connected. While estimat-

ing the sum of votes in (2.7), the weights βkl are set to 0 for all those links which have a

link gain less than a threshold η, where η is determined for a given link failure proba-

bility, Pr{|hkl| ≤ η} = q. At high data and pilot SNRs, the performance deteriorates as

the link failure probability increases, as expected. At lower SNRs, as the channels are

more noisy, the performance is relatively robust to link failures.
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Figure 2.8: Average consensus duration vs. ratio of data power to pilot power under a
total power constraint.

2.5 Conclusions

In this chapter, we considered a physical layer protocol for achieving majority-bit con-

sensus, where a set of nodes exchange their current majority-bit estimates over mul-

tiple cycles. We contrasted two bit-update schemes: 1) LMMSE-based scheme and 2)

Co-phased combining scheme, when the available CSI is estimated using pilot symbols

sent from the nodes. We analytically evaluated several metrics that determine the av-

erage consensus performance, such as the average probability of detecting the correct

majority bit, the average hitting time, and the average consensus duration, by employ-

ing a difference-of-Nakagami approximation for a combined effective channel. The

results highlighted the importance of accounting for the effect of channel estimation
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Figure 2.9: Average hitting time vs. ratio of data power to pilot power under a total
power constraint.

errors on the performance. For example, at low to intermediate SNRs, the co-phased

combining scheme outperforms the LMMSE-based scheme, although they offer very

comparable performance under perfect channel state information. This is because of

the lesser dependence of the co-phased combining scheme on channel estimates. We

showed that optimizing the power allocation between the pilot and data symbols can

result in a significant improvement in the consensus performance. We also presented

extensive simulation results to validate the theoretical expressions and illustrate the

various tradeoffs involved. Future work could consider extension of this study to non-

binary (e.g., average) consensus problems.
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Figure 2.10: Probability of accurate consensus vs. number of consensus cycles for the
co-phased combining schemewhen the path-loss between sensors is taken into account.
The probability of accurate consensus is averaged over all the initial states correspond-
ing to 5 sensors with bit ‘1’ and 3 sensors with bit ‘0’.



Chapter 2. 42

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Number of cycles

P
ro

b
a

b
ili

ty
 o

f 
a

c
c
u

ra
te

 c
o

n
s
e

n
s
u

s

 

 

Theory, TPM (Th.), Fully connected network

Simulations

Link failure probability=0

Link failure probability=0.2

Link failure probability=0.4

Link failure probability=0.6

SNRp = 0dB, SNRd = 3dB

SNRp = 6dB, SNRd = 9dB

Markers indicate theoretical values obtained
using TPM (Sim.)

Figure 2.11: Probability of accurate consensus vs. number of consensus cycles for the
co-phased combining scheme for an N = 15 sensor network which is not fully con-
nected.



Chapter 3

Multiple Transmitter Localization and

Communication Footprint Identification

using Energy Measurements

Spectrum cartography, i.e., multiple transmitter localization and communication foot-

print identification, has applications in cognitive radio whitespace networking, spec-

trum enforcement, etc [72–74]. An accurate and fast method of obtaining up-to-date

transmitter footprint information is necessary for frequency-agile networking and opti-

mal routing of cognitive radios, while ensuring minimal interference to higher priority

primary users. This work addresses this problem and explores an approach where a

number of sensors are deployed in a given geographical area and their observations

regarding presence of a transmitter is collected by a Fusion Center (FC) to construct

the spectral usage map, as in [75]. The challenge is to devise algorithms for accurately

constructing the spatial spectral usage map with a minimal number of transmissions

from the sensors to the FC. Minimizing the number of transmissions helps in reducing

the time taken as well as the energy efficiency in constructing the map.

43
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Multiple transmitter localization is a recent topic of research. In [76], the authors as-

sume the number of transmitters and their transmit powers as known, and propose

localization algorithms which minimize the squared difference between the actual and

predicted received powers at the sensor locations. In [77], the number of transmitters

is estimated by minimizing the sum of Mean Square Error (MSE) in the location and

power estimates. The above mentioned methods are based on transmitting the Receive

Signal Strength (RSS) measurements from multiple sensors to a central node prior to

location estimation. However, the spatial spectral usage map is inherently sparse due

to the limited range of communication and the frequency reuse employed by many

current-day systems. The aforementioned methods do not exploit this inherent spar-

sity of the spectral usage. An exception is [78], which considers the multiple target

locations as sparse and uses an RSS based localization dictionary at each sensor to com-

pressively measure the target locations. All the sensors broadcast their measurements

to a central unit, where the sparse target vector is estimated. In [79], an RSS dictio-

nary is used to solve the same problem for indoor environments. In [80], a cooperative

approach for estimating the power spectral density due to multiple transmitters is pro-

posed that exploits sparsity both due to the narrow-band nature of the transmissions

as well as due to the sparsely located active transmitters. On the other hand, [75], [81]

consider the localization of an uncooperative target with binary observations instead of

using analog RSS measurements. Reference [81] compares centroid location estimation

techniques from binary observations and concludes that the location estimate obtained

using minimum enclosing circle (MEC) is the best technique.

This work considers the problem of multiple transmitter localization and footprint
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identification using as few transmissions from the sensors as possible, when both the

number of primary transmitters and their transmit powers are unknown. Also, sensors

use one-bit on-off transmissions to convey quantized information to a central node in-

stead of analog RSS measurements. The on-off transmission simplifies the sensor-to-FC

communication, and as will be shown, it is sufficient for determining equal power con-

tour footprints around the primary transmitter at any power level. Now, a straightfor-

ward scheme for constructing the spectral usage map is to query each of the sensors on

the presence of primary transmitters in a round-robin manner, and cluster the sensors

to find the primary transmitter footprint. This would require as many transmissions

as the total number of sensors, since the subset of sensors that detect the primary is

not known a priori. However, viewing the primary’s usage footprint as sparse image,

this work proposes two novel schemes based on Compressive Sensing (CS) for reduc-

ing the number of transmissions required for image recovery. In this approach, sensors

simultaneously transmit their decision to the FC by pre-rotating the decision bit with a

pseudo random binary phase shift. These phase shifts act as the elements of a virtual

binary ensemble measurement matrix, which satisfies the restricted isometry property,

allowing the use of CS-based methods for reconstructing the individual sensor deci-

sions and reducing the number of transmissions required.

At the FC, the individual sensor decisions are reconstructed using fast sparse recon-

struction techniques such as ℓ1 minimization and Orthogonal Matching Pursuit (OMP)

(e.g., [82, 83] and the references therein), and it is found that for this application, the

computationally simpler OMP algorithm outperforms ℓ1 minimization at moderate to

high SNR. A novel algorithm for determining the number of primary transmitters is
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proposed, and its performance is compared with the Calinski-Harbasz (CH) [84] and

Hartigan [85] methods. Also, the design parameters such as the radius of the annulus

within which sensors detect primary transmission, and the number of transmissions

from the sensors required to enable CS reconstruction are determined based on a cer-

tain performance criterion. The performance improvement from the proposed methods

is illustrated through both simulations and real-world experiments.

The transmission protocol briefly discussed above enables the FC to identify the alarm-

ing sensors. In the proposed method, there is no pilot overhead or channel estimation

involved, as it is based on on-off keying. Also, this work considers dense deployment

of sensors to ensure that a transmitter with a smaller transmit power is not missed. In

this scenario, using multi-bit quantization increases the communication overhead, and

hence a 1-bit quantization is used.

The next section presents the problem setup. In Sec. 3.2, the proposed approach for

constructing primary’s footprint usage map is discussed. In Sec. 3.3, the main design

issues are addressed. In Sec. 3.4, the experimental results are presented. Concluding

remarks are offered in Sec. 3.5.

3.1 Problem Setup

Consider a scenario (see Figure 1 (a)) whereK active primary transmitters at unknown

locations li = (ai, bi)within an areaA are transmitting at unknown powers Pi. The goal

is to find Pi and li quickly, using a low-bandwidth wireless sensor network consisting

of L nodes deployed at known locations chosen uniformly at random within A. The
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knowledge of li and Pi would enable the CR network determine the primary communi-

cation footprint, given the minimum power at which a primary receiver can successfully

receive the primary signal.

Under an isotropic signal decay model, the transmit power Pi and signal strength

threshold-based detection at the sensors results in a corresponding circular region with

alarming radius ri around the i-th transmitter, within which the sensors detect it (such

sensors are called alarming sensors) and communicate their decision to a FC. The path

loss exponent η is assumed to be known. For simplicity, in the analysis to follow, the

effect of multi-path fading and shadowing on the shape of the equal power contours

around the primary transmitters is neglected. When the channel is fast varying, the

effect of multi-path fading can be addressed by measuring energy at the sensors over

multiple channel coherence intervals, due to which the effect of fading averages out.

When the variance of shadowing parameter is small and the path loss exponent is large

(η = 4 to 6 in urban environments [86]), the distortion to the circular footprint due to

shadowing will also be small. The robustness of the proposed schemes to the presence

of shadowing is also assessed via simulations in Sec. 3.4.

The communication radius of the primary transmitters could be different from the

alarming radius. In such cases, the alarming radius is scaled appropriately based on the

signal detection threshold at the sensors, to obtain the communication radius. Given

that ri is used simply as a proxy for determining Pi, it is reasonable to assume that

the radio footprints are non-overlapping. That is, given the maximum transmit power

of primary transmitters, Pmax and the minimum distance between transmitters, dmin,

one can choose the signal detection threshold employed by the sensors such that the
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resulting alarming footprints are non-overlapping. The FC uses the composite received

signal from the sensors to calculate li and Pi using a suitable algorithm (details will be

presented shortly). The schemes considered here are based on simultaneous transmis-

sion from the sensor nodes, which requires symbol level synchronization across nodes.

It is shown, via simulations, that the CS-based recovery is robust to both timing and

frequency (of the order 100 ppm) offsets between the nodes. Also, under this model,

the FC only determines the location of the alarming sensors and not their measured sig-

nal powers. This is not a drawback, since, given the primary receivers’ signal detection

thresholds, the alarming radius can be scaled to obtain the communication footprint of

the primary network.

Since the two-dimensional spatial spectral usage map is inherently a sparse image, it

can potentially be recovered using a small number of compressive measurements on

the image. To do this, only a small subset of sensors that detect the presence of a signal

at their location simultaneously transmit their 1-bit decisionM times to the FC, and the

remaining non-alarming sensors do not transmit. It is assumed that the channel stays

fixed for the M transmissions.

Now, each time it is sent, the bit transmitted by each sensor is pre-rotated by a pseudo

random binary phase that is known at the FC. The phase rotation employed by the i-th

sensor at the j-th slot is represented by θji, and these are realizations of independent

bernoulli trials taking values 0 and π with probability 0.5 each, with i ∈ {1, 2, . . . , L}

and j ∈ {1, 2, . . . ,M}. This pre-rotation is important, as it leads to a measurement

matrix that is incoherent with the sparsifying basis, which in turn enables CS-based

reconstruction algorithms to work. After identifying the alarming sensors at FC, the FC



Chapter 3. 49

localizes the primary transmitters and reconstructs the communication footprint.

Now, once the spatial spectral usage map is reconstructed at the FC, one needs an

appropriate metric for evaluating the fidelity of the reconstruction. Some obvious met-

rics include the Mean Squared Error (MSE) in transmitter localization and the weighted

sum of the MSE in the estimated transmitter locations and estimated transmitter pow-

ers. Since communication footprint reconstruction is the focus here, a more relevant

metric is employed in this work: the ratio of the average error in the area of the recon-

structed footprint to the area of the original image. Here, the average error is computed

over the random noise, fading channel, and node placement statistics. The metric is

calculated by considering the true and the reconstructed footprints, denoted I and Î,

respectively, to be binary images consisting of a large number of pixels covering the

area A. Then, the relative error is computed as the Hamming distance between I and

Î, normalized by the total number of pixels in A.

3.2 Proposed Transmitter Localization and Communica-

tion Footprint Identification Schemes

The system model described in the previous section can be written as

y =
1√
M
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+ w (3.1)

where y ∈ CM is the observation at the FC, hi is the channel coefficient between sensor

i and the FC, xi ∈ {0, 1} is the alarming state of sensor i, with xi = 1 when the sensor is
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alarming and 0 otherwise, θji ∈ {0, π}, j = 1, 2, . . . ,M represents the M pseudorandom

phase shifts applied by sensor i at the M time instants, and the scaling by 1/
√
M is for

power normalization. The additive noise w ∈ CM is modeled as i.i.d. circularly sym-

metric complex Gaussian distributed with zero mean and variance σ2
n, and represents

the thermal noise at the FC receiver. Rearranging the above,

y =
1√
M


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+ w. (3.2)

The above representation is equivalent to the well-known compressive sensing mea-

surement equation y = Φs+w, where Φ, the measurement matrix, is a bernoulli ensem-

ble. Note that s is sparse because the number of primary transmitters is assumed to be

small, only the small fraction of sensors that alarm transmit to the FC, and sensors are

placed uniformly at random locations in A.

Radio Map Reconstruction at the Fusion Center

Now, two schemes are proposed for reconstructing the map. In both schemes, the FC

first reconstructs the sparse vector s from the compressed measurements y obtained

from the received signals from the sensors using standard CS reconstruction techniques

based on the ℓ1 minimization or using the OMP algorithm [82,83]. The support of the re-

covered sparse vector is estimated by comparing the entries of the reconstructed vector

to a small threshold, and this yields the set of alarming sensors. The support recov-

ery performance is insensitive to the exact value of the threshold, since, by design, the
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sparse vector recovery is successful with high probability. The FC then uses a cluster-

ing algorithm on the set of alarming sensors to estimate the number of active transmit-

ters and their communication footprints. The two proposed schemes are illustrated in

Fig. 3.1.

 (a) Footprint              (b) Scheme 1              (c) Scheme 2

Primary footprint Alarming sensors

Figure 3.1: Primary footprint and alarming area in reconstruction schemes, Scheme 1
and Scheme 2.

Scheme 1

In this scheme, the alarming sensors are the ones that detect a signal strength exceed-

ing a threshold. These sensors transmit a “1” to the FC, with the pseudo-random sign

change at each transmission. The alarming sensors can be assumed to lie within disjoint

circular regions with radii depending on the primary transmit powers, due to the as-

sumptions stated above. After the FC finds the locations of the alarming sensors using

CS reconstruction, it uses the well-known K-means algorithm [87] to cluster them. The

centroid of the cluster is treated as an estimate of the location of the primary transmitter

and the alarming radius is estimated as the distance of the farthest alarming sensor of

the cluster. A method for determining K, the number of transmitters, is proposed in
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the next section. An approximate lower bound on MSE in localization for Scheme 1 is

found to be A/2πL (see Appendix B.1).

Scheme 2

In this scheme, only the sensors that measure the primary power in a range between an

upper and a lower threshold transmit a “1” to the FC, again with the pseudo-random

sign changes. So, the reconstructed map consists of the locations of alarming sensors

that lie in an annulus around each primary transmitter. The width and radius of the an-

nulus depend on the primary transmission power and the detection thresholds. Having

only the sensors in an annulus transmit is advantageous from the point of view of pro-

moting sparsity, due to which the map can be reconstructed with fewer transmissions

from the sensors compared to Scheme 1. Again, the K-means clustering algorithm is

employed to cluster the alarming sensors and to determine the number of active trans-

mitters. However, it turns out that the K-means centroid is a poor estimate of the

transmitter location. Hence, a trilateration and a circular regression based approach is

proposed here for estimating the primary transmitter locations.

The trilateration method is implemented as follows. After clustering using the K-

means algorithm, a representative received power (the mean power in the annulus) is

associated with all alarming sensors. Trilateration is performed by drawing an equi-

power contour around every alarming sensor in a given cluster. This results in a set

of contour intersections near the K-means centroid. The mean of these intersection

points is used as the estimate of the transmitter location. The alarming radius of the

transmitter can be estimated as in Scheme 1.

In the circular regression approach, the best fitting circle (in the MSE sense) is fit to
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the points in a given annulus. Thus, if the primary transmitter is at (a, b) and the an-

nulus has a mean radius r, the circular regression approach determines (a, b) and r to

minimize J(a, b, r) ,
∑

i di
2, where di ,

√

(ai − a)2 + (bi − b)2 − r, and (ai, bi) are the

coordinates of the i-th point in the cluster. Differentiating J(a, b, r) with respect to a, b

and r, we get
N∑

i=1

di(ai − a)

di + r
=

N∑

i=1

di(bi − b)

di + r
=

N∑

i=1

di = 0. (3.3)

From the last equality above, r =
∑

i

√
(ai−a)2+(bi−b)2

N
, where N is the number of points

in the cluster. An initial value of r is calculated with K-means centroid as the initial

transmitter location. Then, any off-the-shelf algorithm such as the steepest descent

algorithm can be used to estimate the transmitter location (a, b). Finally, the radius of

the footprint is estimated as the distance to the farthest point in the cluster, as before.

In summary, the proposed schemes employ M consecutive 1-bit transmissions from

alarming sensors to the FC using pseudo-random phase shifts, followed by CS-based

recovery of the alarming sensor locations by considering the received symbols as com-

pressive measurements. Then, the K-means algorithm is used to cluster the alarming

sensor locations. This is followed by transmitter localization using trilateration or cir-

cular regression methods to obtain the estimates of the number of primary transmitters,

their locations and communication footprints.
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3.3 Design Issues

3.3.1 Estimation of the Number of Primary Transmitters

The K-means clustering algorithm requires K, the number of clusters (i.e., the num-

ber of primary transmitters) as its input. To do this, various methods have been pro-

posed in the literature that rely on intra-cluster and inter-cluster distance dissimilarity

metrics computed from the data. In [88], a comparative study of these methods was

presented, and it was found that the Hartigan method [85] and Calinski and Harbasz

(CH) method [84] are the best ones. Note that, in the scenario under consideration,

the clusters are circular or annulus-shaped. This information can be used to define a

metric which robustly identifies the number of clusters. When the desired cluster is a

narrow annulus, it is intuitively better to consider the distance between the points and

the nearest point on a circular fit to the points within a cluster as the metric, instead of

the distance to the centroid, as in past methods. The proposed algorithm is presented

in Table 3.1. Although the method is described for Scheme 2, it is found to work well

for Scheme 1 also.

3.3.2 Sensor Detection Thresholds

The signal power thresholds for detecting primary signals at the sensors has to be de-

termined, for a given number of sensors deployed, L, and the number of transmissions,

M , from sensors to the FC. The procedure for setting the thresholds for Schemes 1 and

2 is discussed in the following subsections.
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Table 3.1: Algorithm for estimating the number of transmitters

Step 1 InitializeK = 1 transmitter.
Step 2 Perform K-means clustering. Fit K circles with the K-

means centroids (ai, bi) as the centers, and the farthest
point from the center in each cluster as radius ri, for i =
1, 2, . . . , K.

Step 3 Compute the average distance metric

M ,
∑K

i=1
1
Ni
(
∑Ni

j=1 ri −
√

(xji − ai)2 + (yji − bi)2), where
Ni is the number of sensors in cluster i, and (xji, yji) is the
location of the j-th sensor in cluster i.

Step 4 Increment K. Repeat Step 2 and Step 3 until the first mini-
mum of M is obtained.

Step 5 Output the K that corresponds to the first minimum.

Scheme 1

Suppose that the design requirement is to detect any transmitter emitting a power of

at least Pmin with a probability at least 1 − pm. Also suppose that the recovery of the

sparse vector is required to succeed with probability at least 1−pfsr. Now, the alarming

radius of the i-th transmitter with power Pi is ri = d(Pi/τ)
1/η , where τ is the signal

power threshold for detection at the sensors, d is a reference distance, and η is the path

loss exponent. When L sensors are deployed uniformly in an area A, the probability

that no sensor falls in the alarming area of a transmitter employing Pmin power is (1 −

πr2min/A)
L, where rmin , d(Pmin/τ)

1/η . The 1− pm requirement on this probability leads

to the constraint

τ ≤
(

πd2

A(1− p
1/L
m )

)η/2

Pmin , τb. (3.4)

Recall that Scheme 1 requires the alarming discs to be non-overlapping. Given the
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maximum primary transmit power Pmax and the minimum distance dmin between pri-

mary transmitters, this leads to the constraint

τ ≥
(

2d

dmin

)η

Pmax , τa,1. (3.5)

LetKmax denote the number of alarming sensors when Tmax transmitters are emitting

the highest possible power Pmax. Then, the sparse recovery requirement results inM =

O(Kmax log(L/Kmax)) number of transmissions to the FC. Then, τ needs to be chosen

such that the sparse vector recovery succeeds with probability ≥ 1 − pfsr. In other

words, the probability of more thanKmax sensors falling in the alarming area should be

≤ pfsr, i.e.,
L∑

i=Kmax+1

(
L

i

)

pia(1− pa)
L−i ≤ pfsr, (3.6)

where pa , (πd2Tmax/A)(Pmax/τ)
2/η , is the probability that a sensor deployed falls in the

alarming area. Numerically solving (3.6) for equality and choosing the largest solution

≤ τb gives another upper bound on τ , say, τ ≥ τa,2. Let τa , max (τa,1, τa,2). Thus, the

sensor threshold is constrained to lie in the range τa ≤ τ ≤ τb. Experimentally, it has

been found that the relative error in reconstructing the communication footprint is a

relatively insensitive function of the exact value of τ , provided it satisfies τa ≤ τ ≤ τb.

Hence, any τ in this range would yield roughly the same performance. This will be

discussed in Sec. 3.4.

Scheme 2

The parameters that need to be designed here are τi and τo, the thresholds that deter-

mines the inner and outer circles of the annulus, respectively. For a transmitter with
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power Pi, the inner and outer radii of alarming sensors are given by ri = d(Pi/τi)
1/η

and ro = d(Pi/τo)
1/η . Also, when the transmit power is Pmax (similarly, Pmin), denote

the inner and outer radii by ri,max and ro,max (similarly, ri,min and ro,min).

Now, since the localization algorithms in Scheme 2 depend on approximating an an-

nulus by a circle, the relative width of the annulus is held fixed to some value, say δ.

Since this constraint needs to be satisfied for all possible transmitter powers, the first

constraint is given by

ro,max − ri,max

ri,max
= δ ⇒ ρ ,

τi
τo

= (1 + δ)η . (3.7)

Next, as in the previous subsection, the parameters need to be chosen to guarantee an

upper bound on the probability of missing a transmitter, when the transmit power is

Pmin. This results in the constraint

τo ≤
(

πd2(ρ2/η − 1)

A(1− p
1/L
m )

)η/2
Pmin

ρ
, τb. (3.8)

where pm is the upper bound on the probability of missing a transmitter, which is given

as a design requirement.

Third, one needs to ensure that the number of sensors that alarm are such that the

sparse reconstruction techniques work. This leads to the constraint given by (3.6), but

with pa redefined as pa , (πd2Tmax(ρ
2

η − 1)/A)(Pmax/ρτo)
2

η . As in the previous section,

(3.6) can be numerically solved to obtain a lower bound on τo. Finally, the value of τo

can be chosen empirically as the value between its lower and upper bounds that gives

a minimum relative error in reconstructed footprint area; this will be illustrated in the

experimental results shown in the next section.
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3.4 Simulation Results

3.4.1 Monte-Carlo Simulations

The proposed schemes are simulated for footprint identification over a rectangular

area having three active primary transmitters. The three transmitters are located in a

(60× 80) rectangular area A at positions (17, 67), (42, 62), and (25, 25)with transmit ra-

dius 7, 8 and 15, respectively. Here, for ease of presentation, no distinction is made be-

tween the actual radius of communication and the alarming radius in Scheme 1. Thus,

in the radio map considered, the spectrum is occupied in 23% of the total area. For

Scheme 2, the thresholds are chosen such that the width of the annulus is 3 units and the

inner alarming radius is 4, 5 and 12 for the three transmitters. L sensors are deployed

uniformly at random locations in the area and the alarming sensors are determined us-

ing a path loss model with η = 2 and an appropriate upper and lower energy thresholds

(in Scheme 2) or only a lower threshold (in Scheme 1). The channel coefficients from

the sensors to the FC are assumed to be drawn from an i.i.d. zero-mean, unit variance

complex normal distribution and are assumed to be constant for the M transmissions.

At the FC, the recovered complex sparse vector is quantized to a binary vector before

clustering the sensors that detect the primary. The transmit power is set such that the

average received SNR is 4dB per alarming sensor.

Figure 3.2 shows the results of the three metrics in identifying the number of primary

transmitters. The algorithm proposed in Table 3.1 is compared with the CH and Harti-

gan methods in terms of their ability to find the number of clusters using 1000 instan-

tiations of the sensor locations. The y-axis in the plot shows the metric corresponding

to the method used (for e.g., with the Hartigan method, it corresponds to the Hartigan
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index), along with the 99% confidence interval bars. It is found that the Hartigan and

the CH methods fail to identify the true number of clusters in most instantiations of

sensors for this configuration of primary transmitters, as they do not take advantage of

the circular shape of the alarming areas.
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Figure 3.2: Identification of number of clusters using CH, Hartigan and proposed meth-
ods. The CH and Hartigan methods use the peak point and the first point with metric
less than 10, respectively, to determine the number of clusters. Here, the true number
of clusters is 3.

Figure 3.3(a) shows the performance comparison of the schemes versus L. In this case,

as L increases, more sensors transmit on average, requiring a corresponding increase in

M to ensure the CS recovery of the alarming sensor locations at the FC. The round-robin

case is simulated using this value of M as the number of sensors deployed, to keep the

comparison fair at each value of L, in terms of the number of transmissions to the FC.

It is seen that the proposed schemes outperform the round-robin scheme. Also, the
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performance improvement obtained from trilateration or circular regression methods

relative to the K-means method for finding the centroid in Scheme 2 is clear from the

graph. The performance of Scheme 2 is superior to all other schemes considered includ-

ing the MEC based scheme [81]. Note that the probability of missing a transmitter is

negligible here, because although the alarming radius of the lowest-power transmitter

covers only 3.2% of the area A, the L considered is large, of the order of several hun-

dreds. Figure 3.3(b) shows the performance of the schemes when the combined path

loss and lognormal shadowing model is considered. Each unit on the rectangular area

corresponds to 10m and the transmitter powers at a reference distance of 1m is chosen

as −3.1dBm, −1.9dBm, and 3.4dBm, respectively, which corresponds to the scenario in

Fig. 3.3(a) with the path loss model. The shadowing parameter is assumed as σ2
s = 4

in the dB scale. The spatial correlation of the random shadowing is taken as 2−dij/dcorr ,

where dij is the distance between points i and j, and dcorr is the decorrelation distance,

chosen as 20m [89]. Although there is a performance degradation in all the schemes,

relative performance of the schemes is unchanged, with Scheme 2 outperforming the

other schemes. Also, the performance of the MEC based scheme degrades compared to

other schemes. Thus, the proposed schemes are robust to the distortion introduced in

the circular footprint due to the lognormal shadowing process.

Next, the efficacy of the different CS reconstruction methods as a function of the SNR

is studied for Scheme 2with a deployment of L = 960 sensors and 122 alarming sensors.

Figure 3.4 shows the percentage success of support recovery out of 1000 simulation runs

versus the number of measurements. The sparse vector can be correctly reconstructed
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Figure 3.3: Comparison of the round-robin scheme, Scheme 1 and Scheme 2, consid-
ering (a) the path loss model and (b) a combined path loss and log-normal shadowing
model. The trilateration and circular regression methods of Scheme 2 outperform the
K-means based centroid estimation and MEC based centroid estimation methods.
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with high probability using OMP, with an SNR of 4dB per sensor and about 336 mea-

surements at the FC. The relative error in area does not vary significantly with SNR

beyond 4dB, as these schemes depend primarily on correct support recovery. Note that

the greedy-search nature of the OMP algorithm implies that the few erroneous support

locations identified by the OMP may still happen to fall in the annulus area, whereas,

if ℓ1 fails, it typically fails completely. Also, the success rate of the OMP has a greater

dependency on the actual values of the non-zero locations than the ℓ1 minimization.

Due to these two factors, the OMP performs better than the ℓ1 at higher SNR.
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Figure 3.4: Percentage success of support recovery for ℓ1 and OMP based CS recon-
struction Vs. number of transmission instants (M) for different values of the SNR per
sensor.

The procedure to select the sensor thresholds discussed in Section 3.3 is empirically

evaluated and the results are listed in Tables 3.2 and 3.3. For these simulations, the

transmitters were assumed to be present at positions (15, 20), (45, 20), (15, 60), and
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(45, 60) of the (60 × 80) area. The design parameters are listed in the table; they are

chosen to make the thresholds of the two schemes comparable, facilitating the compar-

ison of their performance. Table 3.2 shows relative error in area for three different val-

ues of thresholds between τa and τb chosen through proposed design procedure, when

all Tmax transmitters are emitting at their maximum powers. In both Scheme 1 and

Scheme 2, for a given choice of L and M , as the threshold increases the relative area er-

ror decreases when the communication radius is roughly equal to alarming radius. On

the other hand, if the alarming radius is small compared to the communication radius

(which helps in CS-based recovery with a small number of transmissions), the scaling

error in reconstructing the communication footprint will be large. This makes the rela-

tive error in footprint reconstruction roughly insensitive to the value of the threshold.

A similar behavior is observed when the relative area error is averaged over transmit-

ter powers being drawn from U(Pmin, Pmax); this is shown in Table 3.3. This shows that

any threshold value chosen in the range identified in Sec. 3.3 performs roughly equally

well.

Power Budget Calculation

Here, a numerical example is provided to show that the total power used by the sen-

sors forM transmissions in the proposed CS scheme is significantly lower than that of a

round-robin scheme. Consider the setupwith three primary transmitters in the (60×80)

area as mentioned above, with on-off keying by the sensors. For purposes of compar-

ison, let a failed recovery correspond to three or more errors by the support recovery

algorithm. In the round-robin scheme, if 960 sensors are deployed, an SNR per sensor

of 14dB ensures a probability of bit error of about Pe = 10−3 with on-off keying, making
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Table 3.2: Evaluation of the threshold selection procedure when all Tmax = 4 trans-
mitters are emitting at Pmax = −1dBm power. Design parameters: minimum transmit
power for Scheme 1, Pmin, (−10dBm for Scheme 1 and −7dBm for Scheme 2); prob-
ability of failure of support recovery, pfsr = 0.1; probability of missing a transmit-
ter, pm = 0.15; relative width of annulus in Scheme 2, ρ = 2.0; number of sensors,
L = 960; number of transmissions from sensors to FC,M , (440 for Scheme 1 and 300 for
Scheme 2); threshold corresponding to the boundary of the communication footprint
(Fc) = −20dBm. Alarming footprint (Fa).

Power threshold for Scheme 1 (in dBm)
τa

τa+τb
2

τb
−17.40 −15.90 −14.79

Relative error for Scheme 1with Fa 0.043 0.031 0.024
Relative error for Scheme 1with Fc 0.074 0.073 0.079
Power threshold corresponding to the outer circle
of the annulus for Scheme 2 (in dBm)

τa
τa+τb

2
τb

−17.32 −15.87 −14.79
Relative error for Scheme 2with Fa 0.035 0.026 0.020
Relative error for Scheme 2with Fc 0.063 0.066 0.065

it comparable to the sparse technique in terms of support recovery performance. With

120 sensors alarming, the round robin scheme requires a total transmission power of

14dB × 120, i.e., about 35dB.

The proposed Scheme 2 requires a total power of about 4dB per sensor over the M =

336 transmissions for successful recovery with the OMP algorithm. This corresponds

to a power requirement of 4dB×120 or about 25dB, as against the 35dB required by the

round-robin scheme. From Figure 3.3, the relative error in the primary footprint area

performance of the round-robin scheme with 960 sensors is in fact worse than that of

Scheme 2. Hence, the power requirement of Scheme 2 is significantly lower than that

of the round-robin scheme.
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Table 3.3: Evaluation of the threshold selection procedure when Tmax = 4 transmitters
are emitting powers drawn from U(Pmin, Pmax). Design parameters are as in Table 3.2.

Power threshold for Scheme 1 (in dBm)
τa

τa+τb
2

τb
−17.40 −15.90 −14.79

Relative error for Scheme 1 with Fa 0.046 0.040 0.035
Relative error for Scheme 1 with Fc 0.082 0.093 0.075
Power threshold corresponding to the outer circle
of the annulus for Scheme 2 (in dBm)

τa
τa+τb

2
τb

−17.32 −15.87 −14.79
Relative error for Scheme 2 with Fa 0.038 0.035 0.029
Relative error for Scheme 2 with Fc 0.072 0.098 0.088

Effect of Timing and Frequency Offsets Between the Nodes

First, we consider timing offsets between the nodes. A relatively small timing offset

between the sensors translates to a phase offset of ∆1, ∆2, . . . , ∆L for each of the M

transmissions. Larger offsets lead to a constant degradation of signal power from each

of the sensors in addition to the phase rotation; however, its effect can be handled ex-

actly in the manner described below. Then, the system model can be represented as

y =
1√
M










x1e
j(θ11+∆1) x2e

j(θ12+∆2) . . . xLe
j(θ1L+∆L)

x1e
j(θ21+∆1) x2e

j(θ22+∆2) xLe
j(θ2L+∆L)

...
. . .

...

x1e
j(θM1+∆1) x2e

j(θM2+∆2) . . . xLe
j(θML+∆L)



















h1

h2

...

hL










+ w. (3.9)

When the phase shifts θji ∈ {0, π} form a pseudorandom sequence, the above equation

can be rewritten as follows:

y =
1√
M










+1 −1 . . . +1

−1 +1 . . . +1
. . .

+1 +1 . . . −1



















x1h1e
j∆1

x2h2e
j∆2

...

xLhLe
j∆L










+ w. (3.10)
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Note that, in order to find the alarming sensors, we only need to recover the support

(i.e., the locations of the nonzero entries) of the unknown vector s from y = Φs+w, and

not s itself. This support is unaltered by the phase offsets, and hence the proposed CS-

based recovery method is robust to synchronization errors in the form of timing offsets

between the nodes.

Next, we consider the effect of frequency offsets between the nodes. This does cause

a perturbation in the compressive sensing measurement matrix. The IEEE 802.15.4

standard specifies a crystal accuracy of ±40 ppm [90, 91]. Assuming a worst case fre-

quency deviation of δf ppm, the maximum phase offset at the end of M transmissions

is ∆max ,
2πMδf
106

. We have simulated the effect of the frequency offset on footprint

reconstruction by considering a phase error for each transmission of the sensors cho-

sen uniformly in the interval [0,∆max] for various values of M and δf . The results for

Scheme 1 and Scheme 2 are shown in Tables 3.4 and 3.5, respectively. The proposed

methods are thus indeed robust to frequency offsets between the nodes.

Table 3.4: Percentage success of support recovery for OMP based CS reconstruction in
presence of synchronization errors for Scheme 1, with L = 960.

M
δf (in ppm)

0 40 80 120 160
500 99 97 97 92 88
530 100 100 98 94 90
560 100 100 100 95 92
590 100 100 100 100 95

Finally, we also note that a theoretical study of the effect of perturbation on the mea-

surement matrices has been carried out in [92]. Here, the authors consider a perturba-

tion on measurement matrix Φ of the form Φ̂ = Φ + E, and derive restricted isometry
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Table 3.5: Percentage success of support recovery for OMP based CS reconstruction in
presence of synchronization errors for Scheme 2, with L = 960.

M
δf (in ppm)

0 40 80 120 160
270 96 93 92 88 87
300 100 100 99 98 96
330 100 100 100 100 98
360 100 100 100 100 100

property (RIP) constants for stable recovery. These results establish that the CS recovery

methods are robust to small perturbations in the measurement matrix.

3.4.2 Experimental Results

To verify the feasibility of the proposed schemes on real-world data, an experiment was

conducted in a 100m×160m football field in the Indian Institute of Science campus (the

aerial view is shown in Fig. 3.5). The football field was free of interference and was

suitable for simulating the free-space path loss model, but, it was surrounded by trees

and walls leading to the possible reflections. Two Cisco Aironet 1242AG Series Wi-Fi

Access-Points (APs) with a transmit power of 24dBm, operating on the 11th channel of

the 2.4GHz band was used as the transmitter and a laptop with a Wi-Fi card was used

as the receiver. The APs were placed at coordinates (50, 50) and (50, 110) relative to

the center of the field, and the received power was measured at 200 randomly chosen

locations over the field. The average power at a reference distance of r0 = 1m from the

APwas−23dBm. It was observed that most of themeasured power valueswere close to

the corresponding calculated values obtained with a path loss exponent of two. Also,

since only two transmitters were active, Tmax = 2 and Pmax = −23dBm was used to
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Figure 3.5: Aerial view of the football field showing the placement of Wi-Fi AP.

design the thresholds for both schemes. For a given pm, pfsr, L,M , and Pmin, the sensor

threshold levels were chosen using the discussed design procedure for Scheme 1 and

Scheme 2, and ρ = 1.9was used in the case of Scheme 2.

The transmissions from the sensors to the fusion center were carried out through com-

puter simulations, to facilitate easy comparison of the different methods using the same

measured data. To evaluate the performance using L ≤ 200 sensors, 500 independent

instantiations of the subset of L out of 200 sensors were chosen uniformly from among
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all possible subsets. For each instantiation, the thresholds are chosen based on the pro-

posed design procedure, with the number of transmissions M = 70 and the number of

sensors L = 140. The results are tabulated in Table 3.6. As in the case of synthetic data,

it is found that the relative area error decreases with decreasing alarming radius. Also,

the RMSE in localization is tabulated. In case of Scheme 1, the RMSE roughly follows

the lower bound given by
√

A/2πL.

Table 3.6: Evaluation of threshold selection procedure with experimental data. De-
sign parameters: number of transmitters, Tmax = 2; maximum transmit power, Pmax =
−23dBm; minimum transmit power, Pmin, (−30dBm for Scheme 1 and −27.44dBm for
Scheme 2); probability of failure of support recovery, pfsr = 0.1; probability of missing
a transmitter, pm = 0.15; relative width of annulus in Scheme 2, ρ = 1.9; number of
sensors, L = 140; number of transmissions from sensors to FC,M , (89 for Scheme 1 and
80 for Scheme 2).

Power threshold for Scheme 1 (in dBm)
τa

τa+τb
2

τb
−51.58 −50.14 −49.06

Relative error for Scheme 1 0.053 0.045 0.044
RMSE for Scheme 1 5.12 4.46 4.30
Lower bound on RMSE for Scheme 1 4.26 4.26 4.26
Power threshold corresponding to the outer circle
of the annulus for Scheme 2 (in dBm)

τa
τa+τb

2
τb

−52.60 −50.47 −49.05
Relative error for Scheme 2 0.049 0.034 0.029
RMSE for Scheme 2 3.22 2.96 2.93

3.5 Conclusions

This work proposed two novel CS based schemes for fast multiple transmitter local-

ization and communication footprint estimation. The schemes were based on multiple

simultaneous 1-bit transmissions from sensors to the FC using pseudo-random phase

shifts, followed by CS-based recovery of the alarming sensor locations. Then, the alarm-

ing sensor locations were clustered using the K-means algorithm, and a novel circular
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fitting technique was used to determine the number of primary transmitters. This was

followed by transmitter localization using trilateration or circular regression methods

to finally obtain the estimates of the number of primary transmitters, their locations

and communication footprints. It was seen that the proposed schemes require fewer

number of transmissions and lower power at a given fidelity level. Of the proposed

schemes, Scheme 2 performed the best in terms of the average relative error in trans-

mitter footprint identification, for a given upper bound on the probability of missing

a transmitter. The admissible range for the sensing thresholds in the two schemes was

obtained using design constraints that ensured a lower bound on the probability of

missing a primary transmitter and the probability of the success of the sparse vector re-

covery is satisfied. Two popular sparse recovery algorithms, the OMP and ℓ1 minimiza-

tion were compared, and it was found that at higher SNRs, the OMP performed better

than ℓ1 in terms of the percentage of successful recovery. The efficacy of the proposed

schemes were illustrated using Monte-Carlo simulations and real-life measurements in

a simple experimental setup.
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Target Self-Localization Using Beacon

Nodes: A ColumnMatching Algorithm

and Performance Analysis

Indoor target localization is challenging because of the unavailability of satellite-based

global positioning system (GPS) in an indoor environment. Over the past two decades,

there has been extensive work on using specialized infrastructure (e.g., infrared based

systems [93], ultrasound waves based systems [94, 95]) for indoor localization. How-

ever, recent advances in the field of wireless sensor networks has enabled the low-cost

infrastructure deployment for specific applications like intrusion detection systems,

fire alarm systems, etc. In this work, deployment of a set of low-cost beacon nodes

(tiny motes [96], bluetooth low energy (BLE) beacons [97]) is considered to enable the

self-localization of a target node based on received signal strength (RSS) measurements

from the beacons. We are particularly interested in algorithms that require very little

computing capability at the target node.

In the literature, several approaches have been explored for indoor localization. One

71
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of the early proposals was the active badge system [93], which relies on the deployment

of infrared based transmitters and receivers. Similarly, Cricket [94] and BAT [95] used

ultrasound waves, and LANDMARC [98] was based on RFID technology. The RF fin-

gerprinting based approaches (like RADAR [99], HORUS [100]) use WiFi access points

as transmitters and measure the received signal strengths at various locations, and then

use this radio fingerprint to identify the target location. In RADAR, the target location

is identified by matching the observed RSS with a database. HORUS, which has better

performance compared to RADAR, uses a stochastic description of the RSS map and

employs maximum likelihood estimation which needs very high computing power,

usually performed on a server machine. In [101], [102] and [103], the authors consider

range-free coarse-grained localization, where the centroid of the locations of the anchor

nodes heard is used to estimate the target location. The coarse-grained localization ap-

proach is simple in implementation compared to RADAR and HORUS, as it avoids the

need for creating and maintaining the radio fingerprint, but at the cost of poor localiza-

tion. In [104], the authors conduct an experimental study of fine-grained fingerprinting

based localization using BLE devices as beacon nodes. It is found that RSS values fluc-

tuate due to fast fading, which makes RSS based localization a particularly challenging

problem. Thus, solving the inverse problem of mapping RSS measurements to loca-

tion estimates is a computationally challenging task when accurate location estimates

are desired. To this end, in this work, we propose a virtual-grid based localization

technique based on connecting the inverse problem to non-adaptive group testing, and

draw on the computationally efficient recovery algorithms in the latter field.

Motivation: An application of interest is tracking the position of a target, say, a worker
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on the factory floor, or a doctor/nurse in a hospital, within an area of interest. Knowl-

edge of the movement patterns of factory workers or hospital staff can lead to stream-

lining of the process and is also useful for implementing safety systems such as warning

against entering hazardous areas, etc. To this end, a set of beacon nodes (motes) are de-

ployed in the area of interest. These motes periodically broadcast their location and

identification number (id) to assist in the localization process. An application running

on the target device (e.g., a mobile phone) attempts to ‘read’ the beacons. Based on the

subset of beacons it is able to read, the target estimates its location. Such an approach of

decentralized coordination requires no additional hardware to be carried by the targets

(e.g., it can be implemented as an application running on a smart phone), and is cost-

effective given the availability of low-cost tiny motes that can be used as beacon nodes.

Another application of interest is in the geo-location database approach for enabling

cognitive radio (CR) spectrum access. Here, a white space device (WSD) communi-

cates its location to a central database and obtains information to set its parameters for

secondary access of the licensed band. To this end, the self-localization of a WSD is a

crucial step in enabling CR operation. In this case, a set of cellular base-stations or the

Wi-fi access points (in case of a fully connected city) can act as beacon nodes to enable

localization.

Proposed Approach: We divide the area of interest, denoted by A, into a rectangular

grid whose size depends on the desired target localization error. Then, the problem

of target localization reduces to that of determining the grid point that, among all the

candidate grid locations, best explains the measurement (reading) of the beacon nodes

at the target. We relate this problem to that of testing the grid cells for the presence of
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the target node and propose a column-matching algorithm [105] for self-localization of

the target node at a given accuracy level. The column-matching algorithm is a compu-

tationally inexpensive algorithm proposed in the context of non-adaptive group testing

(NGT) [106]. In doing so, we provide a bridge connecting the vast areas of target local-

ization and group testing, that can be useful in many different applications.

On the analytical side, we leverage results from stochastic geometry and order statis-

tics to determine theminimum spatial density of beacon nodes required to achieve a de-

sired localization performance. Stochastic geometry is a powerful tool that has recently

been used in wireless communications for performance analysis when the transmitters

and receivers are located randomly [107]. Our main contributions in this context are as

follows:

1. We propose a novel measurement scheme for enabling target self-localization us-

ing received power readings from a set of low-power beacon motes.

2. We propose the use of multiple power thresholds at the target along with a grid-

based localization framework for reducing the number of motes to be deployed

and achieving a desired localization accuracy. Roughly speaking, the number of

motes deployed can be traded-off for the number of measurements (power thresh-

olds) per mote, provided the different power thresholds are chosen judiciously.

3. We mathematically relate the problem of target self-localization to that of testing

grid cells for the presence of the target. Based on this connection, we propose to

use a computationally efficient column-matching based algorithm popular in the

context of NGT literature, for target self-localization.
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4. We analyze the localization performance by considering the spacings between the

successive intersections of the power contours of the beacons on the grid cells. The

tools from order statistics and Poisson point processes are utilized to characterize

the length of the spacings, and in turn, this is used to determine the density of

nodes required to localize the target to a desired level of accuracy.

The proposed approach and results obtained are validated via Monte Carlo simula-

tions as well as experimental data collected at the Robert Bosch Centre for Cyber Phys-

ical Systems, Indian Institute of Science, Bangalore. The results show that proposed

algorithm is a promising approach for beacon-based target self-localization.

The next section discusses the system model and problem setup. In section 4.2, the

proposed localization algorithm is discussed. Section 4.3 presents the analytical pro-

cedure for determining the number of motes that need to be deployed. In section 4.4,

simulation and experimental results are provided to illustrate the performance of the

proposed algorithms. Section 4.5 concludes the chapter.

Notations: Boldface capital letters denote matrices, boldface small letters denote vec-

tors, and (.)t denotes the transpose of a matrix. The notation supp {max{z}} represents

the set of indices for which the corresponding entry of z equals the maximum value

in z.

4.1 SystemModel and Problem Setup

Consider a passive target located at (xt, yt) in a geographical area denoted by A. To fa-

cilitate the self-localization of the target node, a set ofK beacon nodes b1, b2, . . . , bi, . . . bK

are deployed uniformly at random locations in and around A. The transmissions from
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each beacon node conveys its identity and location. The target node first determines

the subset of beacons it is able to receive the ids from. Then, the target node computes

a binary vector based on the RSS, as explained below. This binary information of the

measurements from the beacon nodes, along with an offline collected database of the

RF footprint of beacon readings over the areaA is used to localize the target, i.e., to esti-

mate (xt, yt). Alternatively, if the well known path loss model for RF signal propagation

is applicable in the areaA, it could be employed to construct the RF footprint database.

For simplicity of exposition, in the sequel, we consider the path loss model for RF signal

propagation. When a beacon node bi transmits with a power P0, the RSS value observed

at the target node, denoted by Prx,i, is given byPrx,i , min(P0, P0(d0/di)
η), where η is the

path loss exponent, d0 is a reference distance, and di is the distance between bi and the

target node. The target node compares the RSS value Prx,i withM predetermined inter-

vals,
{

I(j) ,

(

P
(j−1)
th , P

(j)
th

]

: j = 1, . . . ,M, P
(0)
th = P0

}

, and sets the reading (denoted by

y
(j)
i ) corresponding to bi and I(j) using the following rule:

y
(j)
i ,







1, P
(j−1)
th > Prx,i ≥ P

(j)
th

0, else.
(4.1)

That is, the vector [y
(1)
i , y

(2)
i , . . . , y

(M)
i ]t is a binary vector with either all zeros (if bi is not

“visible” at the target), or with a single 1 corresponding to the threshold interval in

which the received power at the target lies. In this fashion, the target node aggregates

all the y
(j)
i s to form a binary decision vector y , [y

(j)
i ] ∈ {0, 1}T×1, where T , KM is

the total number of measurements at the target.

The geographical area A is divided in to a rectangular grid of size L1 × L2. Under

the above setup, the goal in this chapter is to determine the grid or a subset of the grid
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locations that are closest to the target location among the C , L1L2 possible candidate

locations, using the binary observation vector y.

Our performance measure is the probabilistic accuracy with which the location esti-

mate is within a given small number of grid cells near the actual location. That is, it

is possible that the localization algorithm could identify a set of nearby grid locations

as the ones that best explain the reading at the target. We seek guarantees of the form:

the maximum localization error is within (say) 1mwith 99% probability, if the target is

uniformly distributed onA. By deploying sufficient number of beacon nodes, the local-

ization uncertainty can be made to meet the desired accuracy level. Thus, we have two

problems at hand: to come up with an algorithm to identify the grid location(s) corre-

sponding to the binary reading y at the target node, and to analytically characterize the

relationship between the number of beacon nodes and the localization accuracy.

Note that, along with the beacon nodes deployed in the area of interest A, the nodes

deployed in the vicinity of A also help in localization of the target. This enables the

target localization to the desired accuracy uniformly all over the grid inAwith reduced

node density. For example, if a room in the building is the area of interest, then the

beacon nodes deployed in the adjoining rooms/corridor help in localization along with

the nodes in the room. Also, the target can be localized with reduced accuracy in the

region surrounding the area of interest.

4.2 A ColumnMatching Algorithm for Localization

In this section, we cast the target localization problem as the one of testing the grid cells

for the presence of target. Our starting point is the measurement model described in
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Figure 4.1: Illustration of the measurement process for target sensor localization. Red
dots represent the beacon nodes and green square block represents the target node.

the previous section and pictorially shown in Fig. 4.1. The measurement procedure

described in the previous section is mathematically equivalent to testing for the pres-

ence of the target node in one of the concentric annuli around the beacons, with each

annulus corresponding to a different threshold interval at the target. That is, for the test

corresponding to jth threshold interval of the ith beacon’s signal, the grid cells in the an-

nulus A(j)
i are tested. This can be represented by the test vector a

(j)
i ∈ {0, 1}1×C , where

C , L1L2 is the total number of grid cells. In a
(j)
i , the entries corresponding to the cells

being tested are set to 1 and the remaining entries are set to 0. Thus, the measurement

process can be written as

y = Ax, (4.2)
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where A ∈ {0, 1}T×C is the test matrix formed by stacking the row vectors a
(j)
i , and

x ∈ {0, 1}C×1 indicates the true position of the target. The unknown vector x has one of

its elements being set to 1: this corresponds to the cell where the target is present.

Under this setup, the problem of target localization reduces to that of identifying the

position of the ‘1’ in the vector x, using the reading y obtained at the target. Since

we consider the case where the number of beacons is ≪ C, the above is an under-

determined system of linear equations, and we seek the sparsest solution. We propose

to employ the column matching algorithm from the group testing literature (e.g., [105])

to identify the location of the “1” in x, i.e., the target location. The column-matching

algorithm attempts to match the columns of A with test result vector y. In particular,

any column of A that has maximum number of entries where the 1s coincide with y is

a potential target location, i.e.,

K = supp {max{Aty}}, (4.3)

whereK is the set of defective items (ones). Note that, in the target localization problem,

the goal is to identify a single entry of 1, as an estimate of the target location. However,

when multiple grid cells receive the beacon transmissions in the same RSS intervals,

multiple grid cells could return the same reading, and it is not possible to uniquely

localize the target within a grid cell. In such a scenario, the centroid of the grid cells

corresponding to ‘1’s in x is used to identify the target location. The probability of

localizing the target within a grid cell can be increased by increasing the number of

tests, T = KM . The trade-off betweenK,M , and the accuracy of localization is studied

via analysis and experiments.
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Figure 4.2: Illustration of the beacon power contours intersecting line segment S. The
power contours of the beacon nodes located in the cyan colored strip intersect S.

4.3 Performance Analysis

As discussed above, the goal is to localize the target within its actual grid cell with high

probability. In other words, each grid cell is uniquely identified by a distinct set of

intersections from annuli corresponding to different beacon transmissions and power

threshold intervals. Thus, to analyze the localization performance, it becomes impor-

tant to study these intersections on the grid cells and quantify their spacings. This

analysis aids in determining the minimum number of beacon nodes required.
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4.3.1 Probability of Localizing the Target within a Grid Cell

Suppose the locations of the beacon nodes form a Poisson point process (PPP) Φ of

intensity λ on the R2 plane. Consider a target located uniformly at random in the area

of interest A. For concreteness, as depicted in Fig. 4.2, A is taken to be a square area of

dimension 1 × 1, divided into a L × L square grid, with each grid cell of size δ × δ, i.e.

δ , 1
L
. To simplify the exposition, consider a single power threshold P

(1)
th at the target,

and let the communication radius of the beacon nodes corresponding to P
(1)
th be r. That

is, the received power at the target is greater than or equal to P
(1)
th for the beacon nodes

that are located within a distance of r from the target. The first step in our analysis is

to determine the locations of the intersections of the beacon power contours of radius

r on any vertical/horizontal line segment S of length 1 in A. These intersections are

important for determining the localization accuracy, because a target present in the

spacing between a pair of successive intersections can be localized within the spacing.

To quantify the length of these spacings, it is required to determine the distribution of

the intersections on S. This is presented in Lemma 3.

Lemma 3. When the beacon nodes are distributed as PPP with intensity λ, the number of

beacon nodes with power contours of radius r intersecting S is Poisson distributed with mean

µ1 = λ(2r + πr2). The total number of such intersections N on the line segment S is approxi-

mately Poisson distributed with mean µ = 4λr.

Proof. As in Fig. 4.2, consider a regionR formed by a rectangular strip of size 1×2r and

two semi-circular strips C1 and C2 of radius r. The beacon nodes that lie in this region

intersect the line segment S. Thus, the average number of beacon nodes that intersect



Chapter 4. 82

S is

µ1 = λ(Area of R) = λ(2r + πr2). (4.4)

Since the number of points of the point process Φ that lie in the region R is Poisson

distributed, the number of beacon nodes intersecting S is Poisson distributed.

Further, for r ≤ 1/2, the nodes that lie in the region R but not in C1, C2, C3, and C4

intersect S twice, whereas, the nodes that lie in C1, C2, C3, and C4 intersect only once.

Thus, the mean of the number of intersections on S is given by

µ = 2λ(Area ofR− Sum of area of C1, C2, C3 and C4)

+ λ(Sum of area of C1, C2, C3 and C4), (4.5)

= 2λ(2r − πr2) + λ(2πr2) = 4λr. (4.6)

For r > 1/2, following a similar procedure, it can be shown that µ = 4λr.

The beacon nodes that intersect twice on S leads to dependent intersecting points.

However, this dependency is weak for a sufficiently large r, as the proportion of cir-

cles intersecting once will be more than the ones intersecting twice. Thus, it can be

deduced that the number of intersections N on S is approximately Poisson distributed

with mean 4λr.

In practice, due to fading, beacon power contours are random shapes (see section

4.1 of [108] for a discussion on the Poisson-ness of independent random shapes), this

further reduces the dependent intersections.

As a consequence, conditioned on the number of intersectionsN , say, givenN = n, the
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Figure 4.3: Depiction of the intersections on line segment S as uniform ordered variates
and their spacings.

location of intersections U1, U2, . . . , Un on the line segment S are distributed as uniform

and independent in the range [0, 1]. Suppose that 0 ≤ U(1) ≤ U(2) ≤ . . . ≤ U(n) ≤ 1

represent the order statistics of the independent uniform random variates (r.v.s) (see

Fig. 4.3). Let the spacing between any two successive ordered r.v.s be Vi , U(i) −

U(i−1), i = 1, 2, . . . , n + 1, where Vn+1 = 1 − U(n) and V1 = U(1). Each of these spacings

V1, V2, . . . , Vn+1 should be made smaller than the grid cell size with sufficiently high

probability. Equivalently, the largest of these spacings,1 the ordered r.v. V(n+1) must be

confined within the grid cell size with high probability. So, it is required to evaluate the

quantity Pr(V(n+1) ≤ δ): this is presented in Lemma 4.

Lemma 4. The cumulative distribution function (cdf) of the largest among the spacings between

successive ordered uniform r.v.s in the range [0, 1] is given by

Pr(V(n+1) ≤ δ) = 1−
min (n+1,L−1)

∑

k=1

(−1)k−1

(
n + 1

k

)

(1− kδ)n, (4.7)

where n ≥ 0, δ ∈ (0, 1) and δ , 1
L
.

Proof. This is derived in section 6.4 of [109]. For the sake of completeness, a brief sketch

of the proof is provided here. Using the well-known Boole’s formula, the probability of

1In this work, the notation Ui denote the unordered random variables, while U(i) denotes the ith

random variable ordered in increasing order. The same notation is used for the random variables Vi also.
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the occurrence of at least one of the events Vi > δ can be expressed as

Pr

{
n+1⋃

i=1

(Vi > δ)

}

=
∑

i

Pr(Vi > δ)−
∑

i<j

Pr(Vi > δ, Vj > δ)

+ . . .+ (−1)nPr(V1 > δ, V2 > δ, . . . , Vn+1 > δ). (4.8)

To evaluate equation (4.8), the joint distribution of k events V1 > δ, V2 > δ, . . . , Vk > δ is

given by [109]

Pr(V1 > δ, V2 > δ, . . . , Vk > δ) = (1− kδ)n, for kδ < 1, (4.9)

and the distribution in (4.9) is symmetrical in Vi (i.e., Vis are exchangeable in the joint

distributions). Thus, along with the fact that the union event ∪n+1
i=1 (Vi > δ) is the same

as (V(n+1) > δ), (4.8) can be expressed as

Pr(V(n+1) > δ) =

min (n+1,L−1)
∑

k=1

(−1)k−1

(
n+ 1

k

)

(1− kδ)n. (4.10)

Hence, the cdf of the largest spacing is given by (4.7).

The number of intersections N is Poisson distributed, thus, the average probability

of the event V(N+1) ≤ δ is derived by taking expectation over N . This is presented in

Theorem 1.

Theorem 1. The average probability of the largest spacing between successive intersections

being less than or equal to the size of the grid cell, when the number of intersections N is

Poisson distributed with mean µ, is given by

E
[
Pr(V(N+1) ≤ δ)

]
= 1−

L−1∑

k=1

e−kδµ [µ(1− kδ) + k] [−µ(1− kδ)]k−1

k!
(4.11)
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where δ , 1
L
.

Proof. The term E
[
Pr(V(N+1) > δ)

]
is given by

E
[
Pr(V(N+1) > δ)

]
=

∞∑

n=0

Pr(V(n+1) > δ)Pr(N = n)

=

∞∑

n=0

min (n+1,L−1)
∑

k=1

(−1)k−1

(
n + 1

k

)

(1− kδ)n
e−µµn

n!
. (4.12)

Changing the order of summation, we get the following equivalent expression:

E
[
Pr(V(N+1) > δ)

]
=

L−1∑

k=1

∞∑

n=k−1

(−1)k−1

(
n + 1

k

)

(1− kδ)n
e−µµn

n!
. (4.13)

This can be further simplified as follows

E
[
Pr(V(N+1) > δ)

]
= e−µ

L−1∑

k=1

(−1)k−1

k!

∞∑

n=k−1

(n+ 1)

(n + 1− k)!
[µ(1− kδ)]n,

= e−µ

L−1∑

k=1

(−1)k−1

k!

[ ∞∑

n=k−1

(n+ 1− k)

(n + 1− k)!
[µ(1− kδ)]n

+

∞∑

n=k−1

k

(n+ 1− k)!
[µ(1− kδ)]n

]

. (4.14)

The inner summation terms are Taylor series expansions of the scaled exponential func-

tion in µ(1− kδ), so (4.14) can be expressed as

E
[
Pr(V(N+1) > δ)

]
= e−µ

L−1∑

k=1

(−1)k−1

k!
[[µ(1− kδ)]k + k[µ(1− kδ)]k−1]eµ(1−kδ). (4.15)

Further, equation (4.15) is used to obtain the average probability of largest spacing

given in (4.11).

Next, consider multiple thresholds P
(1)
th > P

(2)
th > . . . > P

(M)
th at the target, and let

the corresponding communication radii of the beacons be r1 < r2 < . . . < rM . Then,
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Figure 4.4: Illustration of the multiple power contours from beacons intersecting line
segment S.

as a sequel to Lemma 3, the average number of intersections on the line segment S is

presented in Lemma 5.

Lemma 5. When the beacon nodes’ M power contours of radii r1 < r2 < . . . < rM intersect

S, the average number of intersections on S is given by µ = 4λr̄M , where r̄ =
∑M

j=1
rj

M
is the

average radius.

Proof. As shown in Fig. 4.4, for any node present in the region R1, R2, . . . ,RM , the
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number of power contours that intersect the line segment S isM, M − 1, . . . , 1, respec-

tively. Therefore, using Lemma 3, the average number of intersections on S is given

by

µ = 4λ[r1M + (r2 − r1)(M − 1) + . . .+ (rM − rM−1)]

= 4λ

M∑

j=1

rj

= 4λr̄M, (4.16)

where r̄ =
∑M

j=1
rj

M
is the average radius.

The average probability of largest spacing being less than or equal to the size of the

grid cell for theM threshold case can be obtained by substituting µ = 4λr̄M in equation

(4.11). As discussed earlier in Lemma 3, in the M threshold scenario too, multiple

intersections of the same beacon node on S causes dependent intersections. However,

in this case, the width of the annuli can be chosen in a planned manner based on the

size of the grid cell. As we will see from simulations in the next section, this structured

choice of the widths of the annuli reduces the number of intersections required on S,

thereby reducing the node density required to achieve the desired localization accuracy.

To gain intuitive understanding, an approximation to E
[
Pr(V(N+1) ≤ δ)

]
in (4.11) is

derived as follows. The average probability E
[
Pr(V(N+1) > δ)

]
in (4.15) is derived us-

ing the principle of inclusion and exclusion as represented by Boole’s formula in (4.8).

Because of this, for the right choice of µ for a given δ, E
[
Pr(V(N+1) > δ)

]
can be upper

bounded by the first term of the summation in (4.15), i.e.,

E
[
Pr(V(N+1) > δ)

]
≤ e−δµ[µ(1− δ) + 1]. (4.17)
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Therefore, a lower bound on E
[
Pr(V(N+1) ≤ δ)

]
is given by

E
[
Pr(V(N+1) ≤ δ)

]
≥ 1− e−δµ[µ(1− δ) + 1]. (4.18)

For a small δ (< 0.2) and relatively large µ (> 10), µ(1 − δ) + 1 ≈ µδ(L − 1) ≈ µ, thus,

the R.H.S. of (4.17) can be further simplified as

E
[
Pr(V(N+1) ≤ δ)

]
≈ 1− µe−δµ = 1− (4λr̄M)e−δ(4λr̄M). (4.19)

For the choice of parameters considered, it is found through simulations that (4.19)

is a good approximation to (4.11). From (4.19), it is clear that the parameters λ, r̄ and

M can be traded off for each other to achieve a given average probability of localizing

within a grid cell. For e.g., λ or r̄ can be reduced by half by doublingM and vice-versa.

Also, for a fixed δ, the average probability tends to 1 exponentially with increase in µ,

since the exponential term in (4.19) is dominant for sufficiently large µ. Similarly, for

a fixed µ, as grid cell size δ is increased, the average probability of localizing within a

grid cell approaches unity exponentially fast.

4.3.2 Optimal Beacon Density

The number of beacon nodes are chosen such that the average probability of detecting

the target within the grid, equation (4.11), is at least p, where p is a design parameter.

Alternatively, the node density can be obtained by using the approximation in (4.19)

and setting it to be at least p. For a given p, numerically solving (4.11) or (4.19) for

equality, the density of the number of intersections µ can be obtained, and substituted

in λ = µ
4r̄M

to obtain the node density. The proposed design procedure is validated in
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the next section.

4.4 Numerical Results

4.4.1 Monte Carlo Simulations

For the simulations, we consider a square area A of size (a, a). The area A is divided

into grids of sizes (5, 5), (10, 10), (20, 20), etc., and the location of the target node is

chosen uniformly at random over A. The locations of the beacon nodes form a PPP of

intensity λ on the R2 plane. The M power thresholds at the target are chosen such that

the annulus width is equal to the size of the grid cell. In the offline phase, the test matrix

A is evaluated for a free-space path loss model (η = 2). In the online phase, the column-

matching algorithm in (4.3) is used to identify the target locations. The simulations are

performed by considering 10000 location instantiations, with identifying target location

to an accuracy of single grid cell for 90% of instantiations as the performance criterion.

As discussed in section 4.3.1, the product of the node density and the beacon radius

(λr) indicates the number of intersections on the line segment S. When a single power

threshold is considered at the target, Fig. 4.5 shows the required λr product to localize

within a grid cell with probability p = 0.9 vs beacon radius for desired grid cells of size

δ = 0.2, 0.1, and 0.05. The required λr product nearly doubles as the grid cell size is

reduced by half. For all the three cases, it is observed that the required λr product is

slightly more than the theoretical value satisfying (4.11). As explained earlier, this is

because of the dependent intersections of the power contours of the beacon nodes that

intersect twice on the line segment S. However, the gap between the theoretical and

simulation curves reduces with increasing radius, also with, reducing grid cell size, as



Chapter 4. 90

0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

35

40

45

50

Beacon radius (r)

P
ro

d
u

c
t 

o
f 

n
o

d
e

 d
e

n
s
it
y
 a

n
d

 b
e

a
c
o

n
 r

a
d

iu
s
 (

λ
 r

) 

 

 

Sim.

Theory
Approx.

δ=0.2

δ=0.05

δ=0.1

Figure 4.5: Product of the node density and beacon radius required to localize the target
within a grid cell with probability 0.9 vs beacon radius for various dimensions of grid
cell, when the target node employs single power threshold.

the proportion of number of beacon nodes intersecting twice reduces as compared to

nodes intersecting once, making the analysis more accurate. The λr product obtained

by theoretical expression (4.11) and its approximation (4.19) captures the behavior well,

although there is a gap between the theoretical and experimental results.

Figure 4.6 validates the derived minimal beacon density required for various grid

cell dimensions, when multiple power threshold intervals are considered at the tar-

get. As discussed above, for single threshold case, the optimal beacon density recom-

mended by theory is slightly less than the experimental value. Although, similar to

single threshold scenario, the power contours of a subset of the beacon nodes make

dependent intersections on the line segment S, the possibility of exploiting multiple

thresholds leads to a different behavior in optimal beacon density required. Because
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of the planned choice of annulus width equal to grid cell size, the number of nodes

required to localize the target within a grid cell is slightly less than as prescribed by

theory, making it a conservative design. As the grid cell size increases, the proposed

design procedure matches well with the simulation as the proportion of planned inter-

sections on S reduces.
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Figure 4.6: Node density required to localize the target within a grid cell with proba-
bility p vs the grid cell size, when the beacon node employs M = 5 threshold intervals.
The average beacon radius r̄ is 0.9 and the annulus width is equal to grid cell size δ.

In Fig. 4.7, the probability of localizing the target within a grid cell is plotted for prod-

uct of node density and number of threshold levels (λM). For M = 1, the average

probability achieved is slightly less than the theoretical value because of the dependent

intersections of the power contours intersecting twice on S. Whereas, for M = 2 and 5,

where the intersections on S are structured due to the annuli width being set equal to
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the size of the grid cell, the average probability attained is higher than the theoretical

value. Thus, for the multiple threshold scenario, the proposed design procedure is a

conservative design. Also, as described earlier, the average probability approaches 1

nearly in an exponential manner as node density increases as it is approximately given

by 1− (4λr̄M)e−δ(4λr̄M).
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Figure 4.7: Probability of localizing the target within a grid cell vs product of the node
density and number of threshold intervals. The average beacon radius r̄ is 0.9, the grid
cell size δ is 0.1 and the annulus width is equal to grid cell size δ.

The MSE in localization vs number of beacon nodes for various values of threshold

intervals (M) is shown in Fig. 4.8. The MSE is indirectly related to the average probabil-

ity that the largest spacing between the intersections is less than the grid cell size (eqn.

(4.19)). Thus, theMSE for the proposed approach decreases as e−δµµ as the node density

increases. In Fig. 4.8, the decrease in MSE is nearly linear on the logarithmic scale, as
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Figure 4.8: MSE in localization vs number of beacon nodes for different power levels
on a 10 × 10 grid, with each grid cell of area 1 m2. The dimensions of area of interest
A is 10m × 10m. For the proposed method, the average beacon radius is 9m and the
annulus width is 1m.

exponential term is dominant. Also, the MSE decreases as the number of power thresh-

olds M increases, since µ = 4λr̄M . It is clear that the proposed method outperforms

the centroid based method [101], even when the number nodes in the area of interest is

scaled by 10 times.

Table 4.1 lists the localization accuracy achieved for various combinations of number

of beacon nodes (K) and number of threshold intervals at target (M). For a given grid

size, roughly the same number of tests (T = KM) are required to identify the target

location to the accuracy of one grid cell with probability at least 90%. This illustrates

that the beacon node density can be exchanged with the number of threshold intervals

to achieve the same performance. Note that, in this case, the node density can be further
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reduced by increasing the average beacon radius and the annulus width.

Table 4.1: Localization accuracy to within 1, 2, or 3 or more grid cells for various
combinations of number of beacon nodes, K, and number of power levels per beacon
node, M . The average beacon radius is 0.27 and the annulus width is 0.07.

Localization Accuracy (in %)
Grid Size K M T 1 grid cell 2 grid cells 3 or more grid cells

10× 10
19 5 95 90.5 6.1 3.4
24 4 96 90.4 6.7 2.9
35 3 105 90.5 6.7 2.8

20× 20
27 5 135 91.2 4.9 3.9
36 4 144 90.9 5.0 4.1
52 3 156 89.9 6.3 3.8

4.4.2 Experimental Results

The proposed scheme is also evaluated with experimental data collected in an indoor

environment. As shown in Fig. 4.9, a room of size 5m × 3m is divided into 15 grid

cells, each of dimension 1m × 1m. Four different setups of 4, 5, 6 and 7 beacon nodes

are considered, with beacons placed along the perimeter of the room. The beacon

nodes transmit their ids on the bluetooth low energy (BLE) 2.4 GHz band at a power of

P0 = −23 dBm. A commercial off-the-shelf (COTS) mobile phone with BLE capability is

used as the target node. At each grid location, multiple number of RSS measurements

are made per beacon node. Later, 60% of the measured data is used as training data

and the rest of the available data is used as the test data. At any grid cell, the RSS mea-

surements from a given beacon node are averaged and compared with predetermined

threshold intervals to build the binary test matrix A. The MSE performance with ex-

perimental data is plotted in Fig. 4.10. The plot reaffirms that using multiple threshold
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Figure 4.9: Depiction of the experimental setup, with beacon nodes placed along the
boundary of the room.

intervals improves the performance. It can be observed that using two threshold inter-

vals instead of one decreases the MSE in localization by 0.7m2.

4.5 Conclusion

This work considered target localization with the help of beacon nodes. The target

node localizes itself by comparing the received power from these beacon nodes with a

set of predetermined threshold intervals. The problem of localization was cast as the

one where the cells were tested for the presence of the target. The column matching

algorithm from group testing was used to localize the target. The average probability

of localizing the target within a grid cell was derived. This was used to determine the
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Figure 4.10: MSE in localization vs number of beacon nodes for experimental setup.

required optimal node density to localize the target within a grid cell with high prob-

ability. For the multiple threshold scenario, the minimum node density recommended

by the proposed design procedure based on upper bounding the probability of failing

to localize the target to a single grid cell was found to be slightly higher than the ex-

perimental value, thus, making it a conservative design. It was shown that the average

probability of localizing the target within a grid cell approaches 1 exponentially with

increase in node density, beacon radius or the number of threshold intervals. Empir-

ically, it was shown that, for a 10 × 10 grid, the proposed approach with 5 threshold

intervals has almost two orders of magnitude better MSE performance compared to the

centroid-based method. Also, the proposed method of using multiple power thresh-

olds was validated with experimental data collected using BLE nodes as beacons and a
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COTSmobile as a target. The experimental results demonstrated the efficacy of the pro-

posed approach in target localization to a desired accuracy level. Only a small number

of beacon nodes need to be deployed and very small (binary) computational resources

are required at the mobile phone (target) to estimate its location.



Chapter 5

Conclusion

This thesis presented physical layer algorithms based on binary data fusion for three

applications in the context of cognitive radios. First, in the context of cooperative spec-

trum sensing, the problem of achieving majority consensus by exchanging binary mes-

sages between nodes over fading wireless channels was addressed. Next, the task of

creating spatial spectrum occupancy maps was accomplished by treating it as the prob-

lem of localizing and identifying communication footprints of primary transmitters.

Finally, a column matching based algorithm was proposed for self-localization of a tar-

get (white space device). The performance of the proposed solutions was analyzedwith

the help of appropriate stochastic tools.

The problem of physical layer binary consensus was considered in chapter 2. Here, a

set of nodes are required to come to agreement on the majority of their initial binary de-

cisions (bits) by exchanging and updating their bits over the fading wireless channels.

The nodes broadcast their bits in round-robin manner, and at the end of the cycle each

node updates its bit by using a sum of votes estimate. A simple co-phased combin-

ing scheme, where the sum of votes is the sum of phase-shifted received samples, was

98
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proposed, and compared and contrasted with an LMMSE based scheme. The LMMSE

based scheme considers a weighted linear combination of co-phased received samples

as the sum of votes estimate, with weights obtained by solving an LMMSE problem of

estimating the sum of votes. The LMMSEweights depend on the knowledge of channel

magnitudes in addition to their phases, and are not optimal under channel estimation

errors.

As in the literature on consensus problems, the evolution of the network consensus

was modeled as a first order Markov chain (MC). For the co-phased combining scheme,

the average transition probability matrix (TPM) of the MC was derived using the av-

erage probability of detecting bit ‘1’ conditioned on the number of nodes voting ‘1’,

whereas, this quantity was not tractable for the LMMSE based scheme. To derive the

average probability of detecting bit ‘1’, the sum of weighted Rayleigh random variables

(r.v.) was approximated by a Nakagami r.v., and then, the probability density function

(pdf) for the difference of two Nakagami r.v.s was derived. Later, this pdf was used to

obtain the average probability of detecting bit ‘1’.

The MC for these two schemes was shown to be, irreducible and aperiodic, implying

that there are no absorbing states. Therefore, expressions for quantities such as average

consensus duration and average hitting time were derived. These quantities are impor-

tant for determining the stopping time for the consensus procedure. Along with these

quantities, the second largest eigen value of the TPM and the probability of accurate

consensus were used as performance metrics.
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It was found that the computationally inexpensive co-phased combining scheme out-

performs the LMMSE based scheme at low-to-moderate SNRs, besides being mathe-

matically tractable. It was also shown that optimizing the power between data and pi-

lot symbols gives significant performance gains. Allocation of transmit powers across

the consensus cycles based on the knowledge of the link qualities is a subject for future

study.

In chapter 3, two novel schemes for fast multiple transmitter localization and com-

munication footprint estimation were proposed. The schemes were based on multiple

simultaneous 1-bit transmissions from sensors to the FC using pseudo-random phase

shifts, followed by compressive sensing (CS) based recovery of the alarming sensor

locations. Then, the alarming sensor locations were clustered using the K-means al-

gorithm, and a novel circular fitting technique was used to determine the number of

primary transmitters. This was followed by transmitter localization using trilateration

or circular regression methods to finally obtain the estimates of the number of primary

transmitters, their locations and communication footprints.

It was seen that the proposed schemes require fewer number of transmissions and

lower transmit power to reconstruct the map at a given fidelity. Of the proposed

schemes, Scheme 2, which was based on the sensors on the boundary of the footprint

being the alarming sensors, was the best performing scheme in terms of the average

relative error in transmitter footprint identification. Two popular sparse recovery al-

gorithms, the OMP and ℓ1 minimization based recovery were compared, and it was

found that at higher SNRs, the OMP performs better than ℓ1 in terms of the percent-

age of successful recovery. The efficacy of the proposed schemes were illustrated using



Chapter 5. 101

Monte-Carlo simulations and real-world measurements in a simple experimental setup.

Chapter 4 considered the problem of target self-localization with the help of beacon

nodes. The target node localizes itself by comparing the received power from these

beacon nodes with a set of predetermined threshold intervals. The problem of local-

ization was cast as the one where the cells were tested for the presence of the target.

The advantage of putting the problem in this framework is that it then becomes one of

group testing, where, in each test, subsets of individuals (grid locations) are tested for

the presence of defective individuals (targets). This, in turn, allowed us to draw on the

vast literature on group testing for devising target localization algorithms. To illustrate

this, the column matching algorithm from group testing was used to localize the target.

The average probability of localizing the target within a grid cell was derived by using

the tools from Poisson point processes and order statistics. This was used to determine

the minimum required node density to localize the target within a grid cell with high

probability. The proposed design procedure was found to be a conservative design for

the multiple threshold scenario, that is, to achieve the desired localization accuracy, the

minimal beacon density recommended is slightly higher than the experimental value.

This is because of the planned choice of the width of the annuli based on the size of the

grid cell.

It was shown that the average probability of localizing the target within a grid cell ap-

proaches 1 exponentially with node density, beacon radius or the number of threshold

intervals. Empirically, it was shown that the proposed method significantly outper-

forms the baseline of centroid based localization. Further, the method naturally allows

for sensing errors or noise, by using the algorithms from noisy group testing. Also,
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the proposed method of using multiple power thresholds was validated with experi-

mental data collected using BLE nodes as beacons and a COTS mobile as a target. The

experimental results successfully demonstrated the efficacy of the proposed approach

in target localization to a desired accuracy level.
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A.1 Proof of Lemma 1

Note that, E[H2
p ] = E[(

∑

sk∈K |Hkl| cos θ̃kl)2] has i.i.d. summand terms. Hence, it can be

expressed as

E[H2
p ] = KE[G2

kl] +K(K − 1)(E[Gkl])
2. (A.1)

In [67], the first and second moments of Gkl are evaluated as

E[Gkl] =

√

πσ2

4

√

γpσ2

1 + γpσ2
, E[G2

kl] =
σ2(1 + 2γpσ

2)

2 + 2γpσ2
. (A.2)

Substituting the above expressions in (A.1) leads to (2.10).

Next, the variance of H2
p is given by

V ar[H2
p ] = E[H4

p ]− (E[H2
p ])

2. (A.3)
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As the terms Gkl are i.i.d., we have

E[H4
p ] = KE[G4

kl] + 3K(K − 1)(E[G2
kl])

2

+K(K − 1)(K − 2)(K − 3)(E[Gkl])
4

+ 6K(K − 1)(K − 2)(E[Gkl])
2
E[G2

kl]

+ 4K(K − 1)E[G3
kl]E[Gkl]. (A.4)

The third and fourth moment of Gkl,

E[G3
kl] =

3σ4√γpπ

4
√
1 + γpσ2

, and (A.5)

E[G4
kl] = 2σ4 − σ4

4

5 + 4γpσ
2

(1 + γpσ2)2
(A.6)

are derived in [110, 111]. The expressions in (A.5), (A.6) along with (A.2) and (2.10) are

used to obtain the expression for V ar[H2
p ].

A.2 The Probability Density Function of the Difference

of Two Nakagami Random Variables

The pdf of the difference of two independent Nakagami r.v.s is

fH(h) =

∫ ∞

0

fHp
(h+ hn) fHn

(hn) dhn, for h ≥ 0. (A.7)
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Substituting for the pdf of Nakagami r.v.s and then by completing the squares, (A.7)

can be expressed as

fH(h) =
4
(

m1

Ω1

)m1
(

m2

Ω2

)m2

e−
h2m1m2

m

Γ(m1)Γ(m2)

∫ ∞

0

(h+ hn)
2m1−1(hn)

2m2−1e−
m
Ω
(hn+

m1Ω2h

m
)2 dhn,

(A.8)

where m , m1Ω2 + m2Ω1 and Ω , Ω1Ω2. By changing the variable of integration to

u ,
√

m
Ω
(hn +

m1Ω2h
m

), (A.8) is expressed as

fH(h) =
4
(

m1

Ω1

)m1
(

m2

Ω2

)m2

e−
h2m1m2

m

Γ(m1)Γ(m2)
(
m
Ω

)m1+m2− 1

2

∫ ∞

m1Ω2h
√

mΩ

(

u+
m2Ω1h√

mΩ

)2m1−1(

u− m1Ω2h√
mΩ

)2m2−1

e−u2

du.

(A.9)

The parameters 2m1 and 2m2 are rounded-off to their corresponding nearest integers.

Then, using the binomial expansion for power terms, the pdf of the effective channel

can be simplified as

fH(h) =
2
(

m1

Ω1

)m1
(

m2

Ω2

)m2

e−
h2m1m2

m

Γ(m1)Γ(m2)
(
m
Ω

)m1+m2− 1

2

2m1−1∑

i=0

2m2−1∑

j=0

(
2m1 − 1

i

)(
2m2 − 1

j

)

(
m2Ω1h√

mΩ

)2m1−1−i(−m1Ω2h√
mΩ

)2m2−1−j

Γ

(
i+ j + 1

2
,
(m1Ω2h)

2

mΩ

)

, for h ≥ 0,

(A.10)

where Γ(., .) is the upper incomplete gamma function. For h < 0, fH(h) can be evaluated

by swapping the parameters m1, Ω1 with m2, Ω2, respectively.
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A.3 Derivation of p̄l for the Co-phasedCombiningScheme

The p̄l in (2.9) can be expressed as

p̄l =

∫ ∞

−∞

∫ ∞

−h
√

Ed
σv

1√
2π

e−v2/2 fH(h) dv dh. (A.11)

By setting the variable of integration as x , vσv/h
√
Ed and changing the order of inte-

gration, (A.11) can be expressed as

p̄l =

√
Ed√
2πσv

∫ ∞

−1

∫ ∞

−∞
h e−h2x2Ed/2σ

2
v fH(h) dh

︸ ︷︷ ︸

,I1

dx. (A.12)

By substituting (A.8) for fH(h), h ≥ 0, and then using (6.455) from [112], the integral I1

between the limits 0 and ∞ can be evaluated as

2
(

m1

Ω1

)m1
(

m2

Ω2

)m2 (
Ω
m

)m1+m2− 1

2

Γ(m1)Γ(m2)

2m1−1∑

i=0

2m2−1∑

j=0

(
2m1−1

i

)(
2m2−1

j

) (
m2Ω1√
mΩ

)2m1−1−i

(−1)2m2−1−j

(
m1Ω2√
mΩ

)2m2−i

Γ(m1 +m2 +
1
2
) 2F1

(

1, m1 +m2 +
1
2
;m1 +m2 − i+j−2

2
;

x2γd
2

+
m1m2

m

x2γd
2

+
m1

Ω1

)

(2m1 + 2m2 − i− j)
(

x2γd
2

+ m1

Ω1

)m1+m2+
1

2

,

(A.13)

where 2F1 is the Gauss hypergeometric function and γd = Ed/σ
2
v . Following the similar

procedure, I1 can be evaluated between the limits −∞ and 0. The two expressions can

now be substituted in (A.12) to evaluate p̄l.



Appendix A. 107

A.4 Second Largest Eigenvalue of the Average TPM for

N = 3 Sensors

It can be shown that the second largest eigenvalue of the average TPM is 1 − 2p̄(1)

when N = 3 sensors are involved in achieving consensus. Let, p0, p1 and p2 denote the

probability of detecting bit ‘1’ at a sensor when two other sensors transmit bits ‘(0, 0)’,

‘(0, 1)’, and ‘(1, 1)’, respectively. Then, by combining equivalent states (for e.g., state

‘001’ is equivalent to ‘100’ and ‘010’), the average TPM is given by

P̄ =










p32 3p0p
2
2 3p20p2 p30

p21p2 p21p0 + 2p21p2 p21p2 + 2p21p0 p21p0

p21p0 p21p2 + 2p21p0 p21p0 + 2p21p2 p21p2

p30 3p20p2 3p0p
2
2 p32










. (A.14)

The average TPM, P̄ is a centro-symmetric matrix [113], i.e.,

P̄ =




A B

JBJ JAJ



 , (A.15)

where J is a counter-identity matrix, and

A =




p32 3p0p

2
2

p21p2 p21p0 + 2p21p2



 , and B =




3p20p2 p30

p21p2 + 2p21p0 p21p0



 . (A.16)

For such an average TPM, it is known that P̄ is similar to

C =




A−BJ 0

0 A+BJ



 . (A.17)

Thus, the eigenvalues of P̄ are same as that of A − BJ and A + BJ . The eigenvalues

of A − BJ are found to be 1 and 3
4
− 3p0p2 and eigenvalues of A + BJ are 1 − 2p0 and



Appendix A. 108

(1−2p0)(
1
4
−p0p2). The second largest eigenvalue is 1−2p0, which is the same as 1−2p̄(1).

A.5 Derivation of p̄(M) and p̄(1)for the Co-phased Combin-

ing Scheme

When the bits b1 to bN are +1, |K| , |S \{sl}| = N − 1 and the effective channel H

can be approximated by a Nakagami r.v. with parameters m1 and Ω1. So, the average

probability p̄(M) in (2.9) can be expressed as

p̄(M) =

∫ ∞

0

∫ ∞

−h
√

Ed
σv

1√
2π

e−v2/2 2

Γ(m1)

(
m1

Ω1

)m1

h2m1−1e−m1h2/Ω dv dh. (A.18)

By setting the variable of integration as x , vσv/h
√
Ed and changing the order of inte-

gration, (A.18) can be expressed as

p̄(M) =

√

2γd
π

1

Γ(m1)

(
m1

Ω1

)m1
∫ ∞

−1

∫ ∞

0

h2m1 e
−h2(

x2γd
2

+
m1

Ω1
)
dh

︸ ︷︷ ︸

,I2

dx. (A.19)

The integral I2 can be solved using (3.326) from [112] and substituted in (A.19) to

obtain

p̄(M) =

√
γd
2π

1

Γ(m1)

(
m1

Ω1

)m1
∫ ∞

−1

Γ(m1 + 0.5)
(

x2γd
2

+ m1

Ω1

)m1+0.5 dx. (A.20)

Further, the integral in (A.20) can be expressed as

p̄(M) =

√
γd
2π

Γ(m1 + 0.5)

Γ(m1)

(
m1

Ω1

)m1
[

x

(m1/Ω1)m1+0.5 2F1

(

0.5, m1 + 0.5; 1.5;− γdx
2

2m1/Ω1

)]∞

−1

.

(A.21)
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This leads to

p̄(M) = 0.5 +

√
γd
2π

Γ(m1 + 0.5)

Γ(m1)
√

m1/Ω1
2F1

(

0.5, m1 + 0.5; 1.5;− γd
2m1/Ω1

)

. (A.22)

When the bits b1 to bN are 0, |Kc| , |S \{K, sl}| = N − 1 and the effective channel H

can be approximated by the negative of a Nakagami r.v. with parameters m2 and Ω2.

The average probability p̄(1) is given by

p̄(1) = 1− p̄(M). (A.23)

Therefore, replacing the parameters m1 and Ω1 by m2 and Ω2, respectively, p̄
(1) can be

expressed as

p̄(1) = 0.5−
√

γd
2π

Γ(m2 + 0.5)

Γ(m2)
√

m2/Ω2
2F1

(

0.5, m2 + 0.5; 1.5;− γd
2m2/Ω2

)

. (A.24)

A.6 Proof that the Average Probability P̄ij is Strictly Pos-

itive

The probability that the system changes from φ(j)to φ(i) at an arbitrary time t is given

by

P̄ij =

N∏

l=1

[

b
(i)
l p̄

(j)
l + (1− b

(i)
l )(1− p̄

(j)
l )
]

, (A.25)

i.e., it is the product of the N probability terms. We will consider the least of these

probabilities, the probability that a node sl detects bit ‘1
′ in the current cycle when all

other nodes have bit ‘0′ in the previous cycle. This probability, p̄(1), is derived in (A.24),

and it can be verified that, the second term of (A.24) is strictly smaller than 0.5. Thus,
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the least of the probabilities, p̄(1) is strictly greater than zero, and therefore, P̄ij > 0.



Appendix B

B.1 Approximate Mean Square Error in Localization

Consider a rectangular region of area A on which L sensors are deployed uniformly

at random locations (Xi, Yi), and a transmitter is located at a random location (Xs, Ys).

For a given sensing threshold, let the random variablem denote the number of sensors

within a radius of d around (Xs, Ys). Then, the location of the transmitter is estimated

as (
∑m

i=1Xi/m,
∑m

i=1 Yi/m). For simplicity, the edge effects of the circular area around

the transmitter falling outside the area A is neglected in this analysis, which is valid

when A is large compared to d2. The MSE in localization is

MSE = Em

{

1

m2
EXi,Yi

{
m∑

i=1

(Xs −Xi)
2 +

m∑

i=1

(Ys − Yi)
2

}}

. (B.1)

If r and θ are the polar representation of (Xs −Xi, Ys − Yi), defined such that Xs −Xi =

r cos θ, Ys − Yi = r sin θ, then θ is uniformly distributed in (0, 2π) and r is distributed

such that r =
√
zd where z is uniformly distributed on [0, 1]. Hence, r has probability

density function f(r) = 2r/d2 for r ∈ [0, d] and zero elsewhere. Thus, the MSE becomes

MSE = Em

{
1

m2
Er

{
mr2

}
}

= Em

{
1

m

}
d2

2
. (B.2)
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Note that the above expectation is taken over all m > 0. Clearly, m is binomial dis-

tributed, with parameters p , πd2/A and L. Unfortunately, evaluating the expectation

of 1/m for large L in closed form is hard, but a good approximation is obtained by us-

ing the simple lower bound: Em {1/m} ≥ 1/Em {m}. Now, since Em{m} = Lπd2/A, one

obtains

MSE ≈ A

2πL
. (B.3)
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