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Introduction EHS

Energy Harvesting Sensors (EHS)

Why use EHS?

Operate using the energy they harvest from the environment
Capacity to operate for an infinite duration
When battery replacement is a hard task

Problems?

Harvesting process is sporadic and unreliable
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Objectives

Objectives

1 Explore various heuristic policies
How? Vary transmission energy based on:

The present battery energy level
Number of ACK’s/NAK’s received
The retransmission index

2 Find the cost of not having channel state information (CSI)

Completely observable case vs partially observable case
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System Model

System Model
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Figure : System model.
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System Model System Description

System Description

Transmitter

BPSK modulation was used
One frame duration is dedicated for transmission of one packet
Each frame has K slots

Transmitter has K attempts in each frame to successfully transmit a
packet

If packet is not successfully transmitted in one frame?

Discard the packet; Outage is said to occur

Energy Injection Process

Every slot, Es energy is harvested with prob. ρ and no energy is
harvested with prob. 1− ρ
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System Model System Description

Channel

Modelled as a finite state Markov chain (FSMC) [3]

Packet error probability:

Pe(Ei , γ) = 1−

(
1− Q

(√
2γEi

N0

))L

(1)

Feedback:

If packet is in error: (NAK) is sent
If packet is successfully decoded: (ACK) is sent

Performance metric:

Outage probability =
number of packets discarded

number of frames
(2)
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System Model System Description

Transmission Timeline

Process
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Figure : Transmission timeline of the EH node for K = 4, showing the random energy
harvesting process

( )
and periodic data arrival

( )
.The marker “X” denotes slots

where the EHS does not transmit data
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Heuristic Policies

Heuristic Policies

First, simulated the fixed energy transmission scheme:

Transmit at different fixed energies E = W × Es

K = 4, N0 = 1mJ and Es = 1mJ (0dB with respect to N0)

Finite battery capacity Bmax = 20Es

7 state FSMC channel with fmTp = 0.03 was used

Outage probability vs ρ was plotted
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Heuristic Policies Fixed Energy Transmission Scheme

Fixed Energy Transmission Scheme
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Figure : Plot of outage probability versus energy harvesting rate using fixed
energy transmission scheme, for different values of W = E/Es .
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Heuristic Policies Battery State and ACK/NAK Threshold Policy

Battery State and ACK/NAK Threshold Policy

First, transmit with initial energy E

If ACK is received, and if battery energy level, Bi ≤ 4E

Transmission energy is decreased by 0.5mJ
The energy should not decrease below 0.5mJ

If an NAK is received:

If(Bi ≤ 5Etx ), don’t change Etx

If (5Etx < Bi ≤ 10Etx ) then increase Etx by 2mJ (Etx = Etx + 2mJ)
Similarly, if (10Etx < Bi ≤ 15Etx ) then Etx is increased by 4mJ
(Etx = Etx + 4mJ)
And, if (15Etx < Bi ) then Etx is increased by 8mJ (Etx = Etx + 8mJ)

At the K th slot, if ACK is not received, transmit with all the energy in
the battery
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Heuristic Policies Battery State and ACK/NAK Threshold Policy
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Figure : Energy harvesting rate(ρ) vs outage probability graph using the Heuristic
Threshold Policy.
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Heuristic Policies Policy Using ρ

Policy Using the Energy Harvesting Rate ρ

Different policies did well at different ρ values

Make transmission energy a function of ρ

Etx = f (ρ)
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Heuristic Policies Policy Using ρ
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Algorithm:

0.00<=ρ<0.05 E=0.2;
0.05<=ρ<0.15 E=0.3;
0.15<=ρ<0.35 E=0.5;
0.35<=ρ<0.45 E=0.95;
0.45<=ρ<0.55 E=1.05;
0.55<=ρ<0.65 E=1.45;
0.65<=ρ<0.75 E=1.7;
0.75<=ρ<0.85 E=1.9;
0.85<=ρ E=2;

Figure : Energy harvesting rate(ρ) vs outage probability graph taking the energy
harvesting rate (ρ) into consideration.
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Harvesting Optimized Fixed Energy Transmission Scheme Analysis

Harvesting Optimized Fixed Energy Transmission Scheme

Here,
Etx = εKρEs (3)

Objective, to minimize the outage:

Pout = PK
e (εKρEs , γ) (4)

Average energy harvested per frame:

Ēs = KρEs (5)

Average energy used per frame using energy Etx :

Ētx = Eγ{εKρEs(1− Pe(εKρEs , γ))

+2εKρEs(Pe(εKρEs , γ))(1− Pe(εKρEs , γ))

+ . . .+ (K − 1)εKρEs(Pe(εKρEs , γ))K−2(1− Pe(εKρEs , γ))

+K 2ερEs(Pe(εKρEs , γ))K−1}
(6)
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Harvesting Optimized Fixed Energy Transmission Scheme Analysis

Energy unconstrained regime occurs when Ētx ≤ Ēs :

Eγ{εKρEs(1− Pe(εKρEs , γ))

+2εKρEs(Pe(εKρEs , γ))(1− Pe(εKρEs , γ))

+ . . .+ (K − 1)εKρEs(Pe(εKρEs , γ))K−2(1− Pe(εKρEs , γ))

+KεKρEs(Pe(εKρEs , γ))K−1} ≤ KρEs

(7)

Find optimum ε satisfying (7) and minimizing (4)
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Harvesting Optimized Fixed Energy Transmission Scheme Simulations and results
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Figure : ε vs average energy used (given by equation (6)) for an IID channel and
Es = 12dB. Notice that average energy used per frame crosses KρEs for ε < 1.
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Harvesting Optimized Fixed Energy Transmission Scheme Simulations and results
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Figure : ε vs outage probability (using Monte Carlo simulations) for various values
of energy harvesting rate (ρ). Here infinite battery capacity is used.
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Harvesting Optimized Fixed Energy Transmission Scheme Simulations and results
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Figure : Comparison of the outage probabilities for finite battery capacity
(Bmax = 20Es) and infinite battery capacity for different values of ε and energy
harvesting rates.
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Harvesting Optimized Fixed Energy Transmission Scheme Simulations and results
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Figure : Energy harvesting rate (ρ) vs outage probability using the Harvesting
Optimized Fixed Energy Transmission Scheme.
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Decision Theoretic Policies Markov Decision Processes (MDP)

Basic Structure of MDP

An MDP consists of

A set of states

A set of actions

A transition probability function

A reward function

 

  Agent

 Environment

 Action
 Reward State

Figure : Basic block diagram of MDP
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Decision Theoretic Policies Markov Decision Processes (MDP)

Policy π

Mapping from state space to action space S→ A
Value Function V (s)

Expected discounted reward starting from some state s

Vπ(s) = R(s, π(s)) + ν
∑
s′∈S

T (s, π(s), s ′)Vπ(s ′) (8)

Objective: To find an optimal policy π∗ which maximises V (s)
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Decision Theoretic Policies Markov Decision Processes (MDP)

Value Iteration Algorithm

Used to solve MDP

Value iteration algorithm is as follows:

V1(s) = 0 for all s
t=1
begin loop
t=t+1
begin loop for all s ∈ S

begin loop for all a ∈ A
Qa

t (s) = R(s, a) + γ
∑

s′∈S

T (s, a, s ′)Vt−1(s ′)

end loop
Vt(s) = maxa Q

a
t (s)

end loop
until |Vt(s)− Vt−1(s)| < ε for all s ∈ S
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Decision Theoretic Policies Formulation of Our Problem as an MDP

Formulation of Our Problem as an MDP

Our basic idea was to use MDP to sequentially decide the
transmission energy (action) based on:

the current battery energy level (Bi )
the retransmission index (k)
the current channel state (γi )
the energy harvesting rate (ρ)

All the energies are normalized with respect to Emin

L = Es/Emin is the normalized energy harvested
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Decision Theoretic Policies Components of the MDP Model

State Space

S = B×G×K× U consists of the following subspaces

The set of battery states B = {0, 1, ...,Bmax}
The set of channel states G = {γ1, γ2, ..., γN}
The set of retransmission indices K = {0, 1, ...,K − 1}
The set of packet reception states U = {0, 1}

1 when an ACK is received
0 when a NAK is received
Set to 0 at the beginning of every frame
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Decision Theoretic Policies Components of the MDP Model

Action Space

Set of possible actions A = {0, 1, ..., b}, b ∈ B
Different energies of transmission

When a ∈ A is chosen, transmission energy Et = aEmin
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Decision Theoretic Policies Components of the MDP Model

State Transition Probability

Consider two arbitrary states s = {b, γ, k , u} and s ′ = {b′, γ′, k ′, u′}
in S
The state transition probability function is as follows:

T (s, a, s ′) = δ(k ′, k+)Pγ,γ′ψ((b, u), a, (b′, u′), k, γ) (9)

k+ = (k + 1) mod K
δ{k ′, k} = Kronecker delta function
Pγ,γ′ = transition probability of the channel state from γ to γ′

ψ((b, u), a, (b′, u′), k , γ) = probability that the system starts from
battery state b and packet reception state u, takes an action a, and
lands in the state (b′, u′)
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Decision Theoretic Policies Components of the MDP Model

Let

η(b, a, b′) = ρδ(b′,min(b + L− a,Bmax)) + (1− ρ)δ(b′, b − a) (10)

If k = K − 1,

ψ((b, u), a, (b′, u′), k , γ) =

{
η(b, a, b′) when u′ = 0

0 otherwise.
(11)

If k 6= K − 1,

ψ((b, u), a, (b′, u′), k , γ) =


η(b, a, b′) u′ = 1, u = 1

η(b, a, b′)(1− Pe(aE ; γ)) u′ = 1, u = 0

η(b, a, b′)Pe(aE ; γ) u′ = 0, u = 0

0 otherwise

(12)
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Decision Theoretic Policies Components of the MDP Model

Reward

Let s = (b, γ, k , u) be the state of the system. The expected reward
is defined as

R(s, a) =


1− Pe(aE ; γ) a ≤ b, u = 0

−10 (a > b, u = 0) or (a 6= 0, u = 1)

0 otherwise

(13)
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Decision Theoretic Policies Components of the MDP Model

Solution to the MDP

Solution to the MDP is an optimal policy µ∗MDP

Mapping from state space S to action space A
Obtained by finding the solution to the Bellman equation:

λ∗ + h∗(s) = max
a∈A,a≤B(s)

[
R(s, a) + ν

∑
s′∈S
T (s, a, s ′)h∗(s ′)

]
(14)

ν: Discount factor
λ∗: Optimal average reward
h∗: Optimal reward vector
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Decision Theoretic Policies Components of the MDP Model
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Figure : Energy harvesting rate(ρ) vs outage probability graph for policy using
MDP. Here, normalized Doppler (fmTp)=0.001, K = 3, Es = 12dB, Bmax = 10Es ,
Emin = 0.25Es, N0 = 1
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Decision Theoretic Policies What if the Exact Channel State is Unknown?

General Performance Comparison With the Case of Partial
Observability

Suppose exact CSI is unknown at the Rx:

Partially observable Markov decision process (POMDP) can be used [2]
Calculate the belief of the channel states β(γ):

βn(γj ) =

∑
i Pγi ,γjP(on−1|an−1, γi )βn−1(γi )∑

j

∑
i Pγi ,γjP(on−1|an−1, γi )βn−1(γi )

(15)

on ∈ O is the observation function: ACK/NAK

an is the action chosen at the nth instant
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Decision Theoretic Policies What if the Exact Channel State is Unknown?

Maximum Likelihood (ML) heuristic:

γML = arg max
γ∈G

β(γ) (16)

sML = (b, γML, k , u) (17)

µML = µ∗MDP(sML) (18)

Voting policy heuristic:

µvoting = arg max
a∈A

∑
s=(b,γ,k,u)

γ∈G

β(s)δ(µ∗MDP(s), a) (19)
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Decision Theoretic Policies What if the Exact Channel State is Unknown?
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Figure : Energy harvesting rate(ρ) vs outage probability graph for comparison of
the performance of MDP and POMDP. Here again, normalized Doppler
(fmTp)=0.001, K = 3, Bmax = 10Es , Emin = 0.25Es, Es = 12dB, N0 = 1
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Decision Theoretic Policies How the Performance Varies with the Channel Fading Rate
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Figure : MDP and POMDP performance comparison for different values of
normalized Doppler. Here, ρ = 0.1, K = 3, Bmax = 5E , Emin = 0.25E , Es = 3E
(12Emin) and N0 = 1, where E = 12dB (normalized with respect to N0)
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Decision Theoretic Policies Formulation of MDP without including the Channel States

Formulation of MDP without including the Channel States

The performance difference between MDP and POMDP is large at
higher fmTp

Difficult to guess the channel state as fading rate increases

Instead, formulating an MDP independent of the channel states could
do better?
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Decision Theoretic Policies Formulation of MDP without including the Channel States

State Space

S = B×K× U consists of the following subspaces

The set of battery states B = {0, 1, ...,Bmax}
The set of retransmission indices K = {0, 1, ...,K − 1}
The set of packet reception states U = {0, 1}
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Decision Theoretic Policies Formulation of MDP without including the Channel States

State Transition Probability

State transition probability from state s = {b, k, u} to
s ′ = {b′, k ′, u′} in S is as follows:

T (s, a, s ′) = δ(k ′, k+)ψ((b, u), a, (b′, u′), k) (20)

k+ = (k + 1) mod K
δ{k ′, k} = Kronecker delta function
ψ((b, u), a, (b′, u′), k) = probability that the system starts from battery
state b and packet reception state u, takes an action a, and lands in
the state (b′, u′)
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Decision Theoretic Policies Formulation of MDP without including the Channel States

Let

η(b, a, b′) = ρδ(b′,min(b + L− a,Bmax)) + (1− ρ)δ(b′, b − a) (21)

P̄e(aE ) = Eγ{Pe(aE ; γ)} (22)

If k = K − 1,

ψ((b, u), a, (b′, u′), k) =

{
η(b, a, b′) when u′ = 0

0 otherwise.
(23)

If k 6= K − 1,

ψ((b, u), a, (b′, u′), k) =


η(b, a, b′) u′ = 1, u = 1

η(b, a, b′)(1− P̄e(aE )) u′ = 1, u = 0

η(b, a, b′)P̄e(aE ) u′ = 0, u = 0

0 otherwise

(24)
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Decision Theoretic Policies Formulation of MDP without including the Channel States

Reward

Let s = (b, γ, k , u) be the state of the system. The expected reward
is defined as

R(s, a) =


1− P̄e(aE ) a ≤ b, u = 0

−10 (a > b, u = 0) or (a 6= 0, u = 1)

0 otherwise

(25)
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Decision Theoretic Policies Formulation of MDP without including the Channel States
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Figure : Energy harvesting rate(ρ) vs outage probability graph to compare policies
using MDP, POMDP and new MDP. Here, normalized Doppler (fmTp)=0.001,
K = 3, Es = 12dB, Bmax = 10Es , Emin = 0.25Es, N0 = 1
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Decision Theoretic Policies Formulation of MDP without including the Channel States
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Figure : Energy harvesting rate(ρ) vs outage probability graph for policy using
MDP. Here, normalized Doppler (fmTp)=0.0389, K = 3, Es = 12dB,
Bmax = 10Es , Emin = 0.25Es, N0 = 1
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Decision Theoretic Policies Formulation of MDP without including the Channel States
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Figure : Energy harvesting rate(ρ) vs outage probability graph for policy using
MDP. Here, normalized Doppler (fmTp)=0.1, K = 3, Es = 12dB, Bmax = 10Es ,
Emin = 0.25Es, N0 = 1
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Conclusions

Conclusions

Channel dependent MDP performed the best at all scenarios

The performance of POMDP worsened at higher fmTp

Channel independent MDP performed well at higher fmTp

Advantages over POMDP and MDP:

Computationally inexpensive
Easy implementation

Disadvantage

Still need to evaluate a policy every time ρ,K ,Es or Bmax changes

The policy with Etx = εKρEs also gave a good overall performance
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Future Work

Future Work

Exploit channel correlation:

Etx = f (ρ,ACK/NAK , δ)
Start with E0 = ε0KρEs

Update ε as:

εnew = εold + a · b(δ)

a =

{
−1, ACK

+1, NAK

δ : Time duration since the last observation of ACK/NAK

b : Decreasing function of δ

Applying the Chase combining concept

Performance analysis in terms of good-put rate
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Thank you!
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