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System Model I

Measurement data to be periodically sent once in every
measurement of interval of duration Tm.

Time discretized into slots of duration Tp sec. Tm/Tp = K denote
the maximum number of retransmissions in a measurement interval

Transmission Protocol

ARQ protocol data transmission
A NACK received triggers retransmission of packet

Harvesting and Storage Model

Energy Es harvested at each slot with probability ρ
Battery of (large) finite capacity

Sensor Model

E - Minimum Transmission power possible. Usually limited by
hardware specifications of EH node
Define Es

E
= L L ∈ N. Hereafter all power normalized w.r.t E

4 / 34



Introduction
POMDP Formulation of EHS
Conclusion and Future Work

System Model
Literature Survey
Background

System Model II
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Figure: Transmission timeline of the EH node for K = 4, showing the random energy

harvesting process
( )

and periodic data arrival
( )

.The marker “X” denotes slots
where the EHS does not transmit data
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Channel Model

1 Time Varying Channel modelled using FSMC.
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Figure: Finite State Markov Model for Rayleigh Fading Channel

2 Block-Fading Channel across measurement intervals.
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Objective

Aim

Maximize the probability of packet reception at the destination /
Minimize the probability of outage.

Outage occurs in a given measurement interval

Receiver fails to decode packet even after successive retransmissions.

EHS transmitter doesn’t have enough energy to retransmit.

Power Algorithm

Power management across successive transmissions to minimize the
outage probability.
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Literature Survey I

[Kansal et al., 2007]

System Design Aspects (Energy Harvesting Profile)

Use of storage buffer to reduce the randomness in the energy
harvesting process.

[Lei et al., 2009] Introduced Probabilistic Bernoulli injection model

[Medepally et al., 2009] Fixed Power Retransmissions with Bernoulli
injection model.

More general models for data and energy arrival considered in
[Sharma et al., 2010, Yang and Ulukus, 2010,
Tutuncuoglu and Yener, 2011]. Link Design to optimize various
metrics.

10 / 34



Introduction
POMDP Formulation of EHS
Conclusion and Future Work

System Model
Literature Survey
Background

Motivation

Motivation

Retransmission of the packet is triggered by channel errors

Knowledge of channel time correlation can be used to increase or
decrease the transmission power.
Tradeoff between power of retransmitted packet and power of future
packets.

The number of NACK’s received give information about channel.
Can be exploited to optimize outage probability.

Optimum Power Algorithm

Can be cast as a Markov Decision Problem
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Markov Decision Process (MDP)

Planning Under Uncertainty.

World
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Reward

A
ct

io
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Figure: MDP model showing the interaction between agent and real world
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MDP Formal Definition

Formally, A Markov Decision Process is 〈S,A, T ,R〉, where

S is the finite set of states s
A is the finite set of actions a
T (s, a, s ′) = Pr(s ′/s, a)
R(s, a)

Objective: Obtain an optimal policy, π : S → A
Solution to MDP

Finite Horizon: Dynamic Programming
Infinite Horizon: Policy Iteration, Value Iteration
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Partially Observable Markov Decision Process (POMDP)

Planning under uncertainty in partially observable environments

WORLD

AGENT

SE

Observation Action

π
β

Figure: A POMDP agent can be decomposed into a state estimator (SE) and a
policy (π).
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Formal Definition of POMDP

Formally, POMDP is 〈S,A,O, T ,Z,R〉
S, A, T and R describe a Markov Decision Process.

O Finite set of observations.

Observation function Z : S ×A → Π(O) which gives for each
action a and resulting state s, a probability distribution over the
observation states.
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POMDP Solution

Belief State β(s): Distribution over the state space

POMDP Control can be split to

State Estimator: Updating the belief state based on the last action,
the current observation, and the previous belief state.
π: Taking actions as a function of the agent’s belief state.

Solution

Witness Algorithm [Littman, 1994]
Incremental Pruning [Cassandra et al., 1997]
PERSUS [Spaan and Vlassis, 2005]
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EHS POMDP: State, Observation & Action Space

State Space S , B × G × U ×K, where

B is the set of battery states, B , {0, 1, . . . ,Bmax}
G is the set of channel states.
U , {0, 1} is set of packet reception states. The packet reception
state takes the value “1” when an ACK is received by the EHS, and
“0” otherwise.
K is the set of packet transmission attempt indices within a frame,
and hence, K , {0, 1, . . . ,K − 1}.

Observation Space O , {ACK,NACK}.
Action Space A , {0, 1, . . . ,B}, with B ∈ B
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EHS POMDP: Transition Function I

Let s , (b, γ, u, k), s ′ , (b′, γ′, u′, k ′)

Correlated Case

T (s, a, s ′) = δ(k ′, k+)Pγ,γ′ ψ ((b, u) , a, (b′, u′))

where k+ , (k + 1)mod K

Block Fading Case

T (s, a, s ′) = δ(k ′, k+) ζ(γ, γ′; k)ψ ((b, u) , a, (b′, u′))

where

ζ(γ, γ′; k) =

{
δ(γ, γ′) k 6= K − 1

πγ′ k = K − 1

20 / 34



Introduction
POMDP Formulation of EHS
Conclusion and Future Work

Solution Techniques
Simulation Results

EHS POMDP: Transition Function II

ψ ((b, u) , a, (b′, u′)) = ρδ(b′, b + L)δ(u′)δ(u)

+ (1− ρ)δ(b′, b)δ(u′)δ(u)

+ (1− ρ)(1− Pe(aE ; γ))δ(b′, b − a)δ(u′)δ(1− u)

+ ρ(1− Pe(aE ; γ))δ(b′, b − a + L)δ(u′)δ(1− u)

+ (1− ρ)Pe(aE ; γ)δ(b′, b − a)δ(1− u′)δ(1− u)

+ ρPe(aE ; γ)δ(b′, b − a + L)δ(1− u′)δ(1− u)

Alternate Form
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EHS POMDP: Observation Function, Reward & Objective

Observation Function

P (NACK/a, γ) = Pe(aE ; γ)

P (ACK/a, γ) = 1− Pe(aE ; γ), (1)

Reward

R(s, a) =


1− Pe(aE ; γ) a ≤ b, u = 0

−1 a > b, u = 0

−1 a 6= 0, u = 1

0 else

Objective: Maximize over an infinite horizon the expected reward
collected by the EHS node and is given by

J = lim
m→∞

1

m
E

{
m∑

n=1

R(sn, an)

}
where n ∈ {1, 2, . . . , } denotes the time step, and sn (and an) is the
state (and action) sequence
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Solution to EHS POMDP

General POMDP solutions is PSPACE-complete.

Explore two heuristic solution.

Heuristic Solution depend on the underlying MDP.

Optimality Equation for MDP.

λ∗ + h∗(s) = max
a∈A,a≤B(s)

[
R(s, a) +

∑
s′∈S
T (s, a, s ′)h∗(s ′)

]
,∀s ∈ S

Above equation solved by value iteration

Jk+1(s) = max
a∈A,a≤B(s)

[
R(s, a) +

∑
s′∈S
T (s, a, s ′)Jk (s ′)

]
,∀s ∈ S

Jk is the value function at the k ’th iteration, k = 0, 1, . . ..
It can be shown that [Bertsekas, 2005]

lim
k→∞

Jk (s)

k
= λ∗, ∀s ∈ S.
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Belief Update

Battery, Packet reception and Slot state fully observable.

Channel state only partially observable through the ACK/NACK
messages.

Belief over the channel state β(γ).

Belief update equation

βn(γj ) =
P(on/an, γj )

∑N
i=1 Pγi ,γjβn−1(γi )∑

o′∈O P(o′/an, γj )
∑N

i=1 Pγi ,γjβn−1(γi )
,

for j = 1, 2, . . . ,N
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ML Heuristic [Cassandra, 1998]

ML state of channel: γML , arg max
γ∈G

β(γ)

ML state of system: sML , (b, γML, u, k)

ML Heuristic Solution of POMDP.

µML = µ∗MDP(b, γML, u, k).
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Voting Heuristic [Simmons and Koenig, 1995]

Each state votes for an action as determined by the optimal policy
of underlying MDP.

Vote for each action weighted by the belief of the state.

Sum of all weighted votes for each action is determined.

Action with largest sum selected as the optimal action.

µvoting = arg max
a∈A

∑
s=(b,γ,u,k)

γ∈G

β(s)δ(µ∗MDP(s)− a).
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Simulation Results I
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Figure: Correlated channel case: outage probability vs. ρ. System Parameters:
K = 3, L = 4, N = 7, ` = 50, Es = 12 dB (relative to N0), N0 = 1 and Bmax = 10Es .
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Simulation Results II
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Figure: Correlated channel case: outage probability vs ρ for different values of the
battery capacity
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Simulation Results III
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Figure: Block fading channel case: outage probability vs. ρ. System Parameters:
K = 4, L = 4, N = 7, ` = 50, Es = 12 dB (relative to N0), N0 = 1 and Bmax = 20Es .
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Conclusion

Considered the problem of finding optimal power policy for EHS
node with no CSI
Problem cast in POMDP framework and Heuristic solutions found.
Heuristic Solutions performs better than existing algorithms

Future Work

Hybrid ARQ(HARQ) schemes, shown to be energy efficient could be
implemented in EHS.
Maximizing the average rate by adapting the modulation and coding
scheme.
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Transition Function: Alternate Form of ψ

Back

ψ ((b, u) , a, (b′, u′)) =



ρ if

{
b′ = b + L,

u′ = 1, u = 1

1− ρ if

{
b′ = b,

u′ = 1, u = 1

(1− ρ)(1− Pe(a; γ)) if

{
b′ = b − a,

u′ = 1, u = 0

ρ(1− Pe(a; γ)) if

{
b′ = b − a + L,

u′ = 1, u = 0

(1− ρ)Pe(a; γ) if

{
b′ = b − a,

u′ = 0, u = 0

ρPe(a; γ) if

{
b′ = b − a + L,

u′ = 0, u = 0

0 else
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Value Function

A policy π is a mapping from S to A which gives action to select in
each state.

Value of a state is expected long term return starting from that
state.

Vπ(s) = R(s, π(s)) + γ
∑
s′∈S

T (s, π(s), s ′)Vπ(s ′)
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Value Iteration

Vk+1(s) = max
a∈A

[
R(s, a) + γ

∑
s′∈S

T (s, π(s), s ′)Vk (s ′)

]
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