Implementation and performance comparison of SSR algorithms for channel estimation in OFDM systems using SDR

Ashok Bandi Advisor: Dr. Chandra R Murthy

SPC Lab, IISc

April 23, 2016

2 SBL Framework

Implementation in GNU Radio

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Future work

Wireless Communication Channel

Sparse in lag domain

OFDM Channel Model

 $\mathbf{y} = \mathbf{X}\mathbf{F}\mathbf{h} + \mathbf{v}$

$$\begin{split} \mathbf{y} &\in \mathbb{C}^{N \times 1} \text{ is the received vector after FFT} \\ \mathbf{X} &\in \mathbb{C}^{N \times N} \text{ contains data symbol and pilot symbols along the diagonal} \\ \mathbf{F} &\in \mathbb{C}^{N \times L} (N > L) \text{ contains the first } L \text{ columns of } N \times N \text{ DFT matrix} \\ \mathbf{v} &\in \mathbb{C}^{N \times 1} \sim \mathcal{CN}(0, \sigma^2 \mathrm{I}) \text{ is the AWGN noise} \\ \mathbf{h} &\in \mathbb{C}^{L \times 1} \text{ is the time domain channel response} \end{split}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Future work

Channel Model using *Pilots* only:

$$\mathbf{y}_{P} = \mathbf{X}_{p}\mathbf{F}_{p}\mathbf{h} + \mathbf{v}_{p}, \quad (P < L)$$
$$= \phi_{p}\mathbf{h} + \mathbf{v}_{p}$$

$$\mathbf{h} \sim \mathcal{CN}(0, \mathbf{\Gamma}), \quad \mathbf{\Gamma} = \mathsf{diag}(\gamma(1), ..., \gamma(L))$$

SBL estimation problem:

$$\begin{split} \hat{\mathbf{h}} &= \arg\max_{\mathbf{h}, \gamma \in \mathbb{R}_{+}^{L \times 1}} p(\mathbf{y}_{p} | \mathbf{h}; \gamma) p(\mathbf{h}; \gamma) \\ &= \arg\min_{\mathbf{h}, \gamma \in \mathbb{R}_{+}^{L \times 1}} \frac{\|\mathbf{y}_{p} - \mathbf{X}_{p} \mathbf{F}_{p} \mathbf{h}\|_{2}^{2}}{\sigma^{2}} + \log|\mathbf{\Gamma}| + \mathbf{h}^{H} \mathbf{\Gamma}^{-1} \mathbf{h} \end{split}$$

Instead of estimating ${\bf h}$ directly, we estimate γ first using type II ML estimate as given below

$$\hat{\gamma}_{\textit{ML}} = \operatorname*{arg\ max}_{\gamma \in \mathbb{R}_{+}^{L \times 1}} p(\mathbf{y}_{\textit{p}}; \gamma)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

EM algorithm

$$p(\mathbf{h};\gamma) = \prod_{i=1}^{L} (\pi\gamma(i))^{-1} \exp\left(-\frac{|h(i)|^2}{\gamma(i)}\right)$$

$$\begin{split} \mathbf{E}\text{-step:} \ & Q\left(\gamma|\gamma^{(r)}\right) = \mathbb{E}_{\mathbf{h}|\mathbf{y}_{p};\gamma^{(r)}}\left[\log \ p(\mathbf{y}_{p},\mathbf{h};\gamma)\right] \\ \mathbf{M}\text{-step:} \ & \gamma^{(r+1)} = \operatorname*{arg\,max}_{\gamma \in \mathbb{R}_{+}^{L \times 1}} Q\left(\gamma|\gamma^{(r)}\right) \\ & \gamma^{(r+1)}(i) = \Sigma(i,i) + |\mu(i)|^{2} \end{split}$$

Probability densities:

$$\begin{split} \rho\left(\mathbf{h}|\mathbf{y}_{p};\boldsymbol{\gamma}^{(r)}\right) &= \mathcal{CN}(\mu,\boldsymbol{\Sigma})\\ \boldsymbol{\Sigma} &= \boldsymbol{\Gamma}^{(r)} - \boldsymbol{\Gamma}^{(r)}\phi_{p}^{H}(\sigma^{2}\mathbf{I}_{P_{b}} + \phi_{p}\boldsymbol{\Gamma}^{(r)}\phi_{p}^{H})^{-1}\phi_{p}\boldsymbol{\Gamma}^{(r)}, \ \mu &= \sigma^{-2}\boldsymbol{\Sigma}\phi_{p}^{H}\mathbf{y}_{p} \end{split}$$

Algorithm 1 SBL for estimating time domain channel taps Input: $\mathbf{y}_p, \phi_p, r_{max}$ and ϵ . Initialize $\Gamma^{(0)} = \mathbf{I}_L$, Set difference = 1, r = 0while (difference> ϵ and $r < r_{max}$) E-step: $\mu = \sigma^{-2} \Sigma \phi_p^H \mathbf{y}_p$ $\Sigma = \Gamma^{(r)} - \Gamma^{(r)} \phi_p^H (\sigma^2 \mathbf{I}_{P_b} + \phi_p \Gamma^{(r)} \phi_p^H)^{-1} \phi_p \Gamma^{(r)}$ M-step: $\gamma^{(r+1)}(i) = \Sigma(i, i) + |\mu|^2$ for i = 1, 2, ..., Ldifference $\triangleq ||\gamma^{(r+1)} - \gamma^{(r)}||_2^2, r \leftarrow r + 1$ end output: $\mu, \gamma^{(r)}$

Introduction to GNU Radio

- A software development tool kit with **signal processing** blocks written in C++/Python.
- GRC (GNU Radio Companion) is the user interface for GNU Radio.
- Can be used with external RF hardware (such as USRP N210) to create Software Defined Radio(SDR).

System architecture

OFDM Chain in GNU Radio

OFDM-Transmitter chain for DATA

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Frame structure

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Implementation in GNU Radio

Implemented following channel estimation algorithms:

- SBL
- LS
- Linear interpolation

Results for 2 tap channel

 system configuration:FFT-size=512, occupied subcarriers=200, CP length=128

Results for 3 tap channel

 system configuration:FFT-size=512, occupied subcarriers=200, CP length=128

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 のへで

Results for 4 tap channel

• system configuration:FFT-size=512,

.

Summary

- Implemented SBL, LS-interpolation based channel estimation algorithm in GNU radio and created the automated PER setup.
- Results confirm that SSP algorithms can work in real time and indeed can perform better with fewer observations.

Future Work

 channel estimation and data detection using SBL and other SSR based algorithms using pilots in data symbol alone, and performance comparision with traditional OFDM channel estimation techniques.