On Outage Optimal Transmission Policies for Energy Harvesting Multi-hop Links

Mohit K. Sharma and Chandra R. Murthy

Signal Processing for Communications Lab
Dept. of ECE, IISc Bangalore
March 28, 2014

Outline

- Introduction
- System Model
- Problem Statement
- Geometric Programming
- Proposed Solution
- Conclusions

Introduction

- Sporadically energy is harvested from environment for eg. solar, wind etc
- Energy neutrality constraint (ENC): cumulative energy used cannot exceed the total harvested energy
- Energy neutrality constraint: infinite number of constraints
- Central issue: design of energy management policies to optimize a utility function
- Policy: prescription of the transmit power on the basis of available system-state information

System Model

SOURCE

System Model

- N-hop EH link with block fading channel
- All nodes are EH nodes (EHN)
- Periodically gets a packet, to be delivered by a deadline (multi-hop frame duration T_{f})
- NK slots of duration $T_{p}, N K \triangleq\left\lfloor T_{f} / T_{p}\right\rfloor$
- Harvesting rate ρE_{s} per slot, $\forall n$
- Retransmission protocol: ARQ, HARQ-CC
- Rx sends ACK/NACK, for decoding success/failure
- Tx does not have access to CSI
- A packet remains in outage if not decoded correctly
- Decoding cost for each attempt $=R E_{s}$
- Packet is dropped if doesn't reach $N+1^{\text {th }}$ node by the end of the frame

System Dynamics

Problem Statement

- The drop probability

$$
P_{\mathrm{D}}=1-\operatorname{Pr}[N+1]
$$

$\operatorname{Pr}[N+1]: \operatorname{Pr}\left[N+1^{\text {th }}\right.$ node receive the packet correctly $]$

- Design goal:

$$
\begin{array}{ll}
\left\{E_{1}^{n}, E_{2}^{n}, \ldots, E_{k}^{n} \geq 0\right\}_{n=1}^{N} \\
\text { s.t., } & \sum_{t=1}^{t_{0}} \rho_{n} E_{s} \geq \sum_{t=1}^{t_{0}} E_{t}^{n} \quad \forall n, t_{0}
\end{array}
$$

Modified Energy Neutrality Constraint

- Average Power Constraint (APC): on average, EHN consumes energy lower than the harvesting rate
- APC with large battery capacity:
- Battery evolution has a net positive drift
- Battery has sufficient energy to make all K attempts
- It is throughput optimal
- For large battery system operating under APC, ENC is equivalent to APC
- Infinite battery approximation
- Maximum transmit power is limited by the RF front-end hardware
- Finite number of attempts per packet

Modified Problem Statement: ARQ Slow Fading

$$
\min _{\left\{\left\{E_{k}^{n}\right\}_{k=1}^{K_{n}}\right\}_{n=1}^{N}} P_{\text {out }}=1-\operatorname{Pr}[N+1]
$$

subject to

$$
\begin{aligned}
& \operatorname{Pr}[n] \cdot \sum_{k=1}^{K_{n}} E_{k}^{n^{*}} \mathbb{E}_{\gamma}\left\{\prod_{i=1}^{k-1} P_{e}\left(E_{i}^{n^{*}}, \gamma\right)\right\}+\operatorname{Pr}[n-1] . R E_{s} \cdot \sum_{k=1}^{K_{n-1}} \mathbb{1}_{\left\{E_{k} \neq 0\right\}} \\
& . \mathbb{E}_{\gamma}\left\{\prod_{i=1}^{k-1} P_{e}\left(E_{i}^{(n-1)^{*}}, \gamma\right)\right\} \leq N K \rho_{n} E_{s} \quad \forall \quad n=1, \ldots, N+1
\end{aligned}
$$

where,

$$
\operatorname{Pr}[n]=\prod_{n^{\prime}=1}^{n-1} \mathbb{E}_{\gamma}\left\{\sum_{i=1}^{K_{n^{\prime}}}\left(1-P_{e}\left(E_{i}^{n^{*}}, \gamma\right)\right) \prod_{\ell=1}^{i-1} P_{e}\left(E_{\ell}^{n^{*}}, \gamma\right)\right\}
$$

Alternative Formulation

- Subproblem 1 :

$$
\min _{\left\{\left(T x_{1}, R x_{2}\right),\left(T x_{2}, R x_{3}\right), \ldots,\left(T x_{N}, R x_{N+1}\right)\right\}} P_{\text {out }}
$$

s.t.

$$
\begin{aligned}
T x_{1} & \leq N K \rho_{1} E_{s} \\
R x_{2}+T x_{2} & \leq N K \rho_{2} E_{s} \\
& \vdots \\
R x_{N}+T x_{N} & \leq N K \rho_{N} E_{s} \\
R x_{N+1} & \leq N K \rho_{N+1} E_{s}
\end{aligned}
$$

where, $R x_{n}$, and $T x_{n}$ are average energy spent for transmission and reception by $\mathrm{n}^{\text {th }}$ node

Subproblem 2 (SP2)

For all $n=1, \ldots, N$

$$
\min _{\left\{E_{1}^{n}, \ldots, E_{K_{n}}^{n}\right\}} P_{\text {out }}^{n}=\mathbb{E}_{\gamma}\left\{\prod_{\ell=1}^{K_{n}} P_{e}\left(E_{\ell}^{n}, \gamma\right)\right\}
$$

s.t.

$$
\begin{array}{r}
\sum_{k=1}^{K_{n}} E_{k}^{n} \mathbb{E}_{\gamma}\left\{\prod_{i=1}^{k-1} P_{e}\left(E_{i}^{n}, \gamma\right)\right\} \leq \frac{T x_{n}}{\operatorname{Pr}[n]}=T_{n} \\
R E_{s} \cdot \sum_{k=1}^{K_{n}} \mathbb{1}_{\left\{E_{k} \neq 0\right\}} \mathbb{E}_{\gamma}\left\{\prod_{i=1}^{k-1} P_{e}\left(E_{i}^{n}, \gamma\right)\right\} \leq \frac{R x_{n+1}}{\operatorname{Pr}[n]}=R_{n} \\
0 \leq E_{k}^{n} \leq E_{\max } \quad \forall \quad k=1, \ldots, K_{n}
\end{array}
$$

Equality of Optimal Solutions

Theorem

Let $\bar{E}^{*}=\left\{\bar{E}_{1}^{*}, \ldots, \bar{E}_{N}^{*}\right\}$, and $\bar{E}^{* *}=\left\{\bar{E}_{1}^{* *}, \ldots, \bar{E}_{N}^{* *}\right\}$ be the solutions to the original, and alternative problems, respectively, then

$$
P_{\text {out }}\left(\bar{E}^{*}\right)=P_{\text {out }}\left(\bar{E}^{* *}\right)
$$

Proof.

SP2 for Rayleigh fading

$$
\min _{\left\{E_{1}, \ldots, E_{K}\right\}} P_{\text {out }}=\left(1+\sum_{\ell=1}^{K} \frac{E_{\ell}}{\mathcal{N}_{0}}\right)^{-1}
$$

s.t.

$$
\begin{gathered}
\sum_{k=1}^{K} E_{k}\left(1+\sum_{\ell=1}^{k-1} \frac{E_{\ell}}{\mathcal{N}_{0}}\right)^{-1} \leq T_{n} \leftrightarrow \\
R E_{s \cdot}\left[1+\sum_{k=2}^{K} \mathbb{1}_{\left\{E_{k} \neq 0\right\}}\left(1+\sum_{\ell=1}^{k-1} \frac{E_{\ell}}{\mathcal{N}_{0}}\right)^{-1}\right] \leq R_{n} \\
0 \leq E_{k} \leq E_{\max } \quad \forall k=1, \ldots, K
\end{gathered}
$$

Geometric Programming: Terminology

- Monomial: $f: \mathbf{R}_{++}^{\boldsymbol{n}} \rightarrow \mathbf{R}$:

$$
f(\mathbf{x})=d x_{1}^{a^{(1)}} x_{2}^{a^{(2)}} \ldots x_{n}^{a^{(n)}}
$$

where, $d \geq 0$, and $a^{(j)} \in \mathbf{R}, j=1, \ldots, n$

- Posynomial: Sum of monomials

$$
f(\mathbf{x})=\sum_{k=1}^{K} d_{k} x_{1}^{a_{k}^{(1)}} x_{2}^{a_{k}^{(2)}} \ldots x_{n}^{a_{k}^{(n)}}
$$

where, $d_{k} \geq 0, a_{k}^{(j)} \in \mathbf{R}, k=1,2, \ldots, K, j=1,2, \ldots, n$

- Examples:

$$
\text { Posynomial : } \quad 2 x_{1}^{-\pi} x_{2}^{0.5}+3 x_{1} x_{3}^{100}, \frac{x_{1}}{x_{2}}
$$

Not a Posynomial :

$$
x_{1}-x_{2}, \frac{x_{1}+x_{2}}{x_{3}+x_{1}}
$$

Geometric Programming: Standard form

Standard form: (non convex problem)

$$
\begin{aligned}
\min & f_{0}(\mathbf{x}) \\
\text { subject to } & f_{i}(\mathbf{x}) \leq 1 \quad \forall \quad i=1,2, \ldots, m \\
& h_{\ell}(\mathbf{x})=1 \quad \forall \quad i=1,2, \ldots, M
\end{aligned}
$$

where,

$$
\begin{aligned}
& f(\mathbf{x})=\sum_{k=1}^{K_{i}} d_{i k} x_{1}^{a_{i k}^{(1)}} x_{2}^{a_{i k}^{(2)}} \ldots x_{n}^{a_{i k}^{(n)}} \\
& \text { and, } \quad h_{\ell}(\mathbf{x})=d_{\ell} x_{1}^{a_{\ell}^{(1)}} x_{2}^{a_{\ell}^{(2)}} \ldots x_{n}^{a_{\ell}^{(n)}}
\end{aligned}
$$

Geometric Programming: Convex form

- Let $y_{i}=\log x_{i}, b_{i k}=\log d_{i k}$, and $b_{\ell}=\log d_{\ell}$

$$
\begin{array}{ll}
\min & P_{0}(\mathbf{y})=\log \sum_{k=1}^{K_{0}} \exp \left(\mathbf{a}_{0 k}^{T} \mathbf{y}+b_{0 k}\right) \\
\text { s. t. } & P_{i}(\mathbf{y})=\log \sum_{k=1}^{K_{i}} \exp \left(\mathbf{a}_{i k}^{T} \mathbf{y}+b_{i k}\right) \leq 0 \quad \forall \quad i=1,2, \ldots, m \\
& q_{\ell}(\mathbf{y})=\mathbf{a}_{\ell}^{T} \mathbf{y}+b_{\ell}=0 \quad \forall \quad \ell=1,2, \ldots, M
\end{array}
$$

- References:
- M. Chiang, "Geometric Programming for Communication Systems," Foundations and Trends of Communication and Information Theory, vol. 2, no 1-2, pp 1-156, Aug. 2005
- S. Boyd, S. J. Kim, L. Vandenberghe, and A. Hassibi, "A Tutorial on Geometric Programming," Optimization and Engineering, pp 67-127, April 2007.

SP2 as a Geometric Program

$$
\begin{aligned}
& \text { Let } \begin{aligned}
z_{i}=1+\frac{1}{\mathcal{N}_{0}} \sum_{\ell=1}^{i} E_{\ell} & \Longrightarrow E_{i}=\left(z_{i}-z_{i-1}\right) \mathcal{N}_{0}, \text { and } Z_{0}=1 \\
& \max _{\left\{z_{1}, \ldots, z_{K}\right\}}\left(z_{K}-1\right)
\end{aligned}
\end{aligned}
$$

s.t.

$$
\begin{gathered}
\sum_{\ell=1}^{K} z_{\ell} z_{\ell-1}^{-1} \leq \frac{T_{n}}{\mathcal{N}_{0}}+K \\
\sum_{k=1}^{K-1} \mathbb{1}_{\left\{z_{i+1} \neq z_{i}\right\}} z_{i}^{-1} \leq \frac{R_{n}}{R E_{s}}-1 \\
0 \leq\left(z_{\ell}-z_{\ell-1}\right) \mathcal{N}_{0} \leq E_{\max } \quad \forall \quad \ell=1, \ldots, K
\end{gathered}
$$

Approximation for posynomial ratio

- Let $g(\mathbf{x})=\sum_{i} u_{i}(\mathbf{x})$. Approximate a ratio of polynomials $\frac{f(\mathbf{x})}{g(\mathbf{x})}$ with $\frac{f(\mathbf{x})}{\tilde{g}(\mathbf{x})}$ where

$$
\tilde{g}(\mathbf{x})=\prod_{i}\left(\frac{u_{i}(\mathbf{x})}{\alpha_{i}}\right)^{\alpha_{i}} \leq g(\mathbf{x})
$$

- Directly follows from AM-GM inequality $\sum_{i} \alpha_{i} v_{i} \geq \prod_{i} v_{i}^{\alpha_{i}}$
- If, $\alpha_{i}=\frac{u_{i}\left(\mathbf{x}_{0}\right)}{g\left(\mathbf{x}_{0}\right)} \quad \forall \quad i$, for any fixed $\mathbf{x}_{0}>0$, then

$$
\tilde{g}\left(\mathbf{x}_{0}\right)=g\left(\mathbf{x}_{0}\right)
$$

- $\tilde{g}\left(\mathbf{x}_{0}\right)$, it is the best local monomial approximation $g\left(\mathbf{x}_{0}\right)$ near x_{0}, in the sense of first order Taylor approximation.

Algorithm: finds locally optimal power allocation

Initialize with feasible $\mathbf{z}=\left\{z_{1}, \ldots, z_{K}\right\}$

1. Evaluate the denominator posynomial with the given z
2. Compute for each term i in this posynomial

$$
\alpha_{i}=\frac{\text { value of } i \text { th term in posynomial }}{\text { value of posynomial }}
$$

3. Approximate the denominator of the posynomial ration by $\tilde{g}(\mathbf{z})$ using weights α_{i}
4. Solve the resulting GP
5. Go to step 1 , using \mathbf{z} of step 4
6. Terminate the $k^{\text {th }}$ loop if

$$
\left\|\mathbf{z}^{(k)}-\mathbf{z}^{(k-1)}\right\| \leq \epsilon
$$

Outputs: A locally optimal z

Subproblem 2 for HARQ-CC with slow fading

$$
\begin{gathered}
P_{e}\left(\sum_{\ell=1}^{i} E_{\ell}, \gamma\right)=\exp \left(\frac{-\sum_{\ell=1}^{i} E_{\ell \cdot \gamma}}{\mathcal{N}_{0}}\right) \\
P_{\text {out }}=\mathbb{E}_{\gamma}\left\{\prod_{\ell=1}^{K} P_{e}\left(\sum_{\ell=1}^{i} E_{\ell}, \gamma\right)\right\}
\end{gathered}
$$

for Rayleigh fading

$$
P_{\mathrm{out}}=\frac{1}{\sum_{\ell=1}^{i}(K-\ell+1) E_{\ell}}
$$

Subproblem 2 for HARQ-CC with slow fading

$$
\begin{aligned}
\max _{\left\{E_{1}, \ldots, E_{K}\right\}} & \sum_{\ell=1}^{K}(K-\ell+1) E_{\ell} \\
\text { s.t. } \quad & \sum_{\ell=1}^{K} E_{\ell}\left(\sum_{i=1}^{\ell-1}(\ell-i+1) E_{i}+1\right)^{-1} \leq E_{a v}^{t} \\
& \sum_{\ell=1}^{K} \mathbb{1}_{\left\{E_{\ell \neq 0}\right\}} E_{\ell}\left(\sum_{i=1}^{\ell-1}(\ell-i+1) E_{i}+1\right)^{-1} \leq \frac{E_{a v}^{r}}{R E_{s}} \\
& 0 \leq E_{i} \leq E_{\max }
\end{aligned}
$$

Converting to GP

Let $z_{1}=1+E_{1}, z_{2}=1+2 E_{1}+E_{2}, z_{3}=1+3 E_{1}+2 E_{2}+E_{3}$

$$
E_{i}=z_{i}-2 z_{i-1}+z_{i-2}
$$

$$
\begin{array}{cl}
\max _{\left\{z_{1}, \ldots, z_{K}\right\}} & z_{K} \\
\text { s.t. } & \sum_{\ell=1}^{K} z_{\ell-1}^{-1}\left(z_{\ell}+z_{\ell-2}\right) \leq E_{a v}^{t}-2 K+1 \\
& \sum_{\ell=1}^{K} z_{\ell-1}^{-1} \leq \frac{E_{a v}^{r}}{R E_{s}} \\
& 0 \leq z_{i}-2 z_{i-1}+z_{i-2} \leq E_{\max }
\end{array}
$$

Subproblem 1

- Can be solved using merit-based sequential quadratic programming (MSQP)
- MSQP guarantees global convergence to local optimum under some weak conditions.

