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Preliminaries

DMT

Diversity-Multiplexing Tradeoff(DMT) is essentially the
tradeoff between Error Probability and Data Rate of the

System.

Definition

lim
SNR→∞

R(SNR)

log SNR
= gm

lim
SNR→∞

log Pe(SNR)

log SNR
= −d
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Preliminaries (cont.)

Motivation

Zheng and Tse [1] showed that DMT(in absence of CSIT)
is a linear piecewise function of the multiplexing gain.

If perfect CSIT, then we can achieve ∞ diversity.

Notation

lim
SNR→∞

f(SNR)

log SNR
= b

is denoted as
f(SNR) $ SNRb

Similarly
◦
≥ and

◦
≤ is defined
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Preliminaries (cont.)

Acquiring CSIT

Training for Reciprocal Channels (Analog Feedback)

Finite Rate Feedback (Quantized/Digital Feedback)

Quantized feedback shown to be superior to Analog
Feedback in presence of CSIT errors[2]

Challenges

Best quantity to be fed back to the transmitter that optimizes
the system performance (e.g. minimizing outage) is largely
OPEN.
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Preliminaries (cont.)

Side Note

Zheng and Tse[Lemma 5] proved that the probability of
error is lower bounded by the outage probability.

Pe(SNR)
◦
≥ SNR−dout(r)

We will charachterize Outage Probability instead of
Probability of error.
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Preliminaries (cont.)

Figure: General Structure of Finite Rate Feedback
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Outage Formulation

An encoder I is a mapping from the channel state H to a
covariance matrix Qi , such that trace(Qi) ≤ Pi

Outage Definition.

Pout,K (R) = Pr
[
log det

(
INr + HQI(H)H

† ≤ R
)]

Picking Q̄i = Pi INt gives an lower bound on the outage
probability.

Picking Qi = Pi

Nt
INt gives a upper bound on the outage

probability.
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Outage Formulation (cont.)

Outage Probabilty satisfies

Pr
[
log det

(
INr + PIHH† ≤ R

)]
≤ Pout(R)

≤ P

[
log det

(
I +

PI
Nt

HH†
)
≤ R

]
We will restrict our analysis to power codebook of form
{P∗i }Ki=1
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Two Lemmas

Define F (ρ, π) , Pr (I (H , π) ≤ ρ), where

I (H , π) , log det

(
INt +

π

Nt
HH†

)
Lemma 1: For a given SNR and rate R, the outage
minimizing power codeboook {P∗i }Ki=1 solves the following
optimization problem.

maxPK

s.t [F (R ,PK ) + 1− F (R ,P1)] P1

+
K∑
i=2

[F (R ,Pi−1)− F (R ,Pi)] Pi ≤ SNR ,

0 ≤ P1 ≤ · · · ≤ PK
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Two Lemmas (cont.)

The optimal deterministic mapping is given by

I∗(H) =

{
1 if I (H ,P∗K ) ≤ R

min{i : i ∈ 1, 2, · · · ,K , I (H ,P∗i ) ≥ R}
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Two Lemmas (cont.)

Lemma 2: For r ∈ (0,n), let π be a function of SNR such
that π $ SNRp, where p is a finite constant and p ≥ 1.
Denoting (x)+ = max(x , 0), we have

F (r log SNR, π) $ SNR−D(r ,p)

and

D(r , p) , inf
αn

1∈A

n∑
i=1

(2i − 1 + m − n)αi

where,

A ,

{
αn

1|α1 ≥ · · · ≥ αn ≥ 0,
n∑

i=1

(p − αi)
+ ≤ r

}
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Optimal DMT Tradeoff Theorem

Theorem

Kim[3]: The optimal D-M tradeoff of a single-rate MIMO
system with K quantization regions in the feedback link is
upper bounded by the outage bound

d∗out,K (r) = D(r , 1 + d∗out,K−1(r))

where dout,0(r) , 0, ∀r
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Optimal DMT Tradeoff Theorem (cont.)

Let P̄i be the solution of the following optimization problem,
which is a relaxed version of the previous problem

maxPK

s.t [F (R ,PK ) + 1− F (R ,P1)] P1 ≤ SNR

[F (R ,Pi−1)− F (R ,Pi)] Pi ≤ SNR i ≥ 2

0 ≤ P1 ≤ · · ·PK

P̄K ≥ P∗K due to relaxation.
Summing up the constraints, we have

K∑
i=1

SNR

P̄i

≥ 1
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Optimal DMT Tradeoff Theorem (cont.)

We must have P̄i ≤ K SNR , otherwise

K∑
i=1

SNR

P̄i

≤ K
1

K
= 1

Hence,

P̄1

◦
≤ SNR

F (R , P̄1)
◦
≥ SNR−D(r ,1) = SNR−d

∗
out,1(r)

Second Constraint implies that

SNR

P̄2

+ F (R , P̄2)
◦
≥ SNR−d

∗
out,1(r)
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Optimal DMT Tradeoff Theorem (cont.)

Suppose P̄2 $ SNR1+d∗
out,1(r)+ε. Then

SNR

P̄2

+ F (R , P̄2) $ SNR−d
∗
out,1(r)−ε + SNR−D(r ,1+d∗

out,1(r)+ε) (1)

which contradicts 9 because
D(r , 1 + d∗out,1(r) + ε) ≥ D(r , 1) = d∗out,1(r). Therefore, we
require

P̄2

◦
≤ SNR1+d∗

out,1(r)

and thus,

F (R , P̄2)
◦
≥ SNR−D(r ,1+d∗

out,1(r)) = SNR−d
∗
out,2(r)
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Optimal DMT Tradeoff Theorem (cont.)

Following this procedure, we get for k = K,

F (R , P̄K )
◦
≥ SNR−D(r ,1+d∗

out,K−1(r)) = SNR−d
∗
out,K (r)

Going back to the original problem. If,

P1 =
SNR

K

P2 =
SNR

K F (R ,P1)
...

PK =
SNR

K F (R ,PK−1)
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Optimal DMT Tradeoff Theorem (cont.)

satisfy the constraints and hence we have a lower bound.
Therefore by construction.

P1 $ SNR

P2 $ SNR1+d∗
out,1(r)

...

PK $ SNR1+d∗
out,K−1(r)
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Problem

DMT performance in the case of generalized covariance
codebooks.

Following the above approach, we have been able to
extend the proof for the case of {Pi D}Ki=1, where D is a
diagonal matrix.
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