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I. INTRODUCTION

In this document, we present an unified minimum mean
square error (MMSE) estimator for uplink training for dis-
tributed antenna array (DAA) massive multiple-input-multiple-
output (DAA-mMIMO) systems [1], which can be generalized
to orthogonal pilot reusing (OPR) as well mutually unbiased
orthonormal basis (MUOB)-based pilot codebooks [2]. We
then provide the detailed steps involved in the derivation of
the uplink and downlink spectral efficiencies (SEs).

II. CHANEL ESTIMATION

We consider a TDD DAA-mMIMO MIMO system consist-
ing of M APs equipped with N antennas each. The APs jointly
serve K single antenna UEs. The channel vector between the
mth AP and kth the UE is modeled as hmk =

√
βmkfmk ∈

CN , where the pathloss component βmk is assumed to be
constant for several coherence blocks, and the fast fading
channel, fmk ∼ CN (0, IN ), is to be estimated at the start
of each coherence interval. Let U = {1, 2, . . . ,K} be the
index set of all UEs, and the corresponding pilot sequences
be Φ , {ϕ1,ϕ2, . . . ,ϕK}. We consider the use of pilots of
length τp.

Let, the kth UE transmits a pilot signal ϕk with an energy
Ep,k, then the received signal at the mth AP can be expressed
as

Yp,m =
√
Ep,kτphmkϕTk +∑

i∈U\{k}

√
Ep,iτphmiϕTi + Wp,m ∈ CN×τp , (1)

where, each columns of Wp,m is distributed as CN (0, N0IN ).
Now, to estimate the kth UE’s channel, the mth AP post-
multiply (1) with ϕ∗k, and the processed becomes

yp,m = Yp,mϕ∗k =
√
Ep,kτphmk+∑

i∈U\{k}

√
Ep,iτp〈ϕi,ϕk〉hmi + Wp,mϕ∗k ∈ CN×1, (2)

with Wp,mϕ∗k ∼ CN (0, N0IN ). The MMSE estimate of the
kth UE’s channel at the mth AP, denoted by ĥmk, can be
evaluated as [3]

ĥmk =
E
[
hHmkyp,m

]
E
[
yHp,myp,m

]yp,m
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=

√
Ep,kτpβmk

N0 + Ep,kβmkτp +
∑

i∈U\{k}
Ep,iτpβmi |〈ϕi,ϕk〉|

2 yp,m

(3)

Also, we can write, ĥmk = hmk − h̃mk,
where, h̃mk ∼ CN (0, (βmk − σ2

mk)IN ), with

σ2
mk =

Ep,kβ2
mkτp

N0 + Ep,kβmkτp +
∑

i∈U\{k}
Ep,iβmiτp |〈ϕi,ϕk〉|

2 .

Letting, Contmk ,
∑

i∈U\{k}
Ep,iβmiτp |〈ϕi,ϕk〉|

2, we can

show that that [2]

Cont.k =


∑

j∈U\{Ok∪k}
Ep,jβmj , Φ ∈ MUOB∑

j s.t.〈ϕk,ϕj〉=1

τpEp,jβmj , Φ ∈ OPR
(4)

which is the pilot contamination experienced by the kth UE.

III. UPLINK AND DOWNLINK DATA PROCESSING

We now analyze the effect of pilot contamination on the
system throughput. Our analysis applies for any random pilot-
codebook.

A. Uplink
Let the kth UE transmit the symbol su,k (E[|su,k|2] = 1)

in the uplink with an energy of Eu,k. Let Ak be the set of
AP indices that jointly and coherently processes the kth UE’s
signal. After maximal ratio combining at those APs, the kth
stream of the accumulated received signal at the CPU becomes

ru,k =
√
Eu,k

∑
m∈Ak

E
[
ĥHmkhmk

]
su,k

+
√
Eu,k

∑
m∈Ak

{
ĥHmkhmk − E[ĥHmkhmk]

}
su,k

+
∑

i∈U\{k}

√
Eu,i

∑
m∈Ak

ĥHmkhmisu,i +
∑
m∈Ak

ĥHmkwm, (5)

where, wm ∼ CN (0, N0IN ) is the receiver noise added at the
mth AP. The first and second term of (5) are commonly termed
as array gain and beamforming uncertainty [4], respectively.
Now, applying the use-and-then-forget technique [Chapter. 3,
[3]], the uplink SE of kth UE can be expressed1 as λ(1 −

1For a coherence interval of τ , we equally partition duration of (τ − τp)
channel uses for uplink and downlink link data transmission. Thus, the pre-
log factor λ(1− τp

τ
) for both uplink implies a fraction λ (λ ∈ [0, 1]) of the

data transmission duration is alloted for uplink.
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τp
τ ) log2(1 + γuk ), where, γuk is given by (6), and the closed

form expression is evaluated in the following lemma.

Lemma 1. In the uplink, the signal-to-interference-plus-noise
ratio (SINR) of the kth UE can written as

γuk =
Eu,kGainu,k

Eu,kvar
(∑

m∈Ak
ĥHmkhmk

)
+
∑
i∈
U\{k}

Eu,iIik+N0

∑
m∈Ak

σ2
mk

,

(7)

where,

Gainu,k = N2

( ∑
m∈Ak

σ2
mk

)2

, (8a)

var

( ∑
m∈Ak

ĥHmkhmk

)
=
∑
m∈Ak

Nσ2
mkβmk, (8b)

Iik = N2

( ∑
m∈Ak

σ2
mk

√
Ep,i
Ep,k

βmi
βmk

)2

|〈ϕi,ϕk〉|2

+N
∑
m∈Ak

σ2
mkβmi. (8c)

Proof. The array gain in (6), can be written as

E

[ ∑
m∈Ak

ĥHmkhmk

]
= E

[ ∑
m∈Ak

ĥHmk

[
ĥHmk + h̃mk

]]
=
∑
m∈Ak

E‖ĥmk‖2 = N
∑
m∈Ak

σ2
mk

Thus, the numerator of (6), becomes

Eu,k

∣∣∣∣∣E[
∑
m∈Ak

ĥHmkhmk]

∣∣∣∣∣
2

= Eu,kN2

( ∑
m∈Ak

σ2
mk

)2

, (9)

which corroborates with (8a). Next,

var

( ∑
m∈Ak

ĥHmkhmk

)

= E

∣∣∣∣∣ ∑
m∈Ak

ĥHmkhmk −
∑
m∈Ak

E
[
ĥHmkhmk

]∣∣∣∣∣
2


(a)

=

∑
m∈Ak

E
[∣∣∣ĥHmkhmk − E

[
ĥHmkhmk

]∣∣∣2]
=
∑
m∈Ak

{
E
[∣∣∣ĥHmkhmk∣∣∣2]− ∣∣∣E [ĥHmkhmk]∣∣∣2}

=
∑
m∈Ak

{
E
[∣∣∣ĥHmkh̃mk + ‖ĥmk‖2

∣∣∣2]− ∣∣∣E‖ĥmk‖2∣∣∣2}
(b)

=

∑
m∈Ak

{
E
[∣∣∣ĥHmkh̃mk∣∣∣2]+ E

[
‖ĥmk‖4

]
−N2σ4

mk

}
(c)

=

∑
m∈Ak

{
Nσ2

mk(βmk − σ2
mk) +N(N + 1)σ4

mk −N2σ4
mk

}
=
∑
m∈Ak

Nσ2
mkβmk, (10)

wherein, (a) follows as the variance of sum of independent
random variables are sum of the respective variances. In (b),
we note that E

[
h̃mk

]
= 0 and is independent of ĥmk, and

therefore, apply Lemma. 5. Finally, (c) is obtained using (38c).
Thus, (8b) follows directly.

Now, we derive the multi-user interference term. Prior to
that, let us define the denominator of (3) as

d−1mk = N0 + Ep,kβmkτp +
∑

i∈U\{k}

Ep,iτpβmi |〈ϕi,ϕk〉|
2
, (11)

and thus, ĥmk =
√
Ep,kτpβmkdmkyp,m. For i 6= k, we can

write,

Iik = E

∣∣∣∣∣ ∑
m∈Ak

ĥHmkhmi

∣∣∣∣∣
2


= E

∣∣∣∣∣ ∑
m∈Ak

√
Ep,kτpβmkdmkyHp,mhmi

∣∣∣∣∣
2


= E

[∣∣∣∣ ∑
m∈Ak

√
Ep,kτpβmkdmk×(∑

i′∈U

√
Ep,i′τp〈ϕi′ ,ϕk〉hmi′ + Wp,mϕ∗k

)H
hmi

∣∣∣∣2
]

= E

[∣∣∣∣ ∑
m∈Ak

√
Ep,kτpβmkdmkϕTkWH

p,mhmi

∣∣∣∣2
]

+ E

[∣∣∣∣ ∑
m∈Ak

√
Ep,kτpβmkdmk×(∑

i′∈U

√
Ep,i′τp〈ϕi′ ,ϕk〉hmi′

)H
hmi

∣∣∣∣2
]

= NN0

∑
m∈Ak

Ep,kτpd2mkβ2
mkβmi + I1, (12)

where I1 being the second expectation term involved in (12),
and can be further manipulated as shown in (14), with

I2 , E

[∣∣∣∣ ∑
m∈Ak

√
Ep,kτpβmkdmk

√
Ep,iτp〈ϕi,ϕk〉‖hmi‖2

∣∣∣∣2
]
.

(13)

Next, we expand I2 as shown in (15). Now, the first term
of (15) can be re-written as

N2

( ∑
m∈Ak

√
Ep,kτpdmkβmk

√
Ep,iτpβmi

)2

|〈ϕi,ϕk〉|2

= N2

( ∑
m∈Ak

Ep,kτpdmkβ2
mk

√
Ep,iτp
Ep,kτp

βmi
βmk

)2

|〈ϕi,ϕk〉|2

= N2

( ∑
m∈Ak

σ2
mk

√
Ep,i
Ep,k

βmi
βmk

)2

|〈ϕi,ϕk〉|2, (16)
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γuk =
Eu,k

∣∣∣∑m∈Ak
E[ĥHmkhmk]

∣∣∣2
Eu,kvar

(∑
m∈Ak

ĥHmkhmk

)
+

∑
i∈U\{k}

Eu,iE
[∣∣∣∑m∈Ak

ĥHmkhmi

∣∣∣2]+N0

∑
m∈Ak

E‖ĥmk‖2
. (6)

I1 = E

[∣∣∣∣ ∑
m∈Ak

√
Ep,kτpβmkdmk

 ∑
i′∈U\{i}

√
Ep,i′τp〈ϕi′ ,ϕk〉hmi′ +

√
Ep,iτp〈ϕi,ϕk〉hmi

H

hmi

∣∣∣∣2
]

(b)

=
E

[∣∣∣∣ ∑
m∈Ak

√
Ep,kτpβmkdmk

√
Ep,iτp〈ϕi,ϕk〉‖hmi‖2

∣∣∣∣2
]

+ E

[∣∣∣∣ ∑
m∈Ak

√
Ep,kτpβmkdmk

 ∑
i′∈U\{i}

√
Ep,i′τp〈ϕi′ ,ϕk〉hmi′

H

hmi

∣∣∣∣2
]

= I2 +N
∑
m∈Ak

∑
i′∈U\{i}

{
Ep,kτpβ2

mkd
2
mk

}
{Ep,i′τpβmiβmi′} |〈ϕi′ ,ϕk〉|2︸ ︷︷ ︸

,I3

(14)

(b): Using (39).

I2 =
∑
m∈Ak

Ep,kEp,iτ2pd2mkβ2
mk|〈ϕi,ϕk〉|2E

[
‖hmi‖4

]
+ Ep,kEp,iτ2p |〈ϕi,ϕk〉|2E

 ∑
m∈Ak

∑
n∈Ak,
m6=n

dmkdnkβmkβnk‖hmi‖2‖hni‖2


= N(N + 1)

∑
m∈Ak

Ep,kEp,iτ2pd2mkβ2
mk|〈ϕi,ϕk〉|2β2

mi +N2Ep,kEp,iτ2p |〈ϕi,ϕk〉|2
∑
m∈Ak

∑
n∈Ak,
m 6=n

dmkdnkβmkβnkβmiβni

= N2

 ∑
m∈Ak

Ep,kEp,iτ2pd2mkβ2
mk|〈ϕi,ϕk〉|2β2

mi + Ep,kEp,iτ2p |〈ϕi,ϕk〉|2
∑
m∈Ak

∑
n∈Ak,
m 6=n

dmkdnkβmkβnkβmiβni


+N

∑
m∈Ak

Ep,kEp,iτ2pd2mkβ2
mk|〈ϕi,ϕk〉|2β2

mi︸ ︷︷ ︸
,I4

= N2

( ∑
m∈Ak

√
Ep,kτpdmkβmk

√
Ep,iτpβmi

)2

|〈ϕi,ϕk〉|2 + I4. (15)

which contributes to coherent interference. Thus, now us-
ing (14), (15), and (16), we have

I1 = N2

( ∑
m∈Ak

σ2
mk

√
Ep,i
Ep,k

βmi
βmk

)2

|〈ϕi,ϕk〉|2

+ I4 + I3. (17)

Now, we will simplify the second term of (14) as

I3 =

N
∑
m∈Ak

∑
i′∈
U\{i}

{
Ep,kτpβ2

mkd
2
mk

}
{Ep,i′τpβmiβmi′}|〈ϕi′ ,ϕk〉|2

= N
∑
m∈Ak

Ep,kτpβ2
mkd

2
mkβmi ×

(∑
i′∈U
Ep,i′τpβmi′ |〈ϕi′ ,ϕk〉|2

− Ep,iτpβmi|〈ϕi,ϕk〉|2
)

= N
∑
m∈Ak

Ep,kτpβ2
mkd

2
mkβmi

∑
i′∈U
Ep,i′τpβmi′ |〈ϕi′ ,ϕk〉|2︸ ︷︷ ︸

,I5

−N
∑
m∈Ak

Ep,kEp,iτ2pd2mkβ2
mkβ

2
mi|〈ϕi′ ,ϕk〉|2. (18)

Then,

I5 = N
∑
m∈Ak

Ep,kτpβ2
mkd

2
mkβmi×(∑

i′∈U
Ep,i′τpβmi′ |〈ϕi′ ,ϕk〉|2

)
, (19)
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and we also observe here from (11) that

∑
i′∈U
Ep,i′τpβmi′ |〈ϕi′ ,ϕk〉|2 =

(
1

dmk
−N0

)
, (20)

which when substituted back in (19) results in

I5 =N
∑
m∈Ak

Ep,kτpβ2
mkdmkβmi

−NN0

∑
m∈Ak

Ep,kτpβ2
mkd

2
mkβmi. (21)

Therefore, inserting (21) into (18),

I3 =N
∑
m∈Ak

Ep,kτpβ2
mkdmkβmi

−NN0

∑
m∈Ak

Ep,kτpβ2
mkd

2
mkβmi

−N
∑
m∈Ak

Ep,kEp,iτ2pd2mkβ2
mkβ

2
mi|〈ϕi′ ,ϕk〉|2 (22)

Now, substituting (17) into (12), we get

Iik = NN0

∑
m∈Ak

Ep,kτpd2mkβ2
mkβmi

+N2

( ∑
m∈Ak

σ2
mk

√
Ep,i
Ep,k

βmi
βmk

)2

|〈ϕi,ϕk〉|2 + I4 + I3.

(23)

Next, substituting for I4 and I3, we get,

Iik = NN0

∑
m∈Ak

Ep,kτpd2mkβ2
mkβmi

+N2

( ∑
m∈Ak

σ2
mk

√
Ep,i
Ep,k

βmi
βmk

)2

|〈ϕi,ϕk〉|2

+N
∑
m∈Ak

Ep,kEp,iτ2pd2mkβ2
mk|〈ϕi,ϕk〉|2β2

mi

+N
∑
m∈Ak

Ep,kτpβ2
mkdmkβmi

−NN0

∑
m∈Ak

Ep,kτpβ2
mkd

2
mkβmi

−N
∑
m∈Ak

Ep,kEp,iτ2pd2mkβ2
mkβ

2
mi|〈ϕi′ ,ϕk〉|2, (24)

and, finally,

Iik =N2

( ∑
m∈Ak

σ2
mk

√
Ep,i
Ep,k

βmi
βmk

)2

|〈ϕi,ϕk〉|2

+N
∑
m∈Ak

Ep,kτpβ2
mkdmk︸ ︷︷ ︸

σ2
mk

βmi. (25)

Lastly, the additive noise component of (7) trivially follows as
ĥmk ∼ CN (0, σ2

mkIN ). �

B. Downlink
Next, let sd,k be intended downlink signal for the kth

UE. Let, Ed,m be the total power budget of mth AP and
the corresponding power control coefficient ζmk decides what
fraction of power is intended for the kth UE. We employ
reciprocity based matched filter precoding in the downlink.
Now, the mth AP serves only a cluster of users indicated by
the set Ũm, and therefore, the downlink transmitted signal by
the mth AP can be expressed as

rd,m =
∑
i∈Ũm

√
Ed,mζmiĥ∗misd,i. (26)

Thus, the received signal at the kth UE can be expressed as

rd,k =

M∑
m=1

hTmkrd,m + wk

=

M∑
m=1

∑
i∈Ũm

√
Ed,mζmihTmkĥ∗misd,k + wk

=
∑
m∈Ak

√
Ed,mζmkhTmkĥ∗mksd,k

+
∑

i∈U\{k}

∑
m∈Ai

√
Ed,mζmihTmkh∗misd,i + wk, (27)

where, wk ∼ CN (0, N0) is the receiver noise at the kth user.
To apply Use-and-then-Forget bound, we re-write rd,k as

rd,k = E

[ ∑
m∈Ak

√
Ed,mζmkhTmkĥ∗mk

]
sd,k

+

{∑
m∈Ak

√
Ed,mζmkhTmkĥ∗mk−E

[ ∑
m∈Ak

√
Ed,mζmkhTmkĥ∗mk

]}
sd,k

+
∑

i∈U\{k}

∑
m∈Ai

√
Ed,mζmihTmkh∗misd,i + wk, (28)

and thus the downlink SE becomes (1−λ)(1− τpτ ) log2(1+γdk),
where,

γdk =

∣∣∣∣∣E
[ ∑
m∈Ak

√
Ed,mζmkhTmkĥ∗mk

]∣∣∣∣∣
2

×(
var

( ∑
m∈Ak

√
Ed,mζmkhTmkĥ∗mk

)

+
∑

i∈U\{k}

E

∣∣∣∣∣ ∑
m∈Ai

√
Ed,mζmihTmkĥ∗mi

∣∣∣∣∣
2
+N0

)−1
.

(29)

We can apply exactly same analysis to derive the closed form
expressions of the downlink signal gain, the beamforming
error variance, and show that

E

[ ∑
m∈Ak

√
Ed,mζmkhTmkĥ∗mk

]
= N

√
Ed,mζmkσ2

mk (30a)

var

( ∑
m∈Ak

√
Ed,mζmkhTmkĥ∗mk

)
= N

∑
m∈Ak

Ed,mζmkσ2
mkβmk.

(30b)
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However, there is a subtle difference in the multi-user interfer-
ence term as the kth UE receives signal from the ith UE (i 6=
k) transmitted from the APs that serves ith UE (m ∈ Ai). We
derive the closed form expression in the following lemma.

Lemma 2. It can be shown that the downlink multi-user
interference experienced by the kth UE due to the ith UE
is

E

∣∣∣∣∣ ∑
m∈Ai

√
Ed,mζmihTmkĥ∗mi

∣∣∣∣∣
2
 =

N2

( ∑
m∈Ai

√
Ed,mζmi

√
Ep,k
Ep,i

βmk
βmi

σ2
mi

)2

|ϕHi ϕk|2

+N
∑
m∈Ai

Ed,mζmiβmkσ2
mi. (31)

Proof. The technique of the proof is same as adopted in the
uplink case. The key difference is in the uplink we substituted
for the desired UE’s estimated channel (i.e. ĥmk) from (2),
whereas here we substitute for ĥmi. We show the key steps
required to arrive at the final expression of (31).

E

∣∣∣∣∣ ∑
m∈Ai

√
Ed,mζmihTmkĥ∗mi

∣∣∣∣∣
2


= E

[∣∣∣∣∣ ∑
m∈Ai

√
Ed,mζmi

√
Ep,iτpβmidmihTmk×(∑

i′∈U

√
Ep,i′τp〈ϕi′ ,ϕi〉hmi′ + Wp,mϕ∗i

)∗∣∣∣∣∣
2]

= Ep,kτpE

∣∣∣∣∣ ∑
m∈Ai

d̄mi‖hmk‖2
∣∣∣∣∣
2
 |〈ϕk,ϕi〉|2

+ E


∣∣∣∣∣∣∣∣
∑
m∈Ai

d̄mih
T
mk

∑
i′∈
U\k

√
Ep,i′τp〈ϕi′ ,ϕi〉h∗mi′

∣∣∣∣∣∣∣∣
2

︸ ︷︷ ︸
,I5

+ E

∣∣∣∣∣ ∑
m∈Ai

d̄mih
T
mkW

∗
p,mϕi

∣∣∣∣∣
2


︸ ︷︷ ︸
,I6

, (32)

where in the last equality we substitute d̄mi =√
Ed,mζmi

√
Ep,iτpβmidmi. Next, observe that, as the

channel vectors of different users are uncorrelated and zero
mean, and so are the channel vector and the noise component;
the sum of second and third expectation of (32) reduces to

I5 + I6 =N
∑
m∈Ai

∑
i′∈
U\k

d̄2miEp,i′τpβmkβmi′ |〈ϕi′ ,ϕi〉|2

+NN0

∑
m∈Ai

d̄2miβmk. (33)

Next, the first expectation (32) can be expanded as

E

∣∣∣∣∣ ∑
m∈Ai

d̄mi‖hmk‖2
∣∣∣∣∣
2
 =

∑
m∈Ai

d̄2miE
[
‖hmk‖4

]

+ E

 ∑
m∈Ai

∑
n∈Ai
n 6=m

d̄mid̄ni‖hmk‖2‖hnk‖2


= N(N + 1)

∑
m∈Ai

d̄2miβ
2
mk +N2

∑
m∈Ai

∑
n∈Ai
n6=m

d̄mid̄niβmkβnk

= N2

( ∑
m∈Ai

d̄miβmk

)2

+N
∑
m∈Ai

d̄2miβ
2
mk. (34)

Finally, substituting (34),and (33) into (32), we get

E

∣∣∣∣∣ ∑
m∈Ai

√
Ed,mζmihTmkĥ∗mi

∣∣∣∣∣
2
 =

Ep,kτp

N2

( ∑
m∈Ai

d̄miβmk

)2

+N
∑
m∈Ai

d̄2miβ
2
mk

 |〈ϕk,ϕi〉|2
+N

∑
m∈Ai

∑
i′∈
U\k

d̄2miEp,i′τpβmkβmi′ |〈ϕi′ ,ϕi〉|2

+NN0

∑
m∈Ai

d̄2miβmk

= N2

(√
Ep,kτp

∑
m∈Ai

d̄miβmk

)2

|〈ϕk,ϕi〉|
2

+N
∑
m∈Ai

d̄2miβmk

{∑
i′∈U
Ep,i′τpβmi′ |〈ϕi′ ,ϕi〉|

2

}
+NN0

∑
m∈Ai

d̄2miβmk. (35)

Now, (31) follows by substituting√
Ep,kτpd̄miβmk =

√
Ed,mζmi

{
Ep,iτpdmiβ2

mi

} βmk√Ep,k
βmi

√
Ep,i

,

(36a){
Ep,iτpdmiβ2

mi

}
= σ2

mi, (36b)

and

{∑
i′∈U
Ep,i′τpβmi′ |〈ϕi′ ,ϕi〉|

2

}
=

1

dmi
−N0 (36c)

appropriately on (35). �

IV. PROOF OF THEOREM 2

Theorem 3. The achievable rate of the kth UE can be
expressed as

Rk =
(

1− τp
τ

) [
λ log2(1 + γuk ) + (1− λ) log2(1 + γdk)

]
,

where

γuk =
NEu,k(

∑
m∈Ak

σ2
mk)2

N CohIuk + NCohIuk +N0

∑
m∈Ak

σ2
mk

, (37a)
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γdk =
N2ρd(

∑
m∈Ak

√
ζmkσ

2
mk)2

N2 CohIdk +N NCohIdk + 1
, (37b)

with
CohIuk ,

∑
i∈U\{k} Eu,i|ϕHk ϕi|2(

∑
m∈Ak

σ2
mk

√
Ep,i
Ep,k

βmi

βmk
)2,

NCohIuk ,
∑
i∈U Eu,i

∑
m∈Ak

σ2
mkβmi, CohIdk ,∑

i∈U\{k} ρd|ϕHi ϕk|2(
∑
m∈Ai

σ2
mi

√
ζmi

√
Ep,k
Ep,i

βmk

βmi
)2,

and NCohIdk , ρd
∑
i∈U

∑
m∈Ai

σ2
miζmiβmk.

Proof. In the uplink, γuk of Lemma 1 can be re-expressed as
γuk of Theorem 3. The first term of (25) corresponds to the
first term on the denominator of γuk in (37a), and merging (10)
and N

∑
m∈Ak

σ2
mkβmi from (25),we obtain the second term

of γuk . Rest of the terms follows directly from Lemma 1. (37b)
follows similarly from (30a), (30b), and Lemma 2, and ρd be
the maximum normalized (as a multiple of the noise variance
N0) power transmitted by each AP. �

APPENDIX

A. Useful Lemma

Lemma 4. [Appendix. A, [3]] Let two independent ran-
dom vectors x and y be distributed as CN (0, σ2

xIN ) and
CN (0, σ2

yIN ), respectively. Then the followings results follow

E
[
‖x‖2

]
= Nσ2

x (38a)

E
[
‖x‖4

]
= N(N + 1)σ4

x (38b)

E
[∣∣(x + y)Hx

∣∣2] = N(N + 1)σ4
x +Nσ2

xσ
2
y. (38c)

Lemma 5. [(62), [4]] If x and y are independent random
vectors and E [x] = 0, then

E
[
|x + y|2

]
= E

[
|x|2

]
+ E

[
|y|2

]
(39)

REFERENCES

[1] S. Zhou, M. Zhao, X. Xu, J. Wang, and Y. Yao, “Distributed wireless
communication system: a new architecture for future public wireless
access,” IEEE Commun. Mag., vol. 41, no. 3, pp. 108–113, 2003.

[2] A. Chowdhury, P. Sasmal, and C. R. Murthy, “Comparison of orthogonal
vs. union of subspace based pilots for multi-cell massive MIMO systems,”
in Proc. IEEE SPAWC, Atlanta, GA, USA, 2020, pp. 1–5.

[3] T. L. Marzetta, E. G. Larsson, H. Yang, and H. Q. Ngo, Fundamentals
of Massive MIMO. Cambridge University Press, 2016.

[4] H. Q. Ngo, A. Ashikhmin, H. Yang, E. G. Larsson, and T. L. Marzetta,
“Cell-free massive MIMO versus small cells,” IEEE Trans. Wireless
Commun., vol. 16, no. 3, pp. 1834–1850, 2017.


	Introduction
	Chanel estimation
	Uplink and Downlink Data Processing
	Uplink
	Downlink

	Proof of Theorem 2
	Appendix
	Useful Lemma

	References

