Through-optimal Power Control Policies for Uncoordinated Energy Harvesting Links

November 5, 2016

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Introduction

Energy Neutrality Constraint:

Cumulative energy consumed \leq Cumulative energy harvested

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

- Must be satisfied always.
- ► Dual EH links: P2P links with EH transmitter and receiver.

System Model: uncoordinated case

Tx and Rx does not have the BSI of the other node.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

CASE-I: Constant Decoding Energy

 Receiver uses R amount of energy to sample and decode a packet.

Goal: Maximize the long-term time averaged utility

$$\max_{e_n^t, e_n^r} \quad \mathcal{U} = \max_{e_n^t, e_n^r} \left(\liminf_{T \to \infty} \frac{1}{T} \sum_{n=1}^T \mathbb{1}_{\{e_n^r \neq 0\}} U(e_n^t) \right)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

where U(.) is a concave non-decreasing function.

Bound 1

Lemma

For an uncoordinated dual EH link the time-averaged utility is upper bounded as

$$\mathcal{U} \leq \min\left(\frac{U(\mu_t)}{U(B_{\max}^t)}, \frac{\mu_r}{R}\right) U(B_{\max}^t).$$

Proof:

$$\mathcal{U} = \liminf_{T \to \infty} \sum_{n=1}^{T} \mathbb{1}_{\{e_n^r \neq 0\}} U(e_n^t) \stackrel{(a)}{=} \mathbb{E} \left[\mathbb{1}_{\{e_n^r \neq 0\}} U(e_n^t) \right],$$

$$\stackrel{(b)}{=} \min \left(\frac{\mathbb{E} \left[U(e_n^t) \right]}{U(B_{\max}^t)}, \mathbb{E} \left[\mathbb{1}_{\{e_n^r \neq 0\}} \right] \right) U(B_{\max}^t),$$

$$\stackrel{(c)}{\leq} \min \left(\frac{U \left[\mathbb{E}(e_n^t) \right]}{U(B_{\max}^t)}, \mathbb{E} \left[\mathbb{1}_{\{e_n^r \neq 0\}} \right] \right) U(B_{\max}^t),$$

$$\stackrel{(d)}{\leq} \min \left(\frac{U(\mu_t)}{U(B_{\max}^t)}, \frac{\mu_r}{R} \right) U(B_{\max}^t).$$

Optimal Policy

SCENARIO I: $\frac{\mu_r}{R} \ge 1$

$$\boldsymbol{e}_{n}^{t} = \begin{cases} \mu_{t} + \delta, & \text{if } B_{n}^{t} \geq \frac{B_{\max}^{t}}{2}, \\ \min\left\{\mu_{t} - \delta, B_{n}^{t}\right\}, & \text{if } B_{n}^{t} < \frac{B_{\max}^{t}}{2}. \end{cases}$$
(1)

SCENARIO II($\frac{\mu_r}{R} < 1$): The receiver employs a policy where it turns on after every N_r slot which is given as follows

$$N_r = \begin{cases} N = \lceil \frac{R}{\mu_r} \rceil, & \text{if } B_n^r < \frac{B_{\max}^r}{2}, \\ N = \lfloor \frac{R}{\mu_r} \rfloor, & \text{if } B_n^r \ge \frac{B_{\max}^r}{2}. \end{cases}$$

In each slot transmitter allocates the energy according to (1), and transmits the accumulated energy in the next slot when the receiver is on.

Performance: SCENARIO I

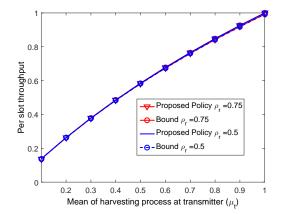


Figure: Comparison of upper bound with policy in (1). The parameters chosen are $B_{max}^t = B_{max}^r = 50, R = 0.5$

Performance: SCENARIO II

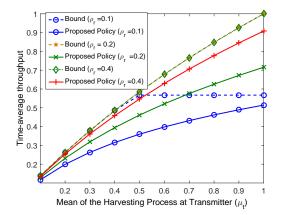


Figure: Case II: Comparison of upper bound and policy in (6). The parameters chosen are $B_{max}^t = B_{max}^r = 50$

(日)

Bound 2

SCENARIO I $\left(\frac{\mu_r}{R} \ge 1\right)$: Receiver is always on

 $\mathcal{U} \leq U(\mu_t)$

- SCENARIO II $\left(\frac{\mu_r}{R} < 1\right)$: Receiver turns on intermittently
 - 1. Consider a system with infinite size battery
 - Assume all the energy at both nodes arrive at the start.
 - Total energy at transmitter $= T \mu_t$
 - Total energy at receiver $= T \mu_r$
 - Number of slots coummunication is possible =

$$\left\lfloor \frac{T\mu_r}{R} \right\rfloor$$

Bound 2

► We equally divide the power over the slots in which communication happen, i.e., $e_n^t = \frac{T\mu_t}{N'}$ where $N' \triangleq \left| \frac{T\mu_r}{R} \right|$

$$\mathcal{U} \leq \frac{1}{T} \sum_{n=1}^{N'} \mathbb{1}_{\{e_n^r \neq 0\}} U(e_n^t)$$
$$= \frac{1}{T} \sum_{n=1}^{N'} \mathbb{1}_{\{e_n^r \neq 0\}} U\left(\frac{T\mu_t}{N'}\right)$$
$$= \frac{1}{T} \left\lfloor \frac{T\mu_r}{R} \right\rfloor U\left(\frac{T\mu_t}{N'}\right)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Performance: SCENARIO II

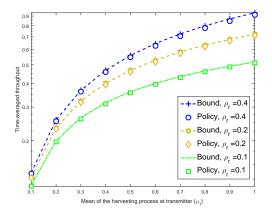


Figure: Case II: Comparison of modified upper bound and policy in (6). The parameters chosen are $B_{max}^t = B_{max}^r = 50$

Analysis of the battery size

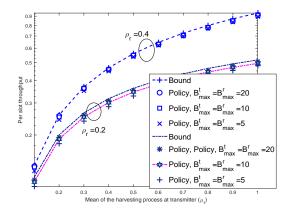


Figure: Case II: Comparison of modified upper bound and policy in (6). The parameters chosen are R = 0.5