Group Discussion Alternating Projections

Pradip Sasmal

Indian Institute of Science, Bangalore

$$
\text { June 9, } 2018
$$

Organization

- Alternating convex projections
- Non-convex projections
- Alternating non-convex projections

Notations and Basic results

- \mathbb{E} : Euclidean space, \mathbb{B} : unit ball and \mathbb{S} : unit sphere.
- A sequence $\left(x_{k}\right)$ in \mathbb{E} converges linearly with rate $\kappa<1$ to x if there is some constant α such that

$$
\left\|x_{k}-x\right\| \leq \alpha \kappa^{k} \quad \forall \quad k \geq 0
$$

- " R-linear convergence" : the infimum of all possible constants κ, is the "rate of R-linear convergence".
- Let $M, N \subset \mathbb{E}$. The angle between M and N as the angle between 0 and $\frac{\pi}{2}$ whose cosine is $c(M, N):=\max \left\{\langle x, y\rangle: x \in \mathbb{S} \cap M \cap(M \cap N)^{\perp}, y \in\right.$ $\left.\mathbb{S} \cap N \cap(M \cap N)^{\perp}\right\}$
- The quantity $c(M, N)$ is well-defined unless one subspace is a subspace of the other, in which case we set $c(M, N)=0$.

Projection, Distance and Convexity

- For closed $M \in \mathbb{E}$, the distance of x from M
$d_{M}(x)=\min \{\|x-y\|: y \in M\}$ and the projection of x onto M
$P_{M}(x)=\operatorname{argmin}\{\|x-y\|: y \in M\}$
- If M is convex, $P_{M}(x)$ is singleton. Otherwise, it is not for some x for sure!
- For any point $x \in M$, vectors in the cone $N_{M}^{p}(x)=\left\{\lambda u: \lambda \in \mathbb{R}_{+} ; x \in P_{M}(x+u)\right\}$ are called proximal normals to M at x.
- Limits of proximal normals to M at points $x_{n} \in M$ approaching x are called limiting normals, and comprise the limiting normal cone $N_{M}(x)$.

Alternating projections on subspaces

- For affine subspaces M and $N,\left(P_{M} P_{N}\right)^{n}(x) \rightarrow P_{M \cap N}(x)$
- Convergence is linear at rate $(\cos \theta)^{2}$, $\left\|\left(P_{M} P_{N}\right)^{n}(x)-P_{M \cap N}(x)\right\| \leq(\cos \theta)^{2 n-1}\|x\|$, where θ is the angle between M and N.
- Alternating projections naturally extends to closed convex sets M and $N .\left(P_{M} P_{N}\right)^{n}(x) \rightarrow P_{M \cap N}(x)$
Convergence is linear providing $M \cap \operatorname{int}(N) \neq \emptyset$.
- To find a point $x \in M \cap N$, with M and N closed convex sets on \mathbb{E}, alternating convex projections is a basic algorithm.
- Applications: statistics, finance, engineering sciences, image processing ...

Example in Finance

For symmetric matrix C, computing the nearest correlation matrix: computing the projection of C onto the intersection of S_{n}^{+}, the semi-definite positive matrices, and the matrices with ones on the diagonal.
Used as calibration for evaluating extreme risks (Stress testing) How to compute the nearest correlation matrix ? : alternating projection.

Nonconvex heuristic

Alternating convex projections is a good method and Alternating nonconvex projections is also a popular heuristic !
Examples:

- Optics: phase retrieval of images

Simple version : given $a_{j} \in \mathbb{C}^{k}$, find $x \in \mathbb{C}^{k}$, so that
$\left|\left\langle a_{j}, x\right\rangle\right|=b_{j} \quad j=1, \cdots, m$
with alternative projections onto
$M=\left\{(x, z) \in \mathbb{C}^{k} \times \mathbb{C}^{m}: A x=z\right\}$
$N=\left\{(x, z):\left|z_{j}\right|=b_{j}, \quad j=1, \cdots, m\right\}$.

- Control : low-order control design affine M is $n \times n$ symmetric matrices.
N is positive semidefinite matrices of rank r.

Easy non-convex projections

For closed non-convex $M \in \mathbb{R}^{n}$, the projection $P_{M}(x)$ is somewhere nonsingleton. But projection may still be easy.

Examples:

- Single quadratic constraint $M=\left\{x \in \mathbb{R}^{n}: x^{T} A x+b^{T} x=c\right\}$
Projection is analogous to trust-region sub problems, solvable with a special Newton method.
- Rank constraint:
$M=\left\{X \in \mathbb{R}^{n \times m}: \operatorname{rank}(X)=r\right\}$
To project, find a singular value decomposition $X=U D V$ and zero all but the first r largest singular values in D.

Spectral sets and Projection

For permutation-invariant $K \subset \mathbb{R}^{n}$, the spectral set of symmetric matrices
$\lambda^{-1}(K)=\left\{X \in S_{n}:\left(\lambda_{1}(X), \lambda_{2}(X), \cdots, \lambda_{n}(X)\right) \in K\right\}$.
Examples:

- $K=R_{+}^{n}$ gives the positive semi-definite cone S_{n}^{+}.
- $K=\left\{x:\|x\|_{\infty}=r\right\}$ gives $\left\{X: \lambda_{\max }(X)=r\right\}$

Theorem

If $y \in P_{K}(x)$ and U orthogonal, then
$U^{T} \operatorname{Diag}(y) U \in P_{\lambda^{-1}(K)}\left(U^{T} \operatorname{Diag}(x) U\right)$

Prox-regular spectral sets

Transfer of structure: if K is invariant by permutation of entries

- K convex $\Rightarrow \lambda^{-1}(K)$ convex.
- K prox-regular $\Rightarrow \lambda^{-1}(K)$ prox-regular.
- General notion of prox-regularity : P_{M} is locally unique.
- prox-regular spectral sets have locally all the good properties. (Ex: manifolds ...)

Many spectral sets in alternative nonconvex projections

- Numerical algebra: nonnegative inverse eigenvalue problem For $\bar{\lambda}$ given, find $X \in M \cap N$, $M=\left\{X \in \mathbb{R}^{n \times n}: \lambda(X)=\bar{\lambda}\right\}$
$N=\left\{X \in \mathbb{R}^{n \times n}: X_{i j} \geq 0\right\}$.
- Image processing: design of tight frames

Find the associated Gram matrix $X \in M \cap N$
$M=\left\{X \in \mathbb{C}^{n \times n}: \lambda(X)=\left(\frac{n}{d}, \cdots, \frac{n}{d}, 0, \cdots, 0\right)\right\}$
$N=\left\{X \in \mathbb{C}^{n \times n}: X_{i i}=1,\|X\|_{\infty} \leq \mu\right\}$.

Alternating non-convex projections

Theorem

(local linear convergence) For closed sets $M, N \subset \mathbb{R}^{n}$. Assume

- strong regularity holds at $\bar{x} \in M \cap N$
- M is super-regular at \bar{x}
- initial x_{0} near \bar{x}

Then alternating projection method converges R-linearly to $M \cap N$.

Comments:

- Super-regular sets: convex sets, smooth manifolds
- The convergence rate is $\cos \theta$, where θ is the minimal angle between $N_{M}(\bar{x})$ and $-N_{N}(\bar{x})$
- Rate is $(\cos \theta)^{2}$ if both M and N are super-regular.

Strong regularity

Definition

Strong regularity: $N_{M}(\bar{x}) \cap-N_{N}(\bar{x})=\{0\}$, in other words, the minimal angle between $N_{M}(\bar{x})$ and $-N_{N}(\bar{x})$ is $\theta>0$.

Examples

- The intersection of two smooth manifolds is strongly regular \Leftrightarrow the manifolds are transverse
- The intersection of two convex sets is strongly regular \Leftrightarrow no separating hyperplane

Definition

(transversality). Suppose M and N are two C^{k}-manifolds around a point $x \in M \cap N$. We say that M and N are transverse at x if $T_{M}(x)+T_{N}(x)=E$, where $T_{M}(x)$ is the tangent space to M at $x \in M$.

Super-regularity

Definition

(Super-regularity) A closed set $X \subset \mathbb{E}$ is super-regular at a point $z \in X$ when, for all $\delta>0$, if distinct points $w, x \in X$ are sufficiently near z, then their difference $w-x$ makes an angle of at least $\frac{\pi}{2}-\delta$ with any nonzero normal $v \in N_{X}(x)$.

Examples of super-regular sets:

- convex sets
- smooth manifolds
- prox-regular sets
- constraint sets with Mangasarian-Fromovitz
- nearly convex sets
- subsmooth hypomonotone
prox-regular \subset super-regular \subset regular

References

埥 A. Lewis and J. Malick, "Alternating projections on manifolds," Mathematics of Operations Research, 2007.

軎 A. Lewis, R. Luke, and J. Malick, "Local convergence of nonconvex averaged and alternating projections," Foundations of Computational Mathematics, 2008.

Thank You

