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@ Alternating convex projections
@ Non-convex projections

@ Alternating non-convex projections
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Notations and Basic results

o [E : Euclidean space , B : unit ball and S : unit sphere.

@ A sequence (xx) in E converges linearly with rate x < 1 to x if
there is some constant « such that
Ixk — x| < axk ¥V k>0.

@ "“R—linear convergence” : the infimum of all possible
constants k, is the “rate of R—linear convergence”.

o Let M, N C E. The angle between M and N as the angle
between 0 and 5 whose cosine is
c(M,N) :=max{{x,y) : xeSAMN(MNN)*,yec
SANN(MNN)LY

e The quantity ¢(M, N) is well-defined unless one subspace is a
subspace of the other, in which case we set ¢(M, N) = 0.
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Projection, Distance and Convexity

@ For closed M € E, the distance of x from M
du(x) = min{|x — y|| : y € M}
and the projection of x onto M
Pu(x) = argmin{|jx — y|| : y € M}

e If M is convex, Py(x) is singleton. Otherwise, it is not for
some x for sure!

@ For any point x € M, vectors in the cone
Ny (x) ={Au: X € Ry;x € Py(x+ u)} are called proximal
normals to M at x.

@ Limits of proximal normals to M at points x, € M
approaching x are called limiting normals, and comprise the
limiting normal cone Ny;(x).

4/16



Alternating projections on subspaces

e For affine subspaces M and N, (PypPn)"(x) — Ppan(x)
o Convergence is linear at rate (cos#)?,

1(PamP)"(x) = Pran(x)]| < (cos8)>"~2|x]],

where @ is the angle between M and N.

@ Alternating projections naturally extends to closed convex sets
M and N. (PyPn)"(x) = Ppan(x)
Convergence is linear providing M N int(N) # ().

@ To find a point x € M N N, with M and N closed convex sets
on E, alternating convex projections is a basic algorithm.

@ Applications: statistics, finance, engineering sciences, image
processing ...
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Example in Finance

For symmetric matrix C, computing the nearest correlation matrix:
computing the projection of C onto the intersection of S, the
semi-definite positive matrices, and the matrices with ones on the
diagonal.

Used as calibration for evaluating extreme risks (Stress testing)
How to compute the nearest correlation matrix ? : alternating
projection.
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Nonconvex heuristic

Alternating convex projections is a good method and Alternating
nonconvex projections is also a popular heuristic !
Examples:

@ Optics : phase retrieval of images
Simple version : given a; € CK, find x € C*, so that
|<aj,x>|:bj j:].,--~ ,m
with alternative projections onto
M= {(x,z) € Ck x C™: Ax = z}
N ={(x,2): ’ZJ’ =bj, j=1,-- ,m}.
@ Control : low-order control design
affine M is n x n symmetric matrices.
N is positive semidefinite matrices of rank r.
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Easy non-convex projections

For closed non-convex M € R", the projection Pp(x) is
somewhere nonsingleton. But projection may still be easy.
Examples:

@ Single quadratic constraint
M={xeR": x"Ax+ b"x = c}
Projection is analogous to trust-region sub problems, solvable
with a special Newton method.

@ Rank constraint:
M= {X € R™™ :rank(X) = r}
To project, find a singular value decomposition X = UDV and
zero all but the first r largest singular values in D.
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Spectral sets and Projection

For permutation-invariant K C R”, the spectral set of symmetric
matrices

A HK)={X €S, : (M(X), Aa(X), -, An(X)) € K}.
Examples:

e K = R gives the positive semi-definite cone 5.
o K={x:|x|loo =r} gives {X : Amax(X) =r}

If y € Px(x) and U orthogonal, then
UT Diag(y)U € Py-1(x)(UT Diag(x)U)
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Prox-regular spectral sets

Transfer of structure: if K is invariant by permutation of entries
o K convex = A~1(K) convex.
o K prox-regular = A\71(K) prox-regular.
@ General notion of prox-regularity : Py is locally unique.
°

prox-regular spectral sets have locally all the good properties.
(Ex: manifolds ...)
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Prox-regular spectral sets in practice

Many spectral sets in alternative nonconvex projections

@ Numerical algebra: nonnegative inverse eigenvalue problem

For \ given, find X ¢ MN N,
M = {X e R™": \(X) = A}

N={XeR™":X; >0}

@ Image processing: design of tight frames

Find the associated Gram matrix X € MN N

M={XecC™: \XX)=(5,---,5,0,---,0)}

N={XeC™: Xi=1[X|oo < pu}.
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Alternating non-convex projections

(local linear convergence) For closed sets M, N C R". Assume

@ strong regularity holds at x € M N N
o M is super-regular at X
@ initial xo near x

Then alternating projection method converges R—linearly to
MANN.

Comments:
@ Super-regular sets: convex sets, smooth manifolds

@ The convergence rate is cos 6, where 6 is the minimal angle
between Ny (X) and —Ny(X)

@ Rate is (cosf)? if both M and N are super-regular.
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Strong regularity

Definition

Strong regularity: Np(X) N —Npy(X) = {0}, in other words, the
minimal angle between Ny (X) and —Ny(X) is 6 > 0.

Examples
@ The intersection of two smooth manifolds is strongly regular
< the manifolds are transverse
@ The intersection of two convex sets is strongly regular < no
separating hyperplane

Definition

(transversality). Suppose M and N are two Ck—manifolds around
a point x € M N N. We say that M and N are transverse at x if
Tm(x) + Tyn(x) = E, where Tp(x) is the tangent space to M at
x € M.
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Super-regularity

Definition

(Super-regularity) A closed set X C E is super-regular at a point

z € X when, for all § > 0, if distinct points w,x € X are
sufficiently near z, then their difference w — x makes an angle of at
least 7 — & with any nonzero normal v € Nx(x).

Examples of super-regular sets:
@ convex sets

smooth manifolds

prox-regular sets

constraint sets with Mangasarian-Fromovitz

nearly convex sets
@ subsmooth hypomonotone

prox-regular C super-regular C regular

14 /16



References

[d A. Lewis and J. Malick, “Alternating projections on
manifolds,” Mathematics of Operations Research, 2007.

@ A. Lewis, R. Luke, and J. Malick, “Local convergence of
nonconvex averaged and alternating projections,” Foundations
of Computational Mathematics, 2008.

15/16



Thank You
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