3262

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 64, NO. 12, JUNE 15, 2016

Performance Analysis of Co-Phased Combining for

Achieving Binary Consensus Over Fading
Wireless Channels With Imperfect CSI

Venugopalakrishna Y. Ramakrishnaiah and Chandra R. Murthy, Senior Member, IEEE

Abstract—This paper considers the problem of achieving binary
consensus among a set of nodes using physical layer communica-
tion over noisy wireless links. The channel state information (CSI)
available at the nodes is imperfect due to practical estimation
errors. Two schemes for updating the majority bit estimates at
the nodes are contrasted: a linear minimum mean-squared error
(LMMSE) based scheme and a co-phased combining scheme. The
evolution of network consensus is modeled as a Markov chain,
and the average transition probability matrix (TPM) is analyt-
ically derived for the co-phased combining scheme, whereas,
for the LMMSE based scheme, the average TPM is computed
through Monte Carlo simulations. The co-phased combining
scheme is found to perform better at low to intermediate pilot
SNRs, in addition to being analytically tractable and having lower
computational complexity, compared with the LMMSE-based
scheme. Also, to further characterize the consensus behavior, the
probability of accurate consensus, the second eigenvalue of the
TPM, the average hitting time to the first consensus state, and
the average consensus duration are derived for the co-phased
combining scheme. The power allocation between the pilot and
data symbols is optimized, subject to a total power constraint. It
is found that the optimal power allocation can lead to a significant
improvement in the consensus performance. Monte Carlo simu-
lation results validate the theoretical results, and provide insights
into the complexity and performance tradeoffs involved.

Index Terms—Binary consensus, co-phasing, transition proba-
bility matrix, hitting time, consensus duration.

I. INTRODUCTION

HIS work considers the problem of achieving binary con-
sensus among a set of nodes, where, starting with an ini-
tial binary value, the nodes exchange messages, with the goal
of agreeing upon the majority value among them. Majority con-
sensus has many applications, for example, in cooperative spec-
trum sensing in cognitive radios [2], [3] and throughput op-
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timization in sensor networks [4]. The classical approach to
achieving consensus considers error-free exchange of data be-
tween neighboring nodes in the form of packets. In wireless
sensor networks (WSNs), one can avoid the control information
overhead required for a packet [5] by broadcasting the binary
symbols over the wireless medium. This constitutes achieving
binary consensus in the physical layer itself. However, the es-
timation of the fading channel and the errors due to the noise
at the receiver lead to a new set of challenges in achieving ac-
curate consensus, due to the unreliable communication between
the nodes. In this context, our goal in this paper is to study the
performance of binary consensus protocols that involve bit ex-
changes among the nodes over fading wireless channels, when
the channel state information (CSI) at the nodes is imperfect.

Most of the existing literature on consensus problems,
starting from the thesis of Tsitsiklis [6] to the more recent
studies involving gossip algorithms [7]-[13], is mainly con-
cerned with distributed averaging. Here, the nodes attain
consensus by repeatedly computing a weighted average of the
values of their neighbors. This requires nodes to exchange
real-valued estimates. On the other hand, several recent studies
have also considered the transmission of quantized states to the
neighbors and then attaining the average quantized consensus
state [14]-[23]. However, all of these works consider message
exchange over the network layer of the protocol stack. In con-
trast, the idea of achieving binary consensus over the physical
layer itself has only been explored more recently [24]-[29].
The exchange of a real-valued test statistic over fading channels
to arrive at consensus on the global average was considered in
[24]-[26], with the goal of performing distributed hypothesis
testing. In [27]-[29], the authors considered a scheme where
the nodes iteratively broadcast their majority-bit estimates
over a noisy channel in a round-robin manner and update their
majority-bit estimates using the received signals, to achieve
consensus among the nodes. Further, this scheme has been
extended to networks with link failures in [29]. However, these
studies assumed perfect CSI to be available at the nodes, which
is impractical in low power sensor network applications.

In [27], the authors consider an AWGN channel, and use a
sum of votes estimator at every node to detect the majority bit.
The evolution of the network state is modeled as a Markov
chain, and the second largest eigenvalue of its transition proba-
bility matrix is used to characterize the consensus behavior. A
key finding of this work is that the network asymptotically loses
memory of the initial state. However, in the transient period, the
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network can be in accurate consensus with high probability and
can stay in consensus for long duration.

In [29], the authors studied binary consensus with i.i.d. fading
channels between the nodes. A linear MMSE (LMMSE) esti-
mator was proposed for updating the sum of votes at the nodes
as a weighted combination of the received samples. The weights
are computed based on the channel magnitudes, which were as-
sumed to be perfectly known at the nodes. An alternative way
to estimate the sum of votes is to simply compute the sum of
the co-phased received samples (akin to equal gain combining).
To estimate the sum of votes, which is a key quantity in deter-
mining the majority bit update at the nodes, the physical layer
protocols considered in this work and related literature are based
on spatial diversity combining, of which, the LMMSE-based
scheme and co-phased combining scheme are robust across a
wide range of SNRs. Other techniques, namely, maximum ratio
combining and selective gain combining are not suitable under
non-identical inputs [30]. Thus, the two schemes considered,
the LMMSE-based scheme and the co-phased combining are
the relevant protocols in the scope of this work. Furthermore, in
the context of decentralized detection, the co-phased combining
scheme is known to be robust to channel estimation errors [30].

In this work, we study the efficacy of the two aforementioned
options for achieving binary consensus over i.i.d. fading chan-
nels. Specifically, and for the first time in the literature to the
best of our knowledge, our analysis accounts for the effect of
channel estimation errors on physical layer consensus proto-
cols. Further, while the analysis in [29] focused on the second
largest eigenvalue of the average transition probability matrix
(TPM) of the Markov chain, we analyze metrics that are more
directly related to the consensus performance, such as the prob-
ability of detecting the correct majority bit, the time to reach
first consensus, and the average consensus duration, all for the
co-phased combining scheme. In addition, we study the alloca-
tion of power between the pilot and data symbols, under a total
power constraint, to optimize the consensus performance. We
also study the performance of the co-phased combining scheme
when the network is not fully connected.

Our key findings are as follows. The co-phased combining
scheme is simple from an implementation perspective, and also
makes the average probability of detecting the correct majority
bit analytically tractable. The latter is necessary for computing
the average TPM of the Markov chain. The second largest eigen-
value of the TPM governs the consensus behavior of the un-
derlying protocol. We also characterize the average hitting time
and the average consensus duration, which jointly determine the
time required for the network to achieve consensus with high
probability. We also find that, while the co-phased combining
scheme is simpler than the LMMSE scheme, somewhat surpris-
ingly, it offers better performance at low to moderate SNRs. This
is due to its lesser dependence on the channel estimates, which
makes it a robust scheme in the presence of errors in estimation.
Finally, we find that optimizing the power allocation between
pilot and data symbols is important, as it can lead to a signif-
icant improvement in the consensus performance compared to
naive allocation schemes.

The rest of the paper is organized as follows. We discuss the
problem setup and system model in the next section. We present
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Fig. 1. Illustration of the physical layer consensus protocol. Node s2 broad-
casts a pilot symbol followed by a BPSK data symbol z2 € {—1,+1}. In each
bit-exchange cycle, all nodes employ the same mechanism, in a round-robin
manner.

the update rules employed after the bit exchange in Section III.
In Section IV, we derive the average probability of majority
bit detection, average consensus duration and average hitting
time for the proposed co-phased combining based scheme. In
Section V, we provide simulation results comparing the pro-
posed and the existing consensus protocols. We conclude the
paper in Section VI.

Notation: In this paper, we use boldface capital letters to
denote matrices and boldface small letters to denote vectors.
We use ()7 to denote the transpose of a matrix. The func-
tion fg (h) represents the probability density function (pdf) of
a random variable H, and h denotes its realization.

II. SYSTEM MODEL AND PROBLEM SET-UP

Our set-up consists of a fully-connected network with N
nodes, with the nodes denoted by & 2 {51,82,...,8~5}.
Each node starts with an initial binary data bit 5;(0) € {0, 1},
l=1,...,N. The goal is for the nodes to achieve consensus
on the bit value corresponding to the majority of their ini-
tial values. To this end, nodes broadcast their data bit in a
round-robin manner over noisy fading channels. Then, nodes
utilize the received signals to detect and update a local majority
bit estimate. This process is repeated over multiple cycles, as
consensus may not be attained in a single cycle of bit exchange
and bit update due to the noisy communication between the
nodes. The physical layer protocol considered in this work is
schematically illustrated in Fig. 1.

In the tth update cycle, node s, € S broadcasts a known
pilot symbol followed by its current majority bit estimate, de-
noted by by (t — 1). This is received by the other N — 1 nodes
51 € S\{sr}. The wireless channel from s, to s;, denoted by
hi 2 |hiile?®, is assumed to be Gaussian CA(0, 0?) dis-
tributed, remain constant over a given update cycle, and vary
in an i.i.d. fashion across the nodes and across update cycles.
We note that the consensus protocols considered in the sequel
are directly applicable to non-i.i.d. fading channels. The perfor-
mance analysis can also be extended to the non-i.i.d. case, by
using the techniques in recent work in the context of the outage
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analysis of relay selection schemes [31], [32]. However, in the
sequel, we restrict to the i.i.d. model for simplicity of exposition
and because it is sufficient to bring out the critical importance of
the system parameter settings, for example, the power allocation
for the pilot and data symbols, on the performance of physical
layer consensus protocols. The node s; estimates the channel
hx; using the received pilot symbol

yu = hu \/ p + w](fl))7

where E, is the pilot power and w(p) ~ CN(0,02) is the
circularly symmetric complex addltlve white Gaussian noise
at the receiver, with zero mean and variance ¢2. The max-
imum likelihood estimate of the channel is given by hiw =
hi + w,(ﬁ ¥ \/Eyp. With BPSK signaling employed for broad-
casting the data bits, the received signal at s; is given by

(1

ylfll) = bz Ea + wl(;ll), where zp = 2bi(t — 1) — 1

and E is the data power and w,(j) ~ CN(0,02). At the end of
a cycle, s; has N — 1 data samples {y,(j)} and corresponding
channel estimates {ﬁkl}, k=1,2,...,N, k # l. These sam-
ples are used to find the bit-update of the #th cycle. The ma-
jority-bit update rules considered in this work are discussed in
the next section. This is followed by a rigorous theoretical anal-
ysis of the consensus procedure.

III. MAJORITY BIT DETECTION

In this section, we discuss the bit-update procedure at each
node s;. First, the received data y,(;li) is pre-processed using an
estimate of the phase of the channel hy;, as follows:

rw1 = Re {y,(j)e‘jé“} Jke{l,2,....,N}Lk#1,

it = |hia| cos Opizk v/ Eq + vp, (2)
where the estimated channel hkl 1S written as hkl Ihkl \63 9“
O 2 6 — GM is the phase estimation error, and

v = Re{wye™ 19’“} ~ N(0,02/2) is the AWGN at the
receiver. The samples {ry;}, k = 1,2,..., N,k # [ are used
to detect and update the majority bit at node s;.! Since the
sum of votes, A; = Z;;V:L k21 Tk is indicative of the majority
bit at node s;, where 2, € {—1,+1} is the BPSK symbol
corresponding to b (t — 1), we use the majority bit decision

rule:
A 1 A>0
A) = L= 3
9(A0) { 0 otherwise, ®
where Al is an estimate of sum of votes, computed at ngde s;.In
this work, two schemes are considered for obtaining A;: 1) an
LMMSE-based scheme and 2) a co-phased combining scheme.
LMMSE-Based Scheme [29]: Here, a weighted linear

combination of the processed samples {ry;} is considered

. . N A
as an estimate of 4A;, i.e., Al(wc) = o:lTrl, where oy =

IFor simplicity, we ignore the Ith sensor’s own data bit, ;. This is fine when
the bit distribution across the nodes is such that any one node’s data bit does
not alter the majority vote. In Section V, we will show through simulations that
ignoring the self-bit only marginally affects the consensus performance.
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[O;llo;gl NS 77 I aNl]z»;él and | 9} é [TllrQl PP &Y T‘Nl]g;él.
Here, the superscript we stands for weighted combining. The
optimal weight vector a; is evaluated by solving the MMSE
estimation problem

. 2
aj = argminE [(Al(wc) - Al> } . 4)
233
On substituting the MMSE solution af,; = % , the sum
et lf oy,
of votes estimate can be expressed as
N
Al(wc) = Z I:Ozzl‘hk” cos Opxin/ By + a;;lvkl} . (5)
k=1,k%1

We note that the above LMMSE-based scheme uses the esti-
mated channels ﬁkl to compute the combining weights, in con-
trast to the scheme in [29], which assumed the availability of
perfect channel state information hy; at the nodes.

Co-Phased Combining Scheme: In this scheme, the sum of
co-phased samples ry; is used as an estimate of Ay, i.e.,

N

Z [lhkllCOS§klxk Ed+1’lcl]~
k=1,ks1

Al(cc) _ (6)

The sum of votes estimate in (6) only requires the channel phase,
while (5) depends on both the gain and the phase. Due to this, the
consensus behavior of the two schemes in the face of fading and
the imperfect CSI at the nodes can be different. It is of interest
to study their relative performance.
Note that, Al(wc) and Al(cc) can be compactly expressed as
Ar=h

Ey+ v, 7

where we term h = Zk 1 k£l Brt|hg| cos Gz as the ef-

fectlve channel—symbol and the noise v ~ N(0,02) with

ol = Zkzl,k;él(ﬁkl) 02 /2. The parameter 3y, = aj, for
the LMMSE-based scheme, and 8y, = 1 for the co-phased
combining scheme.

IV. PERFORMANCE ANALYSIS

We define the state of the network at time ¢ as an or-
dered collection of decision bits (majority bit estimates),
[b1 ()b (1) bn(t)]. After each bit-update, the network
can attain any one of the M = 2% possible states with a
probability that depends solely on the previous state and the
current received pilot and data samples at the nodes. That is,
the network state evolves as a first order discrete-time Markov
chain (MC). The accurate consensus state of the MC is either
the all-ones state or the all-zeros state, depending on whether
the initial majority bit is one or zero. This MC is time inhomo-
geneous, as the channels are time-varying across cycles. For
time inhomogeneous MCs with independent random transition
probability matrices across the time steps, the marginal state
distribution of the MC, i.e., the state distribution averaged over
the randomness of the transition probability matrices, is pre-
cisely that of a time homogeneous MC with the average TPM
[33]. Therefore, the average of the TPM over the distribution
of the channel states is used to analyze the consensus behavior
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of the network.2 The average state distribution vector at time ¢,
denoted by @(t) € [0,1]", is thus given by () = (P)!x(0).
Here, P 2 [P,;] is the average TPM, #(0) is the initial state
distribution vector, and P; ; 1s the average probability of transi-
tion (averaging over the channel state distribution) from state
$U) to state ¢V in one cycle, where {¢() i € {1,2,..., M}}
represents the different possible states of the MC.

Due to the additive noise term in (1), 0 < Pij < 1Vae,j
€ {1,2,..., M} (see Appendix F for the proof), and hence,
the MC is irreducible and aperiodic. Thus, the stationary state
distribution 7o, 2 lim;_ o m(t) is independent of the initial
state [34], as T, = P7~, and 177, = 1. However, the net-
work can still achieve accurate consensus with high probability
in the transient period of the MC.

From Perron’s and Gershgorin’s theorems [35], it is known
that, for the positive stochastic matrix P, the largest eigenvalue
A1 is 1 and is of multiplicity one, and the absolute value of all
the other eigenvalues is strictly less than 1. The second largest
eigenvalue Ay of P characterizes the transient duration of the
MC [36]. The closer A is to unity, the longer the transient pe-
riod, and the higher the probability that the network attains and
stays in consensus for a long duration. Thus, A2, along with
the probability of attaining accurate consensus starting from an
arbitrary state, are important performance metrics for under-
standing the consensus behavior of the network.

In this work, two more quantities, the average hitting time
and the average consensus duration, are analyzed. There are no
absorbing states due to the noisy channels, and hence the av-
erage hitting time and average consensus duration are also im-
portant metrics to study the consensus behavior. The average
hitting time is the average number of cycles required to attain
the consensus for the first time starting from an initial state ${7).
The average consensus duration is the average number of cycles
for which the network will stay in consensus once it is attained.
These metrics are used to compare the performance of the two
bit-update procedures and quantify the effect of channel estima-
tion errors on the consensus performance. Finally, the tradeoff
between the power allowed for pilot and data symbols on the
consensus behavior is studied.

As discussed above, the consensus behavior of the network
is determined by the average TPM of the MC. However, in the
presence of channel estimation errors, the average TPM is an-
alytically intractable for the LMMSE-based scheme because of
its dependence on the channel gain estimates. The analysis for
the co-phased combining scheme is presented below.

A. Probability of Detecting the Majority Bit

The probability of correctly detecting the majority bit from
the received data symbols is necessary to determine the TPM of
the MC, and is critical to the consensus behavior of the network.
Since the noise is Gaussian distributed, conditioned on K, the

2An alternative model, under slowly varying channels, is to assume that the
channel stays fixed for the duration of the consensus cycles. In this case, we
would work with the TPM conditioned on the joint channel states between the
nodes. The resulting MC is time homogeneous, making the analysis easier than
the case considered in this paper.
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number of sensors transmitting a 41, the average probability ;
of detecting the majority bit as ‘1’ at node s; is given by

— E[Pr{A, > 0/ — h}]
:/ig(ﬁ) fu(h)dh,

where fpr(h) is the pdf of the effective channel-symbol H and
Q( -} is the Gaussian Q-function.

Suppose a subset of the nodes, K C S\{s;}, K| = K,
transmit 41, and the remaining N — K — 1 nodes in K* £ S
\{K,s;} transmit —1. Then, the effective channel-symbol
h in (7) can be expressed as h = h, — h,, where
hy = Zskek |hgi| cos g and Ry, £ Zskem |hgi| cos 8. Let
H, and H,, be random variables corresponding to the realiza-
tions hy, and h,,, respectively. The pdf of the sum of K weighted
i.i.d. Rayleigh r.v.s, I, is not available in closed-form. How-
ever, it is well approximated by the pdf of a Nakagami r.v.
with shape parameter, my = (E[H?])?/Var[H?], and spread
parameter, {}; = [E[Hpﬂ. Similarly, h,, can be approximated as
a Nakagami r.v. with shape and spread parameters m» and 25,
respectively. At high pilot SNRs, the weights are of nearly unit
magnitude, and approximation error turns out to be particularly
small. Also, as found through simulations, the approximation
error reduces with increasing K. The derivation of E[H g] and
Var[HPQ}, required for evaluating the parameters mq,ma, {2y
and €2, is presented in Lemma 1. The resulting analytical
expression of the approximated pdf fz(h) is presented in
Lemma 2.

Lemma 1: For a given pilot SNR, SNR,, £ ¢2FE, /o2, and
with the second moment of i.i.d. Rayleigh r.v.s Hy;, E[H7] =
0%, the mean and variance of the r.v. [, 3 defined above are given

by

®)

B Ko*(2+ (4+ (K — )w)y,0?)
N 1+ v0?

— KE[G}] +3K(K — 1) (E[63])’

+K(K —1)(K - 2)(K - )( [GHW

+ 6K (K — 1)(K — 2)(E[G))°E [G]

+ 4K (K - 1)E [G}] E[Gw] - (E [H2])*, (10)
where v, S Ep/aﬁ, and G 2 | Hy| cos ékl; and closed form
expressions for E[Gy,], E[G3,], E[G3,] and E[GY;] are provided
in the proof.

Proof: See Appendix A. [ |

Lemma 2: The pdf of the effective channel-symbol is given
by

2('m1)ml (m2>m2 e_h;’m—l"”?
o o "
fH(h) . 1 2

T'(m1)T(my) (Q)"“*’"?

y Z’i“?il <2m1 - 1) <2m2j— 1)

(mQQl )2”11 1- l(

« T j +1 (mlﬂgh)z
2 ’ m2

(€))

—’m192h> Ima=1-j
vVmfl

).

(11)
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for h > 0, where m = m1 Qs +ma, Q 2 Q1Q, and (., ) is
the upper incomplete Gamma function. For & < 0, fz(h) can
be evaluated by swapping the parameters m1, {23 with mo, €22,
respectively.
Proof: See Appendix B. ]
To obtain the result in Lemma 2, the parameters 2m; and
2m are rounded-off to the nearest integers. The fz (h) given
by Lemma 2 can now be substituted into (8) to evaluate p; as
a single integral, this is discussed in Appendix C. Note that,
the average probability p; is conditioned on K, the number of
sensors transmitting 41, but this dependence is not explicitly
indicated to keep the notation light.

B. Average Transition Probability Matrix

Suppose the network is in a state ¢{/) at time ¢ — 1 and
oD 2 by (i)b(i) bf,\i,)] at time ¢. Let us denote the average
probablhty of node s; detecting bit ‘1’ at time ¢, conditioned on
#9, by p ). Atnode s1, the average probability of the bit being
updated to b( ") is given by bl( )plm + (1~ bl('i))(l ‘(’)) The
update decisions b( 9 at each of the nodes s;,l =1,2,...,N,
are independent, as the receiver thermal noise and the wireless
channels between the nodes are independent. Thus, the average
probability of going from ¢} to ¢(?) in one cycle is given by

2] 5980+ (1 6) (1 5)].

=1
foré,j € {1,2,..., M}. The average probability of going from

#9) to an all-one state ¢(*) or to an all-zero state ¢V is

(12)

N

Py = Hﬁl(j) (13)
l;l

P =] (1 - —“)) : (14)

=1

We have thus determined the average TPM P of the MC. Note
that, the average probability of detecting bit ‘1’ conditioned on
the all-zero state, ﬁl(l), is the same for all the nodes. Hence,
hereafter, p ( ) is denoted as W, and similarly, ﬁl(M) is denoted
as p(A), In [29], a simple approximation to the second largest
eigenvalue A, of the average TPM P is shown to be 1 — 25,
This approximation is derived for the Rayleigh fading channel
by linearizing the Q-function. Moreover, for N = 2 or 3 sen-
sors, it can be shown that ), is exactly 1 —2p(Y) . The derivation
of the second largest eigenvalue for N = 3 sensors is discussed
in Appendix D. With larger IV, the second eigen value would be
much closer to 1. This is because, the probability of detecting
bit 1 when all the nodes have bit 0, (1), tends to zero roughly
exponentially with increasing N, and consequently, the second
largest eigen value tends to 1. As mentioned earlier, the closer
the second largest eigenvalue to unity, the better the consensus
behavior of the network.

C. Average Hitting Time

Starting from a state ¢/, the average number of cycles taken
to reach a consensus state for the first time is termed as the av-
erage hitting time. The probability of reaching state ¢(*) for the
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first time starting from state ¢7) after exactly n cycles, denoted
by fi(f ), can be recursively expressed as

1) = ZPWZ" Y. (15)
k#z
The vector of probabilities fi(") 2 [f f(”) fi(;l)
f,M} , j # i can be expressed as
R A (16)

where Q is the TPM obtained by removing the :th row and ith
column of average TPM P. Simplification of (16) leads to

( (QT)n 1f (QT)n 1p’ZT7 (17)

where p; is ith row of the average TPM P with the (i, 1)th entry
removed. Then, the average hitting time is given by

Th = infgl)

n=1

(13)

Setting ¢*) to be the appropriate consensus state, i.c., either
the all zeros state or the all ones state depending on the initial
distribution of the data bits, we can compute the average hitting
time using the above equation.

D. Average Consensus Duration

The average consensus duration, 7., is the average number of
cycles for which the network stays in the same consensus state
once it has reached consensus. Suppose the network is in con-
sensus at the end of {yth cycle. Let the random variable 7 rep-
resent the number of consecutive cycles for which the network
stays in consensus. Assuming channel independence between
any two cycles, the average probability (here, the averaging is
over the channel states) that the network is in consensus for n
consecutive cycles is simply given by

PT{Tc:n}: (ﬁpc> (1_Pc)7
k=1

where P, is the average probability of being in consensus after
the next cycle once the network is already in consensus. The
expected number of cycles for which the network stays in con-
sensus is thus

(19)

' =\ 5 Pc
=3 " n(P)"(1-P)= 2.
n:ln( )( ) 1 PC

The average probability P, for an all-one consensus state is
given by Py = (540 ) (see (13)). Similarly, for the all-zero
consensus state, P, = Py; = (1 — V)" The average proba-
bilities p(*) and ) are derived in Appendix E. Thus, we can
use the above equation to obtain the average consensus duration
of the network. Note that, the average hitting time decreases and
average consensus duration increases with increase in data SNR,
SNR, = Ed" ,and pilot SNR, SNR,, & ZzZ_ " The SNR values
determine tqlfle entries of the TPM via the Q functlon which de-
termines the average probabilities of the different states. The av-
erage probabilities, in turn, determine the average hitting time

(20)
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and the average consensus duration via the analysis presented in
the paper. Due to the intricate nature of the analysis, it is unfortu-
nately difficult to directly relate the performance of the protocol
to the data and pilot SNRs. Hence, we study the performance
via simulations.

E. Data Power and Pilot Power Allocation

In a given consensus cycle, under a total power constraint, the
optimization of the power allotted to the data and pilot transmis-
sion can be carried out, for example, by maximizing the average
consensus duration, or, by minimizing the average hitting time.
To do this, the average probability for the all-ones consensus
state, Pysas, equivalently, ﬁ(M), can be used as the cost func-
tion. Therefore, the optimal data and pilot powers are obtained
by solving

(M)

Ej, By = arg max p subject to By + E, = E. (21)
d,&p
As shown in Appendix E, the average probability 5*) can

be obtained in closed form as

Yd F(ml + 05)

2m I’(ml)\/ ml/ﬂl

Yd
F(05,m 40515 —— 2% ) (2
X b ( my + 2m1/91> (22)

M =05+

where 74 = Ey/o%, 02 = o2(N — 1)/2 and o F) is the
Gaussian hypergeometric function. Note that the parameters of
the Nakagami r.v. Hp, namely, m; = (E[H?2])?/Var[H}] and
Q= [E[Hg], are functions of the pilot power £,. Substituting
(22) in (21) leads to a one dimensional optimization problem,
which can be solved numerically to obtain the optimal values of
Ey and E,. The importance of optimizing the power allocation

to training and data symbols is illustrated in the next section.

V. SIMULATION RESULTS

The simulation set-up consists of N = 8 sensor nodes. The
receiver noise and the channels between the sensors are drawn
ii.d. from CA'(0,1). The average TPM is evaluated by aver-
aging over 20,000 channel instantiations.

We start with presenting results on the second largest eigen-
value, Ao, of the average TPM of the state space of the Markov
chain. In Fig. 2, the value of A, obtained by the two schemes
is compared, along with their approximation, 1 — 25V, pre-
sented in Section [V.B. It can be seen that A, gets closer to 1
with increasing data and pilot SNRs. At lower pilot SNRs, the
co-phased combining scheme outperforms the LMMSE-based
scheme from [29], i.e., Ay of the former is closer to 1 than the
latter. This is because, the co-phased combining depends only
on the channel phase estimates, whereas the LMMSE-based
scheme depends on both magnitude and phase estimates of the
channel. This leads to larger errors in the sum of votes estimate
for the LMMSE-based scheme. However, with increasing pilot
power, the two schemes result in nearly the same value of As.
Also, we see that the approximate expression for A, is a lower
bound on the actual eigenvalue when N = 8, although it is ac-
curate for the N = 2 and the N = 3 case. The approximation
captures the relative behavior of the LMMSE and co-phasing
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Fig. 2. Second largest eigenvalue vs. Data SNR (denoted by SNR,;) for dif-
ferent pilot SNRs (denoted by SNR,;), with NV = 8 nodes.

schemes well. Finally, the excellent agreement between the the-
oretical and experimental values of A, for the co-phased com-
bining scheme is clear from the plot.

Next, we evaluate the average consensus duration perfor-
mance of the two schemes, in Fig. 3. At low SNRs, the average
consensus duration increases linearly, whereas at high SNRs,
the increase in the average consensus duration is roughly
quadratic. At low to intermediate pilot SNRs, the co-phased
combining scheme stays longer in consensus state than the
LMMSE-based scheme, as expected. The overall consensus
performance depends both on the pilot SNR and data SNR,
and therefore, even with accurate channel estimates (high
pilot SNRs), the co-phased combining scheme outperforms
the LMMSE scheme at low to moderate data SNRs. The
LMMSE-based scheme starts outperforming the co-phased
combining scheme only at high pilot SNR and high data
SNR. Also, for the co-phased combining scheme, the average
consensus duration obtained through simulations matches the
theoretical results obtained through (20).

The average hitting time and the average probability of
accurate consensus performance of the two schemes is plotted
in Figs. 4 and 5, respectively. In Fig. 4, the average hitting
time is evaluated by averaging the time to hit the all-ones
consensus state over the initial states ‘11111110°, ‘11111100°,
and ‘11111000°. In Fig. 5, the average probability of accurate
consensus is plotted as a function of the number of cycles of
the update procedure, when the initial state across the nodes is
‘00011111°. The conclusions from the figure are similar to that
of the average consensus duration: the performance improves
with increasing data and pilot SNRs; at low to intermediate
pilot SNRs, the co-phased combining scheme outperforms
the LMMSE-based scheme; and, for the co-phased combining
scheme, the theoretical expressions in (18) match the simula-
tion results. Also, the importance of accounting for the channel
estimation errors in evaluating the relative performance of dif-
ferent consensus protocols is clear from the plot. At high pilot
SNRs, the channel estimates are accurate, and the two schemes
offer similar performance, while at intermediate or lower pilot
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Fig. 3. Average consensus duration vs. Data SNR, with N = 8, and for dif-
ferent pilot SNRs. The curves labeled 7. (Th.), TPM (Sim.) correspond to the
theoretical value of the average consensus duration computed using the TPM
obtained from the Monte Carlo averaging, while the curves labeled 7. (Th.),
TPM (Th.) correspond to the theoretical value of the average consensus dura-
tion computed using the theoretical TPM.
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Fig. 4. Average hitting time Vs. Data SNR, with N = &, and for different pilot
SNRs.

SNRs, the co-phasing scheme outperforms the LMMSE-based
scheme.

Figure 6 shows the average probability of accurate consensus
for various numbers of nodes, as a function of the number of
consensus cycles. The probability of accurate consensus is much
higher for NV = 22 sensors with SNR,, = 0 dB and SNR; = 3
dB compared to N = 4 sensors and a higher receive SNR,
SNR, = 3 dB and SNR, = 6 dB. This is because of the linear
scaling of the average effective SNR with the number of sen-
sors. Also, for the co-phased combining scheme, with increase
in the number of nodes, the theoretical curves match well with
simulations.

In developing the consensus protocol, the self-bit was ignored
for simplicity of presentation. Figure 7 shows the second largest
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Fig. 6. Probability of accurate consensus vs. number of consensus cycles, for
number of nodes, N = 4, 15, and 22. The initial state of the network is the
simple majority state, for example, the initial state of the 4 nodes network is
‘0111°.

eigenvalue for the co-phased combining scheme when the sen-
sors’ own data bit is considered. The sum of votes estimate is
computed by adding the self-bit with a scaling of \/E to (6).
Accounting for the self-bit clearly improves the performance,
but the loss due to the approximation gets smaller as the number
of sensors is increased. Also, as data SNR increases, the sum of
votes estimate improves. This leads to the second largest eigen-
value without the self-bit to be close to that with self-bit. Hence,
when the SNR and the number of nodes are moderately large, it
is reasonable to ignore the self-bit in evaluating the consensus
performance.

Next, we consider the allocation of the pilot and data power
to optimize the consensus performance. In Figs. 8 and 9, the
average consensus duration and average hitting time of the
co-phased combining scheme are plotted as a function of the
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ratio of data power to pilot power, under a total power con-
straint. The average consensus duration is the highest and the
average hitting time is the lowest for E‘i = 1.3 and E‘i = 1.45,
when the total power available is 6 dB and 9 dB, respectwely
This indicates that, at higher total powers, the data symbol has
to be given a larger share of the total power compared to the
pilot symbol. At lower total powers, the best average consensus
performance is obtained for nearly equal sharing of the avail-
able power. Similar conclusions are obtained from optimizing
the other metrics such as the second largest eigenvalue or
probability of accurate consensus; they are not presented here
to avoid repetition.

Next, Fig. 10 shows the average probability of accurate con-
sensus for the co-phased combining scheme when the path-loss
(with path-loss exponent of 2) is also considered, along with the
Rayleigh fading. A linear arrangement of 8 sensors that are uni-
formly spaced on a stretch of 10 m and a reference distance of
1 mis considered for the simulations. At higher transmit powers

Fig. 10. Probability of accurate consensus vs. number of consensus cycles for
the co-phased combining scheme when the path-loss between sensors is taken
into account. The probability of accurate consensus is averaged over all the ini-
tial states corresponding to 5 sensors with bit ‘1’ and 3 sensors with bit 0.

for pilot and data symbol, £, = 15 dB and E; = 15 dB, the
probability of accurate consensus is close to 1. Also, the net-
work attains its consensus state within about 5 cycles.

Finally, in Fig. 11, we show the probability of accurate con-
sensus performance of the co-phased combining scheme when
the network is not fully connected. While estimating the sum
of votes in (7), the weights 5y; are set to 0 for all those links
which have a link gain less than a threshold 7, where 7 is deter-
mined for a given link failure probability, Pr{|hz;| < n} = q.
At high data and pilot SNRs, the performance deteriorates as the
link failure probability increases, as expected. At lower SNRs,
as the channels are more noisy, the performance is relatively ro-
bust to link failures.

VI. CONCLUSION

In this paper, we considered a physical layer protocol for
achieving majority-bit consensus, where a set of nodes ex-
change their current majority-bit estimates over multiple cycles.
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the co-phased combining scheme for an N = 15 sensor network which is not
fully connected.

We contrasted two bit-update schemes: 1) LMMSE-based
scheme and 2) Co-phased combining scheme, when the avail-
able CSI is estimated using pilot symbols sent from the nodes.
We analytically evaluated several metrics that determine the
average consensus performance, such as the average proba-
bility of detecting the correct majority bit, the average hitting
time, and the average consensus duration, by employing a dif-
ference-of-Nakagami approximation for a combined effective
channel. The results highlighted the importance of accounting
for the effect of channel estimation errors on the performance.
For example, at low to intermediate SNRs, the co-phased
combining scheme outperforms the LMMSE-based scheme,
although they offer very comparable performance under per-
fect channel state information. This is because of the lesser
dependence of the co-phased combining scheme on channel
estimates. We showed that optimizing the power allocation
between the pilot and data symbols can result in a significant
improvement in the consensus performance. We also presented
extensive simulation results to validate the theoretical expres-
sions and illustrate the various tradeoffs involved. Future work
could consider extension of this study to non-binary (e.g.,
average) consensus problems.

APPENDIX A
PROOF OF LEMMA 1

Note that, E[H2] = E[(X,, cx [Hulcosfk)?] has iid.
summand terms. Hence, it can be expressed as

L)(E[Gri))*.

], the first and second moments of G'; are evaluated as

/ﬂ'a YpO
G _
kl 1 +’Yp

1 (14 2y, o?
2—&-2%02

E[HZ] = KE[G})] + K(K — (23)

In [37

E[Gh] = (24)
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Substituting the above expressions in (23) leads to (9).
Next, the variance of Hg is given by

var [ = E[m] - E[B2)°. @9
As the terms Gy are i.i.d., we have
E [HY] = KE[GY] + 3K (K — 1) (E[G})])°
+ K (K - 1)(K - 2)(K - 3)(E[Gw])*
+6K(K — 1)(K — 2)(E[Gr))’E [G}]
+4K(K — 1)E [G}) E[Gh]. (26)
The third and fourth moment of G,
3 30" 30T
E[Gh] = Wi, and (27)
4544
E[G})] =20 - %ﬁ (28)

are derived in [38], [39]. The expressions in (27), (28) along
with (24) and (9) are used to obtain the expression for Var [H;]

APPENDIX B
THE PROBABILITY DENSITY FUNCTION OF THE DIFFERENCE OF
TwO NAKAGAMI RANDOM VARIABLES

The pdf of the difference of two independent Nakagami r.v.s
is

:/OQ S, (h+hy) fu, (hn)dhy,,  for b >0. (29)
0

Substituting for the pdf of Nakagami r.v.s and then by com-
pleting the squares, (29) can be expressed as

m1 i m2 h?mlmg
gm mg Y7 o M2
Q1 Q

(m 1)L (ma)
></ (h_’_hn)Zmlfl(hn)Zmzfl

0
x ¢~ @ (hnt

fu(h) =

m1ﬂ2h)

dhn, (30)

where m 2 m1fy + mafly and Q 2 1€5. By changing
the variable of integration to u = ./ B (hn + %), (30) is

expressed as
miy ma r2myma
my ma -
a) (&) o7

(mymtme

X 7 < m2Q1h>2m1 !
U
vVml
mqQoh
Vm§
m102h>2m21 2
X | u— e ™ du. 31
< s (31)

The parameters 2m; and 2mg are rounded-off to their corre-
sponding nearest integers. Then, using the binomial expansion
for power terms, the pdf of the effective channel can be simpli-
fied as given in (11).
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APPENDIX C
DERIVATION OF p; FOR THE CO-PHASED COMBINING SCHEME

The p; in (8) can be expressed as

o) fe.o) 1
n; — e
b /_m/L Vir

By setting the variable of integration as z = vo, /h/Ey; and
changing the order of integration, (32) can be expressed as

= mav/ /

By substituting (30) for fz(h), h > 0, and then using (6.455)
from [40], the integral I; between the limits 0 and oo can be
evaluated as

) (m_1>m1 (m_z)m2 (2)’"1“”2*%
N Qg m

L(m1)l'(m2)

y Zmi”mil <9m1 - 1> <2m2j_ 1)

2 gy dodh. (32)

—h2m2Ed/2Uz fH(h) dh dz. (33)

2

% (m291>2ml - l(_l)ng—l—j
vmsd
2mo—1
(222)™ " 0 (s + s+ 3)

X

1
(2my +2my i — j) (e 4+ )"
ml mz ! J 2 Ql

1
X 2Py (1,’m1+m2+ 2im1 +ma
.l'Jrj,Q er%
- 2 } z,z,m my ? (34)
3 T

where o F7 is the Gauss hypergeometric function and v4 =
E4/a?. Following the similar procedure, I; can be evaluated
between the limits —oo and 0. The two expressions can now be
substituted in (33) to evaluate p;.

APPENDIX D
SECOND LARGEST EIGENVALUE OF THE AVERAGE TPM FOR
N = 3 SENSORS

It can be shown that the second largest eigenvalue of the av-
erage TPM is 1 — 2p(Y) when N = 3 sensors are involved in
achieving consensus. Let, pg, p1 and p» denote the probability of
detecting bit ‘1’ at a sensor when two other sensors transmit bits
(0, 0)’, <(0, 1)’, and “(1, 1)’, respectively. Then, by combining
equivalent states (for e.g., state ‘001’ is equivalent to ‘100’ and
‘010°), the average TPM is given by

[ 3 3pap3 3p5p2 o ]
P pipz pipo +2p§pz pzpz +2p§po pgpo . 65)
lplpo pip2 + 2pipe p1Po + 2p1p2 plsz
Py 3p2ps 3pap3 3

pM):/ / Le”/Q
o JIEa\2n I'(ma)
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The average TPM, P is a centro-symmetric matrix [41], i.e

o[ &)

JBJ JAJ (36)

where J is a counter-identity matrix, and
3pop3

3
_| P2
[p?pz Pipo + 2pips
[ 3p3p2 b ]
pip2 +2pipe  pipo

] , and
(37)

For such an average TPM, it is known that P is similar to

C_[ABJ 0 ]

0  A+BJ (38)

Thus, the eigenvalues of P are same as that of A — B.J and A+
BJ. The eigenvalues of A — B.J are found to be 1 and % —3pop2
and eigenvalues of A+ B.J are 1—2pg and (1 —2po)(§ —pop2).
The second largest eigenvalue is 1 — 2pg, which is the same as
1—2pM.

APPENDIX E
DERIVATION OF p(™) AND 5!} FOR THE CO-PHASED
COMBINING SCHEME

When the bits b; to by are +1, |[K| £ |S\{s;}| = N — 1 and
the effective channel /7 can be approximated by a Nakagamir.v.
with parameters m; and ;. So, the average probability 5(*)
in (8) can be expressed as

2

—v
m ™ 2
«© (_1> h2m17167m1h /Q dov dh.

o (39)

By setting the variable of integration as z = va, /hv/Ey4 and
changing the order of integration, (39) can be expressed as

Q’Yd 1

(&)

F(ml) Ql

x/ / p2m e M TS g de. (40)
—1 40

S

5(M)

I

The integral I> can be solved using (3.326) from [40] and
substituted in (40) to obtain

oy _ [ra 1 (ma\™
4 Qﬂf(ml) Ql

o
X/ 2 m140.5
—1 r7yd + my
2 01

dz. (41)

Further, the integral in (41) can be expressed as

oy _ [7va T(m1 +0.5) (ma m x
b 2 F(ml) Q4 (ml/Ql)ml*Oﬁ

’Ydél‘z

{05 0.5;1.5; ———
Xl ( 7m1+ y 3 QmI/QI

ﬂ h . (42)
—1
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This leads to

(M) _ Yd I‘(ml + 0.5)
FM) =054 )2 2 Do)
2m F(ml)\/ml/ﬂl

Yd
F{o. 5l ——' ).
X5 1(05,m1+05, 5: 2m1/91> (43)

When the bits by to by are 0, |K¢| £ |[S\{K,s;}| = N
— 1 and the effective channel H can be approximated by the
negative of a Nakagami r.v. with parameters m, and €2,. The
average probability p!) is given by

pY =1-p0. (44)

Therefore, replacing the parameters m; and €2; by mq and €2,
respectively, p() can be expressed as

D =05 [va T'(m2+0.5)
2m F(mg)\/mg/ﬂg

Yd
F D, b5yl ——>T—— . (4
X 1(05,m2+05, 5; me2/92> (45)

APPENDIX F
PROOF THAT THE AVERAGE PROBABILITY F;; IS
STRICTLY POSITIVE

The probability that the system changes from ¢; to ¢; at an
arbitrary time ¢ is given by

N

Py =TI [o"5” + (1-47) (1=5")], @0

i.e., itis the product of the N probability terms. We will consider
the least of these probabilities, the probability that a node s;
detects bit ‘1’ in the current cycle when all other nodes have
bit ‘0’ in the previous cycle. This probability, p(1, is derived
in (45), and it can be verified that, the second term of (45) is
strictly smaller than 0.5. Thus, the least of the probabilities, p(*)

is strictly greater than zero, and therefore, P;; > 0.
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