Supplemental Material for "On the Performance of Distributed Antenna Array Systems with Quasi-Orthogonal Pilots"

Anubhab Chowdhury*, Pradip Sasmal* ${ }^{*}$, Chandra R. Murthy*, and Ribhu Chopra ${ }^{\dagger}$

I. Introduction

In this document, we present an unified minimum mean square error (MMSE) estimator for uplink training for distributed antenna array (DAA) massive multiple-input-multipleoutput (DAA-mMIMO) systems [1], which can be generalized to orthogonal pilot reusing (OPR) as well mutually unbiased orthonormal basis (MUOB)-based pilot codebooks [2]. We then provide the detailed steps involved in the derivation of the uplink and downlink spectral efficiencies (SEs).

II. Chanel estimation

We consider a TDD DAA-mMIMO MIMO system consisting of M APs equipped with N antennas each. The APs jointly serve K single antenna UEs. The channel vector between the m th AP and k th the UE is modeled as $\mathbf{h}_{m k}=\sqrt{\beta_{m k}} \mathbf{f}_{m k} \in$ \mathbb{C}^{N}, where the pathloss component $\beta_{m k}$ is assumed to be constant for several coherence blocks, and the fast fading channel, $\mathbf{f}_{m k} \sim \mathcal{C N}\left(\mathbf{0}, \mathbf{I}_{N}\right)$, is to be estimated at the start of each coherence interval. Let $\mathcal{U}=\{1,2, \ldots, K\}$ be the index set of all UEs, and the corresponding pilot sequences be $\boldsymbol{\Phi} \triangleq\left\{\boldsymbol{\varphi}_{1}, \boldsymbol{\varphi}_{2}, \ldots, \boldsymbol{\varphi}_{K}\right\}$. We consider the use of pilots of length τ_{p}.

Let, the k th UE transmits a pilot signal φ_{k} with an energy $\mathcal{E}_{p, k}$, then the received signal at the m th AP can be expressed as

$$
\mathbf{Y}_{p, m}=\sqrt{\sum_{i \in \mathcal{U} \backslash\{k\}}} \sqrt{\mathcal{E}_{p, i} \tau_{p}} \mathbf{h}_{m k} \boldsymbol{\varphi}_{k}^{T}+\boldsymbol{h}_{i}^{T}+\mathbf{W}_{p, m} \in \mathbb{C}^{N \times \tau_{p}},
$$

where, each columns of $\mathbf{W}_{p, m}$ is distributed as $\mathcal{C N}\left(\mathbf{0}, N_{0} \mathbf{I}_{N}\right)$. Now, to estimate the k th UE's channel, the m th AP postmultiply (1) with φ_{k}^{*}, and the processed becomes

$$
\begin{align*}
& \mathbf{y}_{p, m}=\mathbf{Y}_{p, m} \boldsymbol{\varphi}_{k}^{*}=\sqrt{\mathcal{E}_{p, k} \tau_{p}} \mathbf{h}_{m k}+ \\
& \sum_{i \in \mathcal{U} \backslash\{k\}} \sqrt{\mathcal{E}_{p, i} \tau_{p}}\left\langle\boldsymbol{\varphi}_{i}, \boldsymbol{\varphi}_{k}\right\rangle \mathbf{h}_{m i}+\mathbf{W}_{p, m} \boldsymbol{\varphi}_{k}^{*} \in \mathbb{C}^{N \times 1} \tag{2}
\end{align*}
$$

with $\mathbf{W}_{p, m} \boldsymbol{\varphi}_{k}^{*} \sim \mathcal{C N}\left(\mathbf{0}, N_{0} \mathbf{I}_{N}\right)$. The MMSE estimate of the k th UE's channel at the m th AP, denoted by $\hat{\mathbf{h}}_{m k}$, can be evaluated as [3]

$$
\hat{\mathbf{h}}_{m k}=\frac{\mathbb{E}\left[\mathbf{h}_{m k}^{H} \mathbf{y}_{p, m}\right]}{\mathbb{E}\left[\mathbf{y}_{p, m}^{H} \mathbf{y}_{p, m}\right]} \mathbf{y}_{p, m}
$$

[^0]\[

$$
\begin{equation*}
=\frac{\sqrt{\mathcal{E}_{p, k} \tau_{p}} \beta_{m k}}{N_{0}+\mathcal{E}_{p, k} \beta_{m k} \tau_{p}+\sum_{i \in \mathcal{U} \backslash\{k\}} \mathcal{E}_{p, i} \tau_{p} \beta_{m i}\left|\left\langle\boldsymbol{\varphi}_{i}, \boldsymbol{\varphi}_{k}\right\rangle\right|^{2}} \mathbf{y}_{p, m} \tag{3}
\end{equation*}
$$

\]

Also, we can write, $\hat{\mathbf{h}}_{m k}=\mathbf{h}_{m k}-\tilde{\mathbf{h}}_{m k}$, where, $\quad \tilde{\mathbf{h}}_{m k} \sim \mathcal{C N}\left(\mathbf{0},\left(\beta_{m k}-\sigma_{m k}^{2}\right) \mathbf{I}_{N}\right)$, with $\sigma_{m k}^{2}=\frac{\mathcal{E}_{p, k} \beta_{m k}^{2} \tau_{p}}{N_{0}+\mathcal{E}_{p, k} \beta_{m k} \tau_{p}+\sum_{i \in \mathcal{U} \backslash\{k\}} \mathcal{E}_{p, i} \beta_{m i} \tau_{p}\left|\left\langle\boldsymbol{\varphi}_{i}, \boldsymbol{\varphi}_{k}\right\rangle\right|^{2}}$.

Letting, Cont ${ }_{m k} \triangleq \sum_{i \in \mathcal{U} \backslash\{k\}} \mathcal{E}_{p, i} \beta_{m i} \tau_{p}\left|\left\langle\boldsymbol{\varphi}_{i}, \boldsymbol{\varphi}_{k}\right\rangle\right|^{2}$, we can show that that [2]

$$
\text { Cont.k }=\left\{\begin{array}{l}
\sum_{j \in \mathcal{U} \backslash\left\{\mathcal{O}_{k} \cup k\right\}} \mathcal{E}_{p, j} \beta_{m j}, \boldsymbol{\Phi} \in \mathrm{MUOB} \tag{4}\\
\sum_{j \text { s.t. }\left\langle\boldsymbol{\varphi}_{k}, \boldsymbol{\varphi}_{j}\right\rangle=1} \tau_{p} \mathcal{E}_{p, j} \beta_{m j}, \mathbf{\Phi} \in \mathrm{OPR}
\end{array}\right.
$$

which is the pilot contamination experienced by the k th UE.

III. Uplink and Downlink Data Processing

We now analyze the effect of pilot contamination on the system throughput. Our analysis applies for any random pilotcodebook.

A. Uplink

Let the k th UE transmit the symbol $s_{u, k}\left(\mathbb{E}\left[\left|s_{u, k}\right|^{2}\right]=1\right)$ in the uplink with an energy of $\mathcal{E}_{u, k}$. Let \mathcal{A}_{k} be the set of AP indices that jointly and coherently processes the k th UE's signal. After maximal ratio combining at those APs, the k th stream of the accumulated received signal at the CPU becomes

$$
\begin{align*}
& r_{u, k}=\sqrt{\mathcal{E}_{u, k}} \sum_{m \in \mathcal{A}_{k}} \mathbb{E}\left[\hat{\mathbf{h}}_{m k}^{H} \mathbf{h}_{m k}\right] s_{u, k} \\
& +\sqrt{\mathcal{E}_{u, k}} \sum_{m \in \mathcal{A}_{k}}\left\{\hat{\mathbf{h}}_{m k}^{H} \mathbf{h}_{m k}-\mathbb{E}\left[\hat{\mathbf{h}}_{m k}^{H} \mathbf{h}_{m k}\right]\right\} s_{u, k} \\
& +\sum_{i \in \mathcal{U} \backslash\{k\}} \sqrt{\mathcal{E}_{u, i}} \sum_{m \in \mathcal{A}_{k}} \hat{\mathbf{h}}_{m k}^{H} \mathbf{h}_{m i} s_{u, i}+\sum_{m \in \mathcal{A}_{k}} \hat{\mathbf{h}}_{m k}^{H} \mathbf{w}_{m} \tag{5}
\end{align*}
$$

where, $\mathbf{w}_{m} \sim \mathcal{C N}\left(\mathbf{0}, N_{0} \mathbf{I}_{N}\right)$ is the receiver noise added at the m th AP. The first and second term of (5) are commonly termed as array gain and beamforming uncertainty [4], respectively. Now, applying the use-and-then-forget technique [Chapter. 3, [3]], the uplink SE of k th UE can be expressed ${ }^{1}$ as $\lambda(1-$

[^1]$\left.\frac{\tau_{p}}{\tau}\right) \log _{2}\left(1+\gamma_{k}^{u}\right)$, where, γ_{k}^{u} is given by (6), and the closed form expression is evaluated in the following lemma.

Lemma 1. In the uplink, the signal-to-interference-plus-noise ratio (SINR) of the kth UE can written as

$$
\begin{equation*}
\gamma_{k}^{u}=\frac{\mathcal{E}_{u, k} \operatorname{Gain}_{u, k}}{\mathcal{E}_{u, k} \operatorname{var}\left(\sum_{m \in \mathcal{A}_{k}} \hat{\mathbf{h}}_{m k}^{H} \mathbf{h}_{m k}\right)+\sum_{\substack{i \in \\ \mathcal{U} \backslash\{k\}}} \mathcal{E}_{u, i} \mathrm{I}_{i k}+N_{0} \sum_{m \in \mathcal{A}_{k}} \sigma_{m k}^{2}}, \tag{7}
\end{equation*}
$$

where,

$$
\begin{align*}
& \operatorname{Gain}_{u, k}=N^{2}\left(\sum_{m \in \mathcal{A}_{k}} \sigma_{m k}^{2}\right)^{2} \tag{8a}\\
& \operatorname{var}\left(\sum_{m \in \mathcal{A}_{k}} \hat{\mathbf{h}}_{m k}^{H} \mathbf{h}_{m k}\right)=\sum_{m \in \mathcal{A}_{k}} N \sigma_{m k}^{2} \beta_{m k}, \tag{8b}\\
& \mathrm{I}_{i k}=N^{2}\left(\sum_{m \in \mathcal{A}_{k}} \sigma_{m k}^{2} \sqrt{\frac{\mathcal{E}_{p, i}}{\mathcal{E}_{p, k}}} \frac{\beta_{m i}}{\beta_{m k}}\right)^{2}\left|\left\langle\boldsymbol{\varphi}_{i}, \boldsymbol{\varphi}_{k}\right\rangle\right|^{2} \\
& +N \sum_{m \in \mathcal{A}_{k}} \sigma_{m k}^{2} \beta_{m i} . \tag{8c}
\end{align*}
$$

Proof. The array gain in (6), can be written as

$$
\begin{aligned}
& \mathbb{E}\left[\sum_{m \in \mathcal{A}_{k}} \hat{\mathbf{h}}_{m k}^{H} \mathbf{h}_{m k}\right]=\mathbb{E}\left[\sum_{m \in \mathcal{A}_{k}} \hat{\mathbf{h}}_{m k}^{H}\left[\hat{\mathbf{h}}_{m k}^{H}+\tilde{\mathbf{h}}_{m k}\right]\right] \\
& =\sum_{m \in \mathcal{A}_{k}} \mathbb{E}\left\|\hat{\mathbf{h}}_{m k}\right\|^{2}=N \sum_{m \in \mathcal{A}_{k}} \sigma_{m k}^{2}
\end{aligned}
$$

Thus, the numerator of (6), becomes

$$
\begin{equation*}
\mathcal{E}_{u, k}\left|\mathbb{E}\left[\sum_{m \in \mathcal{A}_{k}} \hat{\mathbf{h}}_{m k}^{H} \mathbf{h}_{m k}\right]\right|^{2}=\mathcal{E}_{u, k} N^{2}\left(\sum_{m \in \mathcal{A}_{k}} \sigma_{m k}^{2}\right)^{2} \tag{9}
\end{equation*}
$$

which corroborates with (8a). Next,

$$
\begin{aligned}
& \operatorname{var}\left(\sum_{m \in \mathcal{A}_{k}} \hat{\mathbf{h}}_{m k}^{H} \mathbf{h}_{m k}\right) \\
& =\mathbb{E}\left[\left|\sum_{m \in \mathcal{A}_{k}} \hat{\mathbf{h}}_{m k}^{H} \mathbf{h}_{m k}-\sum_{m \in \mathcal{A}_{k}} \mathbb{E}\left[\hat{\mathbf{h}}_{m k}^{H} \mathbf{h}_{m k}\right]\right|^{2}\right]
\end{aligned}
$$

$$
\stackrel{\text { (a) }}{=} \sum_{m \in \mathcal{A}_{k}} \mathbb{E}\left[\left|\hat{\mathbf{h}}_{m k}^{H} \mathbf{h}_{m k}-\mathbb{E}\left[\hat{\mathbf{h}}_{m k}^{H} \mathbf{h}_{m k}\right]\right|^{2}\right]
$$

$$
=\sum_{m \in \mathcal{A}_{k}}\left\{\mathbb{E}\left[\left|\hat{\mathbf{h}}_{m k}^{H} \mathbf{h}_{m k}\right|^{2}\right]-\left|\mathbb{E}\left[\hat{\mathbf{h}}_{m k}^{H} \mathbf{h}_{m k}\right]\right|^{2}\right\}
$$

$$
=\sum_{m \in \mathcal{A}_{k}}\left\{\mathbb{E}\left[\left|\hat{\mathbf{h}}_{m k}^{H} \tilde{\mathbf{h}}_{m k}+\left\|\hat{\mathbf{h}}_{m k}\right\|^{2}\right|^{2}\right]-\left|\mathbb{E}\left\|\hat{\mathbf{h}}_{m k}\right\|^{2}\right|^{2}\right\}
$$

$$
\stackrel{(b)}{=} \sum_{m \in \mathcal{A}_{k}}\left\{\mathbb{E}\left[\left|\hat{\mathbf{h}}_{m k}^{H} \tilde{\mathbf{h}}_{m k}\right|^{2}\right]+\mathbb{E}\left[\left\|\hat{\mathbf{h}}_{m k}\right\|^{4}\right]-N^{2} \sigma_{m k}^{4}\right\}
$$

$$
\stackrel{(c)}{=} \sum_{m \in \mathcal{A}_{k}}\left\{N \sigma_{m k}^{2}\left(\beta_{m k}-\sigma_{m k}^{2}\right)+N(N+1) \sigma_{m k}^{4}-N^{2} \sigma_{m k}^{4}\right\}
$$

$$
\begin{equation*}
=\sum_{m \in \mathcal{A}_{k}} N \sigma_{m k}^{2} \beta_{m k} \tag{10}
\end{equation*}
$$

wherein, (a) follows as the variance of sum of independent random variables are sum of the respective variances. In (b), we note that $\mathbb{E}\left[\tilde{\mathbf{h}}_{m k}\right]=\mathbf{0}$ and is independent of $\hat{\mathbf{h}}_{m k}$, and therefore, apply Lemma. 5. Finally, (c) is obtained using (38c). Thus, (8b) follows directly.

Now, we derive the multi-user interference term. Prior to that, let us define the denominator of (3) as

$$
\begin{equation*}
d_{m k}^{-1}=N_{0}+\mathcal{E}_{p, k} \beta_{m k} \tau_{p}+\sum_{i \in \mathcal{U} \backslash\{k\}} \mathcal{E}_{p, i} \tau_{p} \beta_{m i}\left|\left\langle\boldsymbol{\varphi}_{i}, \boldsymbol{\varphi}_{k}\right\rangle\right|^{2}, \tag{11}
\end{equation*}
$$

and thus, $\hat{\mathbf{h}}_{m k}=\sqrt{\mathcal{E}_{p, k} \tau_{p}} \beta_{m k} d_{m k} \mathbf{y}_{p, m}$. For $i \neq k$, we can write,

$$
\begin{aligned}
& \mathbf{I}_{i k}=\mathbb{E}\left[\left|\sum_{m \in \mathcal{A}_{k}} \hat{\mathbf{h}}_{m k}^{H} \mathbf{h}_{m i}\right|^{2}\right] \\
& =\mathbb{E}\left[\left|\sum_{m \in \mathcal{A}_{k}} \sqrt{\mathcal{E}_{p, k} \tau_{p}} \beta_{m k} d_{m k} \mathbf{y}_{p, m}^{H} \mathbf{h}_{m i}\right|^{2}\right] \\
& =\mathbb{E}\left[\mid \sum_{m \in \mathcal{A}_{k}} \sqrt{\mathcal{E}_{p, k} \tau_{p}} \beta_{m k} d_{m k} \times\right.
\end{aligned}
$$

$$
\left.\left.\left(\sum_{i^{\prime} \in \mathcal{U}} \sqrt{\mathcal{E}_{p, i^{\prime}} \tau_{p}}\left\langle\boldsymbol{\varphi}_{i^{\prime}}, \boldsymbol{\varphi}_{k}\right\rangle \mathbf{h}_{m i^{\prime}}+\mathbf{W}_{p, m} \boldsymbol{\varphi}_{k}^{*}\right)^{H} \mathbf{h}_{m i}\right|^{2}\right]
$$

$$
=\mathbb{E}\left[\left|\sum_{m \in \mathcal{A}_{k}} \sqrt{\mathcal{E}_{p, k} \tau_{p}} \beta_{m k} d_{m k} \boldsymbol{\varphi}_{k}^{T} \mathbf{W}_{p, m}^{H} \mathbf{h}_{m i}\right|^{2}\right]
$$

$$
+\mathbb{E}\left[\mid \sum_{m \in \mathcal{A}_{k}} \sqrt{\mathcal{E}_{p, k} \tau_{p}} \beta_{m k} d_{m k} \times\right.
$$

$$
\left.\left.\left(\sum_{i^{\prime} \in \mathcal{U}} \sqrt{\mathcal{E}_{p, i^{\prime}} \tau_{p}}\left\langle\boldsymbol{\varphi}_{i^{\prime}}, \boldsymbol{\varphi}_{k}\right\rangle \mathbf{h}_{m i^{\prime}}\right)^{H} \mathbf{h}_{m i}\right|^{2}\right]
$$

$$
\begin{equation*}
=N N_{0} \sum_{m \in \mathcal{A}_{k}} \mathcal{E}_{p, k} \tau_{p} d_{m k}^{2} \beta_{m k}^{2} \beta_{m i}+\mathrm{I}_{1} \tag{12}
\end{equation*}
$$

where I_{1} being the second expectation term involved in (12), and can be further manipulated as shown in (14), with

$$
\begin{equation*}
\mathrm{I}_{2} \triangleq \mathbb{E}\left[\left|\sum_{m \in \mathcal{A}_{k}} \sqrt{\mathcal{E}_{p, k} \tau_{p}} \beta_{m k} d_{m k} \sqrt{\mathcal{E}_{p, i} \tau_{p}}\left\langle\boldsymbol{\varphi}_{i}, \boldsymbol{\varphi}_{k}\right\rangle\left\|\mathbf{h}_{m i}\right\|^{2}\right|^{2}\right] \tag{13}
\end{equation*}
$$

Next, we expand I_{2} as shown in (15). Now, the first term of (15) can be re-written as

$$
\begin{align*}
& N^{2}\left(\sum_{m \in \mathcal{A}_{k}} \sqrt{\mathcal{E}_{p, k} \tau_{p}} d_{m k} \beta_{m k} \sqrt{\mathcal{E}_{p, i} \tau_{p}} \beta_{m i}\right)^{2}\left|\left\langle\boldsymbol{\varphi}_{i}, \boldsymbol{\varphi}_{k}\right\rangle\right|^{2} \\
& =N^{2}\left(\sum_{m \in \mathcal{A}_{k}} \mathcal{E}_{p, k} \tau_{p} d_{m k} \beta_{m k}^{2} \sqrt{\frac{\mathcal{E}_{p, i} \tau_{p}}{\mathcal{E}_{p, k} \tau_{p}}} \frac{\beta_{m i}}{\beta_{m k}}\right)^{2}\left|\left\langle\boldsymbol{\varphi}_{i}, \boldsymbol{\varphi}_{k}\right\rangle\right|^{2} \\
& =N^{2}\left(\sum_{m \in \mathcal{A}_{k}} \sigma_{m k}^{2} \sqrt{\frac{\mathcal{E}_{p, i}}{\mathcal{E}_{p, k}}} \frac{\beta_{m i}}{\beta_{m k}}\right)^{2}\left|\left\langle\boldsymbol{\varphi}_{i}, \boldsymbol{\varphi}_{k}\right\rangle\right|^{2}, \tag{16}
\end{align*}
$$

$$
\begin{equation*}
\gamma_{k}^{u}=\frac{\mathcal{E}_{u, k}\left|\sum_{m \in \mathcal{A}_{k}} \mathbb{E}\left[\hat{\mathbf{h}}_{m k}^{H} \mathbf{h}_{m k}\right]\right|^{2}}{\mathcal{E}_{u, k} \operatorname{var}\left(\sum_{m \in \mathcal{A}_{k}} \hat{\mathbf{h}}_{m k}^{H} \mathbf{h}_{m k}\right)+\sum_{i \in \mathcal{U} \backslash\{k\}} \mathcal{E}_{u, i} \mathbb{E}\left[\left|\sum_{m \in \mathcal{A}_{k}} \hat{\mathbf{h}}_{m k}^{H} \mathbf{h}_{m i}\right|^{2}\right]+N_{0} \sum_{m \in \mathcal{A}_{k}} \mathbb{E}\left\|\hat{\mathbf{h}}_{m k}\right\|^{2}} . \tag{6}
\end{equation*}
$$

$\mathrm{I}_{1}=\mathbb{E}\left[\left|\sum_{m \in \mathcal{A}_{k}} \sqrt{\mathcal{E}_{p, k} \tau_{p}} \beta_{m k} d_{m k}\left(\sum_{i^{\prime} \in \mathcal{U} \backslash\{i\}} \sqrt{\mathcal{E}_{p, i^{\prime}} \tau_{p}}\left\langle\boldsymbol{\varphi}_{i^{\prime}}, \boldsymbol{\varphi}_{k}\right\rangle \mathbf{h}_{m i^{\prime}}+\sqrt{\mathcal{E}_{p, i} \tau_{p}}\left\langle\boldsymbol{\varphi}_{i}, \boldsymbol{\varphi}_{k}\right\rangle \mathbf{h}_{m i}\right)^{H} \mathbf{h}_{m i}\right|^{2}\right]$
$\stackrel{(b)}{=} \mathbb{E}\left[\left|\sum_{m \in \mathcal{A}_{k}} \sqrt{\mathcal{E}_{p, k} \tau_{p}} \beta_{m k} d_{m k} \sqrt{\mathcal{E}_{p, i} \tau_{p}}\left\langle\boldsymbol{\varphi}_{i}, \boldsymbol{\varphi}_{k}\right\rangle\left\|\mathbf{h}_{m i}\right\|^{2}\right|^{2}\right]+\mathbb{E}\left[\left|\sum_{m \in \mathcal{A}_{k}} \sqrt{\mathcal{E}_{p, k} \tau_{p}} \beta_{m k} d_{m k}\left(\sum_{i^{\prime} \in \mathcal{U} \backslash\{i\}} \sqrt{\mathcal{E}_{p, i^{\prime}} \tau_{p}}\left\langle\boldsymbol{\varphi}_{i^{\prime}}, \boldsymbol{\varphi}_{k}\right\rangle \mathbf{h}_{m i^{\prime}}\right)^{H} \mathbf{h}_{m i}\right|^{2}\right]$
$=\mathrm{I}_{2}+\underbrace{N \sum_{m \in \mathcal{A}_{k} i^{\prime} \in \mathcal{U} \backslash\{i\}} \sum_{\mathcal{E}_{p, k}}\left\{\mathcal{E}_{p} \beta_{m k}^{2} d_{m k}^{2}\right\}\left\{\mathcal{E}_{p, i^{\prime}} \tau_{p} \beta_{m i} \beta_{m i^{\prime}}\right\}\left|\left\langle\boldsymbol{\varphi}_{i^{\prime}}, \boldsymbol{\varphi}_{k}\right\rangle\right|^{2}}_{\triangleq \mathrm{I}_{3}}$
(b): Using (39).

$$
\begin{align*}
& \mathrm{I}_{2}=\sum_{m \in \mathcal{A}_{k}} \mathcal{E}_{p, k} \mathcal{E}_{p, i} \tau_{p}^{2} d_{m k}^{2} \beta_{m k}^{2}\left|\left\langle\boldsymbol{\varphi}_{i}, \boldsymbol{\varphi}_{k}\right\rangle\right|^{2} \mathbb{E}\left[\left\|\mathbf{h}_{m i}\right\|^{4}\right]+\mathcal{E}_{p, k} \mathcal{E}_{p, i} \tau_{p}^{2}\left|\left\langle\boldsymbol{\varphi}_{i}, \boldsymbol{\varphi}_{k}\right\rangle\right|^{2} \mathbb{E}\left[\sum_{\substack{m \in \mathcal{A}_{k}}} \sum_{\substack{n \in \mathcal{A}_{k}, m \neq n}} d_{m k} d_{n k} \beta_{m k} \beta_{n k}\left\|\mathbf{h}_{m i}\right\|^{2}\left\|\mathbf{h}_{n i}\right\|^{2}\right] \\
& =N(N+1) \sum_{m \in \mathcal{A}_{k}} \mathcal{E}_{p, k} \mathcal{E}_{p, i} \tau_{p}^{2} d_{m k}^{2} \beta_{m k}^{2}\left|\left\langle\boldsymbol{\varphi}_{i}, \boldsymbol{\varphi}_{k}\right\rangle\right|^{2} \beta_{m i}^{2}+N^{2} \mathcal{E}_{p, k} \mathcal{E}_{p, i} \tau_{p}^{2}\left|\left\langle\boldsymbol{\varphi}_{i}, \boldsymbol{\varphi}_{k}\right\rangle\right|^{2} \sum_{\substack{m \in \mathcal{A}_{k}}} \sum_{\substack{n \in \mathcal{A}_{k}, m \neq n}} d_{m k} d_{n k} \beta_{m k} \beta_{n k} \beta_{m i} \beta_{n i} \\
& =N^{2}\left(\sum_{m \in \mathcal{A}_{k}} \mathcal{E}_{p, k} \mathcal{E}_{p, i} \tau_{p}^{2} d_{m k}^{2} \beta_{m k}^{2}\left|\left\langle\boldsymbol{\varphi}_{i}, \boldsymbol{\varphi}_{k}\right\rangle\right|^{2} \beta_{m i}^{2}+\mathcal{E}_{p, k} \mathcal{E}_{p, i} \tau_{p}^{2}\left|\left\langle\boldsymbol{\varphi}_{i}, \boldsymbol{\varphi}_{k}\right\rangle\right|^{2} \sum_{\substack{m \in \mathcal{A}_{k}\\
}}^{\left.\sum_{\substack{n \in \mathcal{A}_{k}, m \neq n}} d_{m k} d_{n k} \beta_{m k} \beta_{n k} \beta_{m i} \beta_{n i}\right)}\right. \\
& +\underbrace{N \sum_{m \in \mathcal{A}_{k}} \mathcal{E}_{p, k} \mathcal{E}_{p, i} \tau_{p}^{2} d_{m k}^{2} \beta_{m k}^{2}\left|\left\langle\boldsymbol{\varphi}_{i}, \boldsymbol{\varphi}_{k}\right\rangle\right|^{2} \beta_{m i}^{2}}_{\triangleq_{\mathrm{I}_{4}}} \\
& =N^{2}\left(\sum_{m \in \mathcal{A}_{k}} \sqrt{\mathcal{E}_{p, k} \tau_{p}} d_{m k} \beta_{m k} \sqrt{\mathcal{E}_{p, i} \tau_{p}} \beta_{m i}\right)^{2}\left|\left\langle\boldsymbol{\varphi}_{i}, \boldsymbol{\varphi}_{k}\right\rangle\right|^{2}+\mathrm{I}_{4} . \tag{15}
\end{align*}
$$

which contributes to coherent interference. Thus, now using (14), (15), and (16), we have

$$
\begin{align*}
\mathrm{I}_{1}=N^{2} & \left(\sum_{m \in \mathcal{A}_{k}} \sigma_{m k}^{2} \sqrt{\frac{\mathcal{E}_{p, i}}{\mathcal{E}_{p, k}}} \frac{\beta_{m i}}{\beta_{m k}}\right)^{2}\left|\left\langle\boldsymbol{\varphi}_{i}, \boldsymbol{\varphi}_{k}\right\rangle\right|^{2} \\
& +\mathrm{I}_{4}+\mathrm{I}_{3} . \tag{17}
\end{align*}
$$

Now, we will simplify the second term of (14) as

$$
\begin{align*}
& \mathrm{I}_{3}= \\
& N \sum_{\substack{m \in \mathcal{A}_{k} \\
\mathcal{U} \backslash\left\{i^{\prime} \in\right.}}\left\{\mathcal{E}_{p, k} \tau_{p} \beta_{m k}^{2} d_{m k}^{2}\right\}\left\{\mathcal{E}_{p, i^{\prime}} \tau_{p} \beta_{m i} \beta_{m i^{\prime}}\right\}\left|\left\langle\boldsymbol{\varphi}_{i^{\prime}}, \boldsymbol{\varphi}_{k}\right\rangle\right|^{2} \\
& =N \sum_{m \in \mathcal{A}_{k}} \mathcal{E}_{p, k} \tau_{p} \beta_{m k}^{2} d_{m k}^{2} \beta_{m i} \times\left(\sum_{i^{\prime} \in \mathcal{U}} \mathcal{E}_{p, i^{\prime}} \tau_{p} \beta_{m i^{\prime}}\left|\left\langle\boldsymbol{\varphi}_{i^{\prime}}, \boldsymbol{\varphi}_{k}\right\rangle\right|^{2}\right. \tag{19}
\end{align*}
$$

$$
\begin{align*}
& \left.-\mathcal{E}_{p, i} \tau_{p} \beta_{m i}\left|\left\langle\boldsymbol{\varphi}_{i}, \boldsymbol{\varphi}_{k}\right\rangle\right|^{2}\right) \\
& =\underbrace{N \sum_{m \in \mathcal{A}_{k}} \mathcal{E}_{p, k} \tau_{p} \beta_{m k}^{2} d_{m k}^{2} \beta_{m i} \sum_{i^{\prime} \in \mathcal{U}} \mathcal{E}_{p, i^{\prime}} \tau_{p} \beta_{m i^{\prime}}\left|\left\langle\boldsymbol{\varphi}_{i^{\prime}}, \boldsymbol{\varphi}_{k}\right\rangle\right|^{2}}_{\triangleq_{\mathrm{I}_{5}}} \\
& -N \sum_{m \in \mathcal{A}_{k}} \mathcal{E}_{p, k} \mathcal{E}_{p, i} \tau_{p}^{2} d_{m k}^{2} \beta_{m k}^{2} \beta_{m i}^{2}\left|\left\langle\boldsymbol{\varphi}_{i^{\prime}}, \boldsymbol{\varphi}_{k}\right\rangle\right|^{2} . \tag{18}
\end{align*}
$$

Then,

$$
\begin{aligned}
I_{5}=N & \sum_{m \in \mathcal{A}_{k}} \mathcal{E}_{p, k} \tau_{p} \beta_{m k}^{2} d_{m k}^{2} \beta_{m i} \times \\
& \left(\sum_{i^{\prime} \in \mathcal{U}} \mathcal{E}_{p, i^{\prime}} \tau_{p} \beta_{m i^{\prime}}\left|\left\langle\boldsymbol{\varphi}_{i^{\prime}}, \boldsymbol{\varphi}_{k}\right\rangle\right|^{2}\right)
\end{aligned}
$$

and we also observe here from (11) that

$$
\begin{equation*}
\sum_{i^{\prime} \in \mathcal{U}} \mathcal{E}_{p, i^{\prime}} \tau_{p} \beta_{m i^{\prime}}\left|\left\langle\boldsymbol{\varphi}_{i^{\prime}}, \boldsymbol{\varphi}_{k}\right\rangle\right|^{2}=\left(\frac{1}{d_{m k}}-N_{0}\right) \tag{20}
\end{equation*}
$$

which when substituted back in (19) results in

$$
\begin{align*}
\mathrm{I}_{5}= & N \sum_{m \in \mathcal{A}_{k}} \mathcal{E}_{p, k} \tau_{p} \beta_{m k}^{2} d_{m k} \beta_{m i} \\
& -N N_{0} \sum_{m \in \mathcal{A}_{k}} \mathcal{E}_{p, k} \tau_{p} \beta_{m k}^{2} d_{m k}^{2} \beta_{m i} \tag{21}
\end{align*}
$$

Therefore, inserting (21) into (18),

$$
\begin{align*}
\mathrm{I}_{3}= & N \sum_{m \in \mathcal{A}_{k}} \mathcal{E}_{p, k} \tau_{p} \beta_{m k}^{2} d_{m k} \beta_{m i} \\
& -N N_{0} \sum_{m \in \mathcal{A}_{k}} \mathcal{E}_{p, k} \tau_{p} \beta_{m k}^{2} d_{m k}^{2} \beta_{m i} \\
& -N \sum_{m \in \mathcal{A}_{k}} \mathcal{E}_{p, k} \mathcal{E}_{p, i} \tau_{p}^{2} d_{m k}^{2} \beta_{m k}^{2} \beta_{m i}^{2}\left|\left\langle\boldsymbol{\varphi}_{i^{\prime}}, \boldsymbol{\varphi}_{k}\right\rangle\right|^{2} \tag{22}
\end{align*}
$$

Now, substituting (17) into (12), we get

$$
\begin{align*}
& \mathrm{I}_{i k}=N N_{0} \sum_{m \in \mathcal{A}_{k}} \mathcal{E}_{p, k} \tau_{p} d_{m k}^{2} \beta_{m k}^{2} \beta_{m i} \\
& +N^{2}\left(\sum_{m \in \mathcal{A}_{k}} \sigma_{m k}^{2} \sqrt{\frac{\mathcal{E}_{p, i}}{\mathcal{E}_{p, k}}} \frac{\beta_{m i}}{\beta_{m k}}\right)^{2}\left|\left\langle\boldsymbol{\varphi}_{i}, \boldsymbol{\varphi}_{k}\right\rangle\right|^{2}+\mathrm{I}_{4}+\mathrm{I}_{3} \tag{23}
\end{align*}
$$

Next, substituting for I_{4} and I_{3}, we get,

$$
\begin{align*}
& \mathrm{I}_{i k}=N N_{0} \sum_{m \in \mathcal{A}_{k}} \mathcal{E}_{p, k} \tau_{p} d_{m k}^{2} \beta_{m k}^{2} \beta_{m i} \\
& +N^{2}\left(\sum_{m \in \mathcal{A}_{k}} \sigma_{m k}^{2} \sqrt{\frac{\mathcal{E}_{p, i}}{\mathcal{E}_{p, k}}} \frac{\beta_{m i}}{\beta_{m k}}\right)^{2}\left|\left\langle\boldsymbol{\varphi}_{i}, \boldsymbol{\varphi}_{k}\right\rangle\right|^{2} \\
& +N \sum_{m \in \mathcal{A}_{k}} \mathcal{E}_{p, k} \mathcal{E}_{p, i} \tau_{p}^{2} d_{m k}^{2} \beta_{m k}^{2}\left|\left\langle\boldsymbol{\varphi}_{i}, \boldsymbol{\varphi}_{k}\right\rangle\right|^{2} \beta_{m i}^{2} \\
& +N \sum_{m \in \mathcal{A}_{k}} \mathcal{E}_{p, k} \tau_{p} \beta_{m k}^{2} d_{m k} \beta_{m i} \\
& -N N_{0} \sum_{m \in \mathcal{A}_{k}} \mathcal{E}_{p, k} \tau_{p} \beta_{m k}^{2} d_{m k}^{2} \beta_{m i} \\
& -N \sum_{m \in \mathcal{A}_{k}} \mathcal{E}_{p, k} \mathcal{E}_{p, i} \tau_{p}^{2} d_{m k}^{2} \beta_{m k}^{2} \beta_{m i}^{2}\left|\left\langle\boldsymbol{\varphi}_{i^{\prime}}, \boldsymbol{\varphi}_{k}\right\rangle\right|^{2} \tag{24}
\end{align*}
$$

and, finally,

$$
\begin{align*}
\mathrm{I}_{i k}= & N^{2}\left(\sum_{m \in \mathcal{A}_{k}} \sigma_{m k}^{2} \sqrt{\frac{\mathcal{E}_{p, i}}{\mathcal{E}_{p, k}}} \frac{\beta_{m i}}{\beta_{m k}}\right)^{2}\left|\left\langle\boldsymbol{\varphi}_{i}, \boldsymbol{\varphi}_{k}\right\rangle\right|^{2} \\
& +N \sum_{m \in \mathcal{A}_{k}} \underbrace{\mathcal{E}_{p, k} \tau_{p} \beta_{m k}^{2} d_{m k}}_{\sigma_{m k}^{2}} \beta_{m i} . \tag{25}
\end{align*}
$$

Lastly, the additive noise component of (7) trivially follows as $\hat{\mathbf{h}}_{m k} \sim \mathcal{C N}\left(\mathbf{0}, \sigma_{m k}^{2} \mathbf{I}_{N}\right)$.

B. Downlink

Next, let $s_{d, k}$ be intended downlink signal for the k th UE. Let, $\mathcal{E}_{d, m}$ be the total power budget of m th AP and the corresponding power control coefficient $\zeta_{m k}$ decides what fraction of power is intended for the k th UE. We employ reciprocity based matched filter precoding in the downlink. Now, the m th AP serves only a cluster of users indicated by the set $\tilde{\mathcal{U}}_{m}$, and therefore, the downlink transmitted signal by the m th AP can be expressed as

$$
\begin{equation*}
\mathbf{r}_{d, m}=\sum_{i \in \tilde{\mathcal{U}}_{m}} \sqrt{\mathcal{E}_{d, m} \zeta_{m i}} \hat{\mathbf{h}}_{m i}^{*} s_{d, i} \tag{26}
\end{equation*}
$$

Thus, the received signal at the k th UE can be expressed as

$$
\begin{align*}
& r_{d, k}=\sum_{m=1}^{M} \mathbf{h}_{m k}^{T} \mathbf{r}_{d, m}+w_{k} \\
& =\sum_{m=1}^{M} \sum_{i \in \tilde{\mathcal{U}}_{m}} \sqrt{\mathcal{E}_{d, m} \zeta_{m i}} \mathbf{h}_{m k}^{T} \hat{\mathbf{h}}_{m i}^{*} s_{d, k}+w_{k} \\
& =\sum_{m \in \mathcal{A}_{k}} \sqrt{\mathcal{E}_{d, m} \zeta_{m k}} \mathbf{h}_{m k}^{T} \hat{\mathbf{h}}_{m k}^{*} s_{d, k} \\
& +\sum_{i \in \mathcal{U} \backslash\{k\}} \sum_{m \in \mathcal{A}_{i}} \sqrt{\mathcal{E}_{d, m} \zeta_{m i}} \mathbf{h}_{m k}^{T} \mathbf{h}_{m i}^{*} s_{d, i}+w_{k} \tag{27}
\end{align*}
$$

where, $w_{k} \sim \mathcal{C N}\left(0, N_{0}\right)$ is the receiver noise at the k th user. To apply Use-and-then-Forget bound, we re-write $r_{d, k}$ as

$$
\begin{align*}
& r_{d, k}=\mathbb{E}\left[\sum_{m \in \mathcal{A}_{k}} \sqrt{\mathcal{E}_{d, m} \zeta_{m k}} \mathbf{h}_{m k}^{T} \hat{\mathbf{h}}_{m k}^{*}\right] s_{d, k} \\
& +\left\{\sum_{m \in \mathcal{A}_{k}} \sqrt{\mathcal{E}_{d, m} \zeta_{m k}} \mathbf{h}_{m k}^{T} \hat{\mathbf{h}}_{m k}^{*}-\mathbb{E}\left[\sum_{m \in \mathcal{A}_{k}} \sqrt{\mathcal{E}_{d, m} \zeta_{m k}} \mathbf{h}_{m k}^{T} \hat{\mathbf{h}}_{m k}^{*}\right]\right\} s_{d, k} \\
& +\sum_{i \in \mathcal{U} \backslash\{k\}} \sum_{m \in \mathcal{A}_{i}} \sqrt{\mathcal{E}_{d, m} \zeta_{m i}} \mathbf{h}_{m k}^{T} \mathbf{h}_{m i}^{*} s_{d, i}+w_{k} \tag{28}
\end{align*}
$$

and thus the downlink SE becomes $(1-\lambda)\left(1-\frac{\tau_{p}}{\tau}\right) \log _{2}\left(1+\gamma_{k}^{d}\right)$, where,

$$
\begin{align*}
& \gamma_{k}^{d}=\left|\mathbb{E}\left[\sum_{m \in \mathcal{A}_{k}} \sqrt{\mathcal{E}_{d, m} \zeta_{m k}} \mathbf{h}_{m k}^{T} \hat{\mathbf{h}}_{m k}^{*}\right]\right|^{2} \times \\
& \left(\operatorname{var}\left(\sum_{m \in \mathcal{A}_{k}} \sqrt{\mathcal{E}_{d, m} \zeta_{m k}} \mathbf{h}_{m k}^{T} \hat{\mathbf{h}}_{m k}^{*}\right)\right. \\
& \left.+\sum_{i \in \mathcal{U} \backslash\{k\}} \mathbb{E}\left[\left|\sum_{m \in \mathcal{A}_{i}} \sqrt{\mathcal{E}_{d, m} \zeta_{m i}} \mathbf{h}_{m k}^{T} \hat{\mathbf{h}}_{m i}^{*}\right|^{2}\right]+N_{0}\right)^{-1} . \tag{29}
\end{align*}
$$

We can apply exactly same analysis to derive the closed form expressions of the downlink signal gain, the beamforming error variance, and show that

$$
\begin{align*}
& \mathbb{E}\left[\sum_{m \in \mathcal{A}_{k}} \sqrt{\mathcal{E}_{d, m} \zeta_{m k}} \mathbf{h}_{m k}^{T} \hat{\mathbf{h}}_{m k}^{*}\right]=N \sqrt{\mathcal{E}_{d, m} \zeta_{m k}} \sigma_{m k}^{2} \tag{30a}\\
& \operatorname{var}\left(\sum_{m \in \mathcal{A}_{k}} \sqrt{\mathcal{E}_{d, m} \zeta_{m k}} \mathbf{h}_{m k}^{T} \hat{\mathbf{h}}_{m k}^{*}\right)=N \sum_{m \in \mathcal{A}_{k}} \mathcal{E}_{d, m} \zeta_{m k} \sigma_{m k}^{2} \beta_{m k} \tag{30b}
\end{align*}
$$

However, there is a subtle difference in the multi-user interference term as the k th UE receives signal from the i th UE $(i \neq$ k) transmitted from the APs that serves i th $\operatorname{UE}\left(m \in \mathcal{A}_{i}\right)$. We derive the closed form expression in the following lemma.

Lemma 2. It can be shown that the downlink multi-user interference experienced by the kth $U E$ due to the ith $U E$ is

$$
\begin{align*}
& \mathbb{E}\left[\left|\sum_{m \in \mathcal{A}_{i}} \sqrt{\mathcal{E}_{d, m} \zeta_{m i}} \mathbf{h}_{m k}^{T} \hat{\mathbf{h}}_{m i}^{*}\right|^{2}\right]= \\
& N^{2}\left(\sum_{m \in \mathcal{A}_{i}} \sqrt{\mathcal{E}_{d, m} \zeta_{m i}} \sqrt{\frac{\mathcal{E}_{p, k}}{\mathcal{E}_{p, i}}} \frac{\beta_{m k}}{\beta_{m i}} \sigma_{m i}^{2}\right)^{2}\left|\boldsymbol{\varphi}_{i}^{H} \boldsymbol{\varphi}_{k}\right|^{2} \\
& +N \sum_{m \in \mathcal{A}_{i}} \mathcal{E}_{d, m} \zeta_{m i} \beta_{m k} \sigma_{m i}^{2} . \tag{31}
\end{align*}
$$

Proof. The technique of the proof is same as adopted in the uplink case. The key difference is in the uplink we substituted for the desired UE's estimated channel (i.e. $\hat{\mathbf{h}}_{m k}$) from (2), whereas here we substitute for $\hat{\mathbf{h}}_{m i}$. We show the key steps required to arrive at the final expression of (31).

$$
\begin{aligned}
& \mathbb{E}\left[\left|\sum_{m \in \mathcal{A}_{i}} \sqrt{\mathcal{E}_{d, m} \zeta_{m i}} \mathbf{h}_{m k}^{T} \hat{\mathbf{h}}_{m i}^{*}\right|^{2}\right] \\
& =\mathbb{E}\left[\mid \sum_{m \in \mathcal{A}_{i}} \sqrt{\mathcal{E}_{d, m} \zeta_{m i}} \sqrt{\mathcal{E}_{p, i} \tau_{p}} \beta_{m i} d_{m i} \mathbf{h}_{m k}^{T} \times\right. \\
& \\
& \left.\left.\quad\left(\sum_{i^{\prime} \in \mathcal{U}} \sqrt{\mathcal{E}_{p, i^{\prime}} \tau_{p}}\left\langle\boldsymbol{\varphi}_{i^{\prime}}, \boldsymbol{\varphi}_{i}\right\rangle \mathbf{h}_{m i^{\prime}}+\mathbf{W}_{p, m} \boldsymbol{\varphi}_{i}^{*}\right)^{*}\right|^{2}\right] \\
& = \\
& \mathcal{E}_{p, k} \tau_{p} \mathbb{E}\left[\left|\sum_{m \in \mathcal{A}_{i}} \bar{d}_{m i}\left\|\mathbf{h}_{m k}\right\|^{2}\right|^{2}\right]\left|\left\langle\boldsymbol{\varphi}_{k}, \boldsymbol{\varphi}_{i}\right\rangle\right|^{2}
\end{aligned}
$$

$$
+\underbrace{\mathbb{E}\left[\left|\sum_{m \in \mathcal{A}_{i}} \bar{d}_{m i} \mathbf{h}_{m k}^{T} \sum_{\substack{i^{\prime} \in \\ \mathcal{U} \backslash k}} \sqrt{\mathcal{E}_{p, i^{\prime}} \tau_{p}}\left\langle\boldsymbol{\varphi}_{i^{\prime}}, \boldsymbol{\varphi}_{i}\right\rangle \mathbf{h}_{m i^{\prime}}^{*}\right|^{2}\right]}_{\triangleq_{I_{5}}}
$$

$$
\begin{equation*}
+\underbrace{\mathbb{E}\left[\left|\sum_{m \in \mathcal{A}_{i}} \bar{d}_{m i} \mathbf{h}_{m k}^{T} \mathbf{W}_{p, m}^{*} \boldsymbol{\varphi}_{i}\right|^{2}\right]}_{\triangleq_{\mathrm{I}_{6}}} \tag{32}
\end{equation*}
$$

where in the last equality we substitute $\bar{d}_{m i}=$ $\sqrt{\mathcal{E}_{d, m} \zeta_{m i}} \sqrt{\mathcal{E}_{p, i} \tau_{p}} \beta_{m i} d_{m i}$. Next, observe that, as the channel vectors of different users are uncorrelated and zero mean, and so are the channel vector and the noise component; the sum of second and third expectation of (32) reduces to

$$
\begin{align*}
\mathrm{I}_{5}+\mathrm{I}_{6}= & N \sum_{m \in \mathcal{A}_{i}} \sum_{i^{\prime} \in} \bar{d}_{m i}^{2} \mathcal{E}_{p, i^{\prime}} \tau_{p} \beta_{m k} \beta_{m i^{\prime}}\left|\left\langle\boldsymbol{\varphi}_{i^{\prime}}, \boldsymbol{\varphi}_{i}\right\rangle\right|^{2} \\
& +N N_{0} \sum_{m \in \mathcal{A}_{i}} \bar{d}_{m i}^{2} \beta_{m k} \tag{33}
\end{align*}
$$

Next, the first expectation (32) can be expanded as

$$
\begin{align*}
& \mathbb{E}\left[\left|\sum_{m \in \mathcal{A}_{i}} \bar{d}_{m i}\left\|\mathbf{h}_{m k}\right\|^{2}\right|^{2}\right]=\sum_{m \in \mathcal{A}_{i}} \bar{d}_{m i}^{2} \mathbb{E}\left[\left\|\mathbf{h}_{m k}\right\|^{4}\right] \\
& +\mathbb{E}\left[\sum_{m \in \mathcal{A}_{i}} \sum_{\substack{n \in \mathcal{A}_{i} \\
n \neq m}} \bar{d}_{m i} \bar{d}_{n i}\left\|\mathbf{h}_{m k}\right\|^{2}\left\|\mathbf{h}_{n k}\right\|^{2}\right] \\
& =N(N+1) \sum_{m \in \mathcal{A}_{i}} \bar{d}_{m i}^{2} \beta_{m k}^{2}+N^{2} \sum_{m \in \mathcal{A}_{i}} \sum_{\substack{n \in \mathcal{A}_{i} \\
n \neq m}} \bar{d}_{m i} \bar{d}_{n i} \beta_{m k} \beta_{n k} \\
& =N^{2}\left(\sum_{m \in \mathcal{A}_{i}} \bar{d}_{m i} \beta_{m k}\right)^{2}+N \sum_{m \in \mathcal{A}_{i}} \bar{d}_{m i}^{2} \beta_{m k}^{2} . \tag{34}
\end{align*}
$$

Finally, substituting (34), and (33) into (32), we get

$$
\begin{align*}
& \mathbb{E}\left[\left|\sum_{m \in \mathcal{A}_{i}} \sqrt{\mathcal{E}_{d, m} \zeta_{m i}} \mathbf{h}_{m k}^{T} \hat{\mathbf{h}}_{m i}^{*}\right|^{2}\right]= \\
& \mathcal{E}_{p, k} \tau_{p}\left\{N^{2}\left(\sum_{m \in \mathcal{A}_{i}} \bar{d}_{m i} \beta_{m k}\right)^{2}+N \sum_{m \in \mathcal{A}_{i}} \bar{d}_{m i}^{2} \beta_{m k}^{2}\right\}\left|\left\langle\boldsymbol{\varphi}_{k}, \boldsymbol{\varphi}_{i}\right\rangle\right|^{2} \\
& +N \sum_{m \in \mathcal{A}_{i}} \sum_{i^{\prime} \in} \bar{d}_{m i}^{2} \mathcal{E}_{p, i^{\prime}} \tau_{p} \beta_{m k} \beta_{m i^{\prime}}\left|\left\langle\boldsymbol{\varphi}_{i^{\prime}}, \boldsymbol{\varphi}_{i}\right\rangle\right|^{2} \\
& +N N_{0} \sum_{m \in \mathcal{A}_{i}} \bar{d}_{m i}^{2} \beta_{m k} \\
& =N^{2}\left(\sqrt{\mathcal{E}_{p, k}} \tau_{p} \sum_{m \in \mathcal{A}_{i}} \bar{d}_{m i} \beta_{m k}\right)^{2}\left|\left\langle\boldsymbol{\varphi}_{k}, \boldsymbol{\varphi}_{i}\right\rangle\right|^{2} \\
& +N \sum_{m \in \mathcal{A}_{i}} \bar{d}_{m i}^{2} \beta_{m k}\left\{\sum_{i^{\prime} \in \mathcal{U}} \mathcal{E}_{p, i^{\prime}} \tau_{p} \beta_{m i^{\prime}}\left|\left\langle\boldsymbol{\varphi}_{i^{\prime}}, \boldsymbol{\varphi}_{i}\right\rangle\right|^{2}\right\} \\
& +N N_{0} \sum_{m \in \mathcal{A}_{i}} \bar{d}_{m i}^{2} \beta_{m k} \tag{35}
\end{align*}
$$

Now, (31) follows by substituting

$$
\begin{align*}
& \sqrt{\mathcal{E}_{p, k} \tau_{p}} \bar{d}_{m i} \beta_{m k}=\sqrt{\mathcal{E}_{d, m} \zeta_{m i}}\left\{\mathcal{E}_{p, i} \tau_{p} d_{m i} \beta_{m i}^{2}\right\} \frac{\beta_{m k} \sqrt{\mathcal{E}_{p, k}}}{\beta_{m i} \sqrt{\mathcal{E}_{p, i}}} \tag{36a}\\
& \left\{\mathcal{E}_{p, i} \tau_{p} d_{m i} \beta_{m i}^{2}\right\}=\sigma_{m i}^{2}, \tag{36b}
\end{align*}
$$

appropriately on (35).

IV. Proof of Theorem 2

Theorem 3. The achievable rate of the kth UE can be expressed as

$$
R_{k}=\left(1-\frac{\tau_{p}}{\tau}\right)\left[\lambda \log _{2}\left(1+\gamma_{k}^{u}\right)+(1-\lambda) \log _{2}\left(1+\gamma_{k}^{d}\right)\right]
$$

where

$$
\begin{equation*}
\gamma_{k}^{u}=\frac{N \mathcal{E}_{u, k}\left(\sum_{m \in \mathcal{A}_{k}} \sigma_{m k}^{2}\right)^{2}}{N \operatorname{CohI}_{k}^{u}+\mathrm{NCohI}_{k}^{u}+N_{0} \sum_{m \in \mathcal{A}_{k}} \sigma_{m k}^{2}} \tag{37a}
\end{equation*}
$$

$$
\begin{equation*}
\gamma_{k}^{d}=\frac{N^{2} \rho_{d}\left(\sum_{m \in \mathcal{A}_{k}} \sqrt{\zeta_{m k}} \sigma_{m k}^{2}\right)^{2}}{N^{2} \operatorname{CohI}_{k}^{d}+N \operatorname{NCohI}_{k}^{d}+1} \tag{37b}
\end{equation*}
$$

with
$\operatorname{CohI}_{k}^{u} \triangleq \sum_{i \in \mathcal{U} \backslash\{k\}} \mathcal{E}_{u, i}\left|\boldsymbol{\varphi}_{k}^{H} \boldsymbol{\varphi}_{i}\right|^{2}\left(\sum_{m \in \mathcal{A}_{k}} \sigma_{m k}^{2} \sqrt{\frac{\mathcal{E}_{p, i}}{\mathcal{E}_{p, k}}} \frac{\beta_{m i}}{\beta_{m k}}\right)^{2}$, $\operatorname{NCohI}_{k}^{u} \triangleq \sum_{i \in \mathcal{U}} \mathcal{E}_{u, i} \sum_{m \in \mathcal{A}_{k}} \sigma_{m k}^{2} \beta_{m i}, \quad \operatorname{CohI}_{k}^{d} \triangleq$ $\sum_{i \in \mathcal{U} \backslash\{k\}} \rho_{d}\left|\boldsymbol{\varphi}_{i}^{H} \boldsymbol{\varphi}_{k}\right|^{2}\left(\sum_{m \in \mathcal{A}_{i}} \sigma_{m i}^{2} \sqrt{\zeta_{m i}} \sqrt{\frac{\mathcal{E}_{p, k}}{\mathcal{E}_{p, i}}} \frac{\beta_{m k}}{\beta_{m i}}\right)^{2}$, and $\mathrm{NCohI}_{k}^{d} \triangleq \rho_{d} \sum_{i \in \mathcal{U}} \sum_{m \in \mathcal{A}_{i}} \sigma_{m i}^{2} \zeta_{m i} \beta_{m k}$.
Proof. In the uplink, γ_{k}^{u} of Lemma 1 can be re-expressed as γ_{k}^{u} of Theorem 3. The first term of (25) corresponds to the first term on the denominator of γ_{k}^{u} in (37a), and merging (10) and $N \sum_{m \in \mathcal{A}_{k}} \sigma_{m k}^{2} \beta_{m i}$ from (25),we obtain the second term of γ_{k}^{u}. Rest of the terms follows directly from Lemma 1. (37b) follows similarly from (30a), (30b), and Lemma 2, and ρ_{d} be the maximum normalized (as a multiple of the noise variance N_{0}) power transmitted by each AP.

Appendix

A. Useful Lemma

Lemma 4. [Appendix. A, [3]] Let two independent random vectors \mathbf{x} and \mathbf{y} be distributed as $\mathcal{C N}\left(\mathbf{0}, \sigma_{x}^{2} \mathbf{I}_{N}\right)$ and $\mathcal{C N}\left(\mathbf{0}, \sigma_{y}^{2} \mathbf{I}_{N}\right)$, respectively. Then the followings results follow

$$
\begin{align*}
& \mathbb{E}\left[\|\mathbf{x}\|^{2}\right]=N \sigma_{x}^{2} \tag{38a}\\
& \mathbb{E}\left[\|\mathbf{x}\|^{4}\right]=N(N+1) \sigma_{x}^{4} \tag{38b}\\
& \mathbb{E}\left[\left|(\mathbf{x}+\mathbf{y})^{H} \mathbf{x}\right|^{2}\right]=N(N+1) \sigma_{x}^{4}+N \sigma_{x}^{2} \sigma_{y}^{2} \tag{38c}
\end{align*}
$$

Lemma 5. [(62), [4]] If \mathbf{x} and \mathbf{y} are independent random vectors and $\mathbb{E}[\mathbf{x}]=\mathbf{0}$, then

$$
\begin{equation*}
\mathbb{E}\left[|\mathbf{x}+\mathbf{y}|^{2}\right]=\mathbb{E}\left[|\mathbf{x}|^{2}\right]+\mathbb{E}\left[|\mathbf{y}|^{2}\right] \tag{39}
\end{equation*}
$$

REFERENCES

[1] S. Zhou, M. Zhao, X. Xu, J. Wang, and Y. Yao, "Distributed wireless communication system: a new architecture for future public wireless access," IEEE Commun. Mag., vol. 41, no. 3, pp. 108-113, 2003.
[2] A. Chowdhury, P. Sasmal, and C. R. Murthy, "Comparison of orthogonal vs. union of subspace based pilots for multi-cell massive MIMO systems," in Proc. IEEE SPAWC, Atlanta, GA, USA, 2020, pp. 1-5.
[3] T. L. Marzetta, E. G. Larsson, H. Yang, and H. Q. Ngo, Fundamentals of Massive MIMO. Cambridge University Press, 2016.
[4] H. Q. Ngo, A. Ashikhmin, H. Yang, E. G. Larsson, and T. L. Marzetta, "Cell-free massive MIMO versus small cells," IEEE Trans. Wireless Comтип., vol. 16, no. 3, pp. 1834-1850, 2017.

[^0]: *The authors are with the Dept. of ECE, Indian Institute of Science, Bangalore, India. (e-mails:\{anubhabc, pradipsasmal, cmurthy\} @iisc.ac.in.)
 ${ }^{\dagger}$ Ribhu Chopra is with the Dept. of EEE, Indian Institute of Technology Guwahati, India (e-mail: ribhufec@iitg.ac.in.)

[^1]: ${ }^{1}$ For a coherence interval of τ, we equally partition duration of $\left(\tau-\tau_{p}\right)$ channel uses for uplink and downlink link data transmission. Thus, the pre\log factor $\lambda\left(1-\frac{\tau_{p}}{\tau}\right)$ for both uplink implies a fraction $\lambda(\lambda \in[0,1])$ of the data transmission duration is alloted for uplink.

