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Notations and Basic results

E : Euclidean space , B : unit ball and S : unit sphere.

A sequence (xk) in E converges linearly with rate κ < 1 to x if
there is some constant α such that
‖xk − x‖ ≤ ακk ∀ k ≥ 0.

“R−linear convergence” : the infimum of all possible
constants κ, is the “rate of R−linear convergence”.

Let M,N ⊂ E. The angle between M and N as the angle
between 0 and π

2 whose cosine is
c(M,N) := max{〈x , y〉 : x ∈ S ∩M ∩ (M ∩ N)⊥, y ∈
S ∩ N ∩ (M ∩ N)⊥}
The quantity c(M,N) is well-defined unless one subspace is a
subspace of the other, in which case we set c(M,N) = 0.
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Projection, Distance and Convexity

For closed M ∈ E, the distance of x from M
dM(x) = min{‖x − y‖ : y ∈ M}
and the projection of x onto M
PM(x) = argmin{‖x − y‖ : y ∈ M}
If M is convex, PM(x) is singleton. Otherwise, it is not for
some x for sure!

For any point x ∈ M, vectors in the cone
Np
M(x) = {λu : λ ∈ R+; x ∈ PM(x + u)} are called proximal

normals to M at x .

Limits of proximal normals to M at points xn ∈ M
approaching x are called limiting normals, and comprise the
limiting normal cone NM(x).
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Alternating projections on subspaces

For affine subspaces M and N, (PMPN)n(x)→ PM∩N(x)

Convergence is linear at rate (cos θ)2,
‖(PMPN)n(x)− PM∩N(x)‖ ≤ (cos θ)2n−1‖x‖,
where θ is the angle between M and N.

Alternating projections naturally extends to closed convex sets
M and N. (PMPN)n(x)→ PM∩N(x)
Convergence is linear providing M ∩ int(N) 6= ∅.
To find a point x ∈ M ∩ N, with M and N closed convex sets
on E, alternating convex projections is a basic algorithm.

Applications: statistics, finance, engineering sciences, image
processing ...

5 / 16



Example in Finance

For symmetric matrix C , computing the nearest correlation matrix:
computing the projection of C onto the intersection of S+

n , the
semi-definite positive matrices, and the matrices with ones on the
diagonal.
Used as calibration for evaluating extreme risks (Stress testing)
How to compute the nearest correlation matrix ? : alternating
projection.
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Nonconvex heuristic

Alternating convex projections is a good method and Alternating
nonconvex projections is also a popular heuristic !
Examples:

Optics : phase retrieval of images
Simple version : given aj ∈ Ck , find x ∈ Ck , so that
| 〈aj , x〉 | = bj j = 1, · · · ,m
with alternative projections onto
M = {(x , z) ∈ Ck × Cm : Ax = z}
N = {(x , z) : |zj | = bj , j = 1, · · · ,m}.
Control : low-order control design
affine M is n × n symmetric matrices.
N is positive semidefinite matrices of rank r .
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Easy non-convex projections

For closed non-convex M ∈ Rn, the projection PM(x) is
somewhere nonsingleton. But projection may still be easy.
Examples:

Single quadratic constraint
M = {x ∈ Rn : xTAx + bT x = c}
Projection is analogous to trust-region sub problems, solvable
with a special Newton method.

Rank constraint:
M = {X ∈ Rn×m : rank(X ) = r}
To project, find a singular value decomposition X = UDV and
zero all but the first r largest singular values in D.
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Spectral sets and Projection

For permutation-invariant K ⊂ Rn, the spectral set of symmetric
matrices
λ−1(K ) = {X ∈ Sn : (λ1(X ), λ2(X ), · · · , λn(X )) ∈ K}.
Examples:

K = Rn
+ gives the positive semi-definite cone S+

n .

K = {x : ‖x‖∞ = r} gives {X : λmax(X ) = r}

Theorem

If y ∈ PK (x) and U orthogonal, then
UTDiag(y)U ∈ Pλ−1(K)(U

TDiag(x)U)
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Prox-regular spectral sets

Transfer of structure: if K is invariant by permutation of entries

K convex ⇒ λ−1(K ) convex.

K prox-regular ⇒ λ−1(K ) prox-regular.

General notion of prox-regularity : PM is locally unique.

prox-regular spectral sets have locally all the good properties.
(Ex: manifolds ...)
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Prox-regular spectral sets in practice

Many spectral sets in alternative nonconvex projections

Numerical algebra: nonnegative inverse eigenvalue problem
For λ given, find X ∈ M ∩ N,
M = {X ∈ Rn×n : λ(X ) = λ}

N = {X ∈ Rn×n : Xij ≥ 0}.
Image processing: design of tight frames
Find the associated Gram matrix X ∈ M ∩ N
M = {X ∈ Cn×n : λ(X ) = ( n

d , · · · ,
n
d , 0, · · · , 0)}

N = {X ∈ Cn×n : Xii = 1, ‖X‖∞ ≤ µ}.
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Alternating non-convex projections

Theorem

(local linear convergence) For closed sets M,N ⊂ Rn. Assume

strong regularity holds at x ∈ M ∩ N

M is super-regular at x

initial x0 near x

Then alternating projection method converges R−linearly to
M ∩ N.

Comments:

Super-regular sets: convex sets, smooth manifolds

The convergence rate is cos θ, where θ is the minimal angle
between NM(x) and −NN(x)

Rate is (cos θ)2 if both M and N are super-regular.
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Strong regularity

Definition

Strong regularity: NM(x) ∩ −NN(x) = {0}, in other words, the
minimal angle between NM(x) and −NN(x) is θ > 0.

Examples

The intersection of two smooth manifolds is strongly regular
⇔ the manifolds are transverse

The intersection of two convex sets is strongly regular ⇔ no
separating hyperplane

Definition

(transversality). Suppose M and N are two C k−manifolds around
a point x ∈ M ∩ N. We say that M and N are transverse at x if
TM(x) + TN(x) = E , where TM(x) is the tangent space to M at
x ∈ M.
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Super-regularity

Definition

(Super-regularity) A closed set X ⊂ E is super-regular at a point
z ∈ X when, for all δ > 0, if distinct points w , x ∈ X are
sufficiently near z , then their difference w − x makes an angle of at
least π

2 − δ with any nonzero normal v ∈ NX (x).

Examples of super-regular sets:

convex sets

smooth manifolds

prox-regular sets

constraint sets with Mangasarian-Fromovitz

nearly convex sets

subsmooth hypomonotone

prox-regular ⊂ super-regular ⊂ regular
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Thank You
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