Optimal Engery-Efficient Regular Delivery of Packets in Cyber-physical Systems (Xueying Guo, Rahul Singh, P. R. Kumar and Zhisheng Niu)

B.Balaprasad

Guide : Dr. Chandra R. Murthy

SPC Lab, IISc

Sept. 24, 2016.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Agenda

- Motivation
- System Model
- Problem statement

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Solution

Motivation

- Cyber-physical system typically employ wireless sensors for keeping track of physical processes such as temperature and pressure. These nodes then transmit data packets containing measurements back to the access point.
- ▶ The Time between successive deliveries of packets is an important metric.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 Wireless sensors are battery powered. Thus, energy-efficiency is also important.

System Model

◆□ → ◆昼 → ◆臣 → ◆臣 → ◆ ● ◆ ◆ ● ◆

- Assumption: The Time is discrete.
- At most *L* sensors can simultaneously transmit in a time slot.

Channel : unreliable

For client n :

- Packet success probability: $P_n \in (0,1)$
- Each attempt consumes E_n units of energy

Problem statement

- **Ojectives:** regularity and energy-efficiency
- Designing a wireless scheduling policies that support the inter-delivery requirements of such wireless clients in an energy-efficient way.
- The QoS requirement of client n is specified through an integer , the packet inter-delivery time threshold τ_n .

Access point Goal: To select at most L clients to transmit in each time-slot from among the N clients, so as to minimize the cost function.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Cost function

The cost function incurred by the system during the time interval $\{0,1,2,\ldots,T\}$ is given by,

$$E\left[\sum_{n=1}^{N} \left(\sum_{i=1}^{M_{T}^{(n)}} (D_{i}^{(n)} - \tau_{n})^{+} + \left(T - t_{D_{M_{T}^{(n)}}^{(n)}} - \tau_{n}\right)^{+} + \eta \hat{M}_{T}^{(n)} E_{n}\right)\right]$$
(1)

 $\begin{array}{ll} D_i^{(n)} & : \text{ time between the deliveries of the } i\text{-th and (i+1)-th packets for client } n.\\ M_T^{(n)} & : \text{ The number of packets delivered for the } n\text{-th client by the time } T.\\ t_{D_i^{(n)}} & : \text{ Time slot in which the } i\text{-th packet for client } n \text{ is delivered.}\\ \hat{M}_T^{(n)} & : \text{ Total number of slots in } \{0,1,\ldots,\text{T-1}\} \text{ in which the n-th client is selected to transmit.} \end{array}$

 η : energy efficiency parameter.

()

Solution steps

- step 1: The problem formulated as MDP (Infinite state MDP)
- step 2: Reduce it to an equivalent finite state MDP
- step 3: To decrease the computational complexity, finite state MDP formulated as a restless multi-armed bandit problem, with the goal of exploiting a low-complexity index policy

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Reduction to Finite state problem

The system state at time-slot t is denoted by a vector X(t) := (X₁(t), ..., X_N(t)). where X_n(t) : Time elapsed since the latest delivery of client n's packet.

• The Action at time t is $U(t) := (U_1(t), ..., U_N(t))$, with $\sum_{n=1}^N U_n(t) \le L$

$$U_n(t) = \begin{cases} 1 & \text{if client n is selected to transmit in slot t,} \\ 0 & \text{otherwise.} \end{cases}$$
(2)

The system state evolve as,

$$X_n(t+1) = \begin{cases} 0 & \text{if a packet of client n is delivered in t} \\ X_n(t) + 1 & \text{otherwise.} \end{cases}$$
(3)

The system forms a controlled Markov chain(MDP-1), with the transition probabilities given by,

$$P_{\mathbf{x},\mathbf{y}}^{MDP-1}(\mathbf{u}) := P[X(t+1) = \mathbf{y} | X(t) = \mathbf{x}, U(t) = \mathbf{u}]$$

= $\prod_{n=1}^{N} P[X_n(t+1) = y_n | X_n(t) = x_n, U_n(t) = u_n]$ (4)

$$P[X_n(t+1) = y_n | X_n(t) = x_n, U_n(t) = u_n] := \begin{cases} p_n & \text{if } y_n = 0 \text{ and } u_n = 1, \\ 1 - p_n & \text{if } y_n = x_n + 1 \text{ and } u_n = 1, \\ 1 & \text{if } y_n = x_n + 1 \text{ and } u_n = 0, \\ 0 & \text{otherwise.} \end{cases}$$
(5)

The T-horizon optimal cost-to-go from initial state x is given by,

$$egin{aligned} V_{\mathcal{T}}(\mathbf{x}) &:= \min_{\pi: \Sigma_n U_n(t) \leq L} \mathrm{E}\{\sum_{t=0}^{T-1} \sum_{n=1}^N (\eta E_n U_n(t) + (X_n(t) + 1 - au_n)^+ 1\{X_n(t+1) = 0\}) | X(0) = \mathbf{x}\}, \end{aligned}$$

minimization is over the class of history dependent policies.

The Dynamic Programming (DP) recursion is,

$$V_{T}(\mathbf{x}) = \min_{\mathbf{u}:\Sigma_{n}u_{n} \leq L} E\{\eta \sum_{n=1}^{N} E_{n}u_{n} + \sum_{\mathbf{y}} P_{\mathbf{x},\mathbf{y}}^{\mathrm{MDP}-1}(\mathbf{u}) \\ [\sum_{n=1}^{N} (x_{n} + 1 - \tau_{n})^{+} 1\{y_{n} = 0\} + V_{T-1}(\mathbf{y})]\}$$
(2)

(日) (日) (日) (日) (日) (日) (日) (日)

MDP-1 involves infinite state space.

Lemma 1: For the MDP-I, we have,

 $\forall x_1, ..., x_N \ge 0, V_T(x_1, ..., \tau_i + x_i, ..., x_N) = x_i + V_T(x_1, ..., \tau_i, ..., x_N).$ Moreover, the optimal actions for the states $(x_1, ..., \tau_i + x_i, ..., x_N)$ and $(x_1, ..., \tau_i, ..., x_N)$ are the same. proof:

Corollary 2: For any system state x such that $x_n \leq \tau_n, \forall n$,

$$\begin{aligned}
\mathcal{V}_{\mathcal{T}}(\mathbf{x}) &= \min_{\mathbf{u}: \Sigma_n u_n \leq L} \mathrm{E}\{\sum_n (\eta E_n u_n + 1\{x_n = \tau_n\}) \\
&+ \sum_{\mathbf{y}} \mathcal{P}_{\mathbf{x}, \mathbf{y}}^{\mathrm{MDP}-1} \mathcal{V}_{\mathcal{T}-1}(\mathbf{y} \wedge \tau)\}.
\end{aligned}$$
(3)

proof:

• Lemma 3: $Y(t) := X(t) \land \tau$ is a Markov decision Process

with $P[Y(t+1)|Y(t), \dots, Y(0), U(t), \dots, U(0)]$ = P[Y(t+1)|Y(t), U(t)]. By using the above results we can construct another MDP, denoted MDP-2, which is equivalent to the MDP-1.

Y(t): State U(t): control For $Y_n(0) \in \{0, 1, ..., \tau_n\}$, let $Y_n(t)$ evolves as,

 $Y_n(t+1) = \begin{cases} 0 \text{ if a packet is delivered for client } n \text{ at } t, \\ (Y_n(t)+1) \wedge \tau_n \text{ otherwise.} \end{cases}$

The transition probabilities of MDP-2, $P_{x,y}^{MDP-2}$ State space $\mathbb{Y} := \prod_{n=1}^{N} \{0, 1, ... \tau_n\}$

$$P[Y_n(t+1) = y_n | Y_n(t) = x_n, U_n(t) = u_n] := \begin{cases} p_n & \text{if } y_n = 0 \text{ and } u_n = 1, \\ 1 - p_n & \text{if } y_n = (x_n + 1) \land \tau_n \& u_n = 1, \\ 1 & \text{if } y_n = (x_n + 1) \land \tau_n \& u_n = 0, \\ 0 & \text{otherwise.} \end{cases}$$

$$(4)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

The optimal cost-to-go function for MDP-2 is,

$$V_{\mathcal{T}}(\mathbf{x}) := \min_{\pi: \Sigma_n U_n(t) \le L} \mathbb{E}\{\sum_{t=0}^{T-1} \sum_{n=1}^N (\eta E_n U_n(t), \forall \mathbf{x} \in \mathbb{Y} + 1\{Y_n(t) = \tau_n\} | Y(0) = \mathbf{x}\},$$
(5)

Theorem 4: MDP-2 is equivalent to the MDP-1 in that:

1. MDP-2 has the same transition probabilities as the accompanying process of MDP-1, i.e., the process $X(t) \wedge \tau$;

2. Both MDPs satisfy the recursive relationship in (3); thus, their optimal cost-to-go functions are equal for each starting state x with $x_n \le \tau_n$;

3. Any optimal control for MDP-1 in state x is also optimal for MDP-2 in state x $\wedge\,\tau$

The Dynamic Programming recursion for the optimal cost in MDP-2 is

$$V_{T}(\mathbf{x}) = \min_{\mathbf{u}: \Sigma_{n} u_{n} \leq L} E\{\sum_{n} (\eta E_{n} u_{n} + 1\{x_{n} = \tau_{n}\}) + \sum_{\mathbf{y}} P_{\mathbf{x}, \mathbf{y}}^{\mathrm{MDP-2}} V_{T-1}(\mathbf{y})\}.$$
 (6)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Formulation of Restless Multi-armed bandit Problem

Notations:

- $\alpha = \frac{L}{N}$, Maximum fraction of clients that can simultaneously transmit.
- $Y_n(t)$ associated with client n is denoted as project n.
- $U_n(t) = 1$, if the project n is active in slot t.
- ▶ $U_n(t) = 0$, if the project n is passive in slot t. The infinite-horizon problem is to solve, with $Y(0) = \mathbf{x} \in \mathbb{Y}$,

$$\max_{\pi} \lim_{T \to +\infty} \inf_{\infty} \frac{1}{T} \mathbb{E} \left[\sum_{t=0n}^{T-1} \sum_{n=1}^{N} -1 \{ Y_n(t) = \tau_n \} - \eta E_n U_n(t) \right]$$
(7)
s.t.
$$\sum_{n=1}^{N} (1 - U_n(t)) \ge (1 - \alpha) N, \forall t.$$
(8)

Relaxations:

We consider an associated relaxation of the problem which puts a constraint only on the *time average* number of active projects allowed:

$$\max_{\pi} \lim_{T \to +\infty} \inf_{\infty} \frac{1}{T} \mathbb{E} \left[\sum_{t=0}^{T-1} \sum_{n=1}^{N} -1 \{ Y_n(t) = \tau_n \} - \eta E_n U_n(t) \right]$$
(9)
s.t.
$$\lim_{T \to +\infty} \inf_{\infty} \frac{1}{T} \mathbb{E} \left[\sum_{t=0}^{T-1} \sum_{n=1}^{N} (1 - U_n(t)) \right] \ge (1 - \alpha) N.$$
(10)

Let us consider the Lagrangian associated with the problem (9)-(10), with $Y(0) = \mathbf{x} \in \mathbb{Y},$

$$I(\pi, \omega) := \liminf_{T \to +\infty} \frac{1}{T} \mathbb{E}_{\pi} \left[\sum_{t=0}^{T-1} \sum_{n=1}^{N} -1\{Y_n(t) = \tau_n\} - \eta E_n U_n(t) \right] \\ + \omega \liminf_{T \to +\infty} \frac{1}{T} \mathbb{E}_{\pi} \left[\sum_{t=0}^{T-1} \sum_{n=1}^{N} (1 - U_n(t)) \right] - \omega (1 - \alpha) N,$$

 $\begin{aligned} \pi: \mbox{ History dependent scheduling policy.} \\ \omega \geq 0: \mbox{ Lagrangian multiplier} \end{aligned}$

The Lagrangian dual function is $d(\omega) := \max_{\pi} l(\pi, \omega)$:

$$d(\omega) \leq \max_{\pi} \lim_{T \to +\infty} \inf_{\infty} \frac{1}{T} \mathbb{E}[\sum_{t=0}^{T-1} \sum_{n=1}^{N} -1\{Y_n(t) = \tau_n\} -\eta E_n U_n(t) + \omega(1 - U_n(t)) | Y(0) = x] - \omega(1 - \alpha)N$$

$$\leq \max_{\pi} \limsup_{T \to +\infty} \frac{1}{T} \mathbb{E}[\sum_{t=0}^{T-1} \sum_{n=1}^{N} -1\{Y_n(t) = \tau_n\} -\eta E_n U_n(t) + \omega(1 - U_n(t)) | Y(0) = x] - \omega(1 - \alpha)N$$

$$\leq \max_{\pi} \sum_{n=1}^{N} \limsup_{T \to +\infty} \frac{1}{T} \mathbb{E}[\sum_{t=0}^{T-1} -1\{Y_n(t) = \tau_n\} -\eta E_n U_n(t) + \omega(1 - U_n(t)) | Y(0) = x] - \omega(1 - \alpha)N, \quad (11)$$

equation (11) is the unconstrained problem.

It can be viewed as a composition of N independent ω -subsidy problems interpreted as follows: For each client n, besides the original reward $-1{Y_n(t) = \tau_n} - \eta E_n U_n(t)$, when $U_n(t) = 0$, it receives a subsidy ω for being passive.

Thus, the ω -subsidy problem associated with client n is defined as,

$$R_{n}(\omega) = \max_{\pi_{n}} \lim_{T \to +} \sup_{\infty} \frac{1}{T} E[\sum_{t=0}^{T-1} -1\{Y_{n}(t) = \tau_{n}\} -\eta E_{n} U_{n}!(t) + \omega(1 - U_{n}(t))|Y_{n}(0) = x_{n}],$$
(12)

(日) (日) (日) (日) (日) (日) (日) (日)

where π_n is a history dependent policy which decides the action $U_n(t)$ for client n in each time-slot.

We first solve this ω -subsidy problem, and then explore its properties to show that strong duality holds for the relaxed problem (9)-(10), and thereby determine the optimal relaxed policy.

- For $\theta \in \{0, 1, ..., \tau_n\}$ and $\rho \in [0, 1]$, we define $\sigma_n(\theta, \rho)$ to be a threshold policy for project *n*, as follows: The policy $\sigma_n(\theta, \rho)$ at time t, $Y_n(t) < \theta$:Project is Passive i.e., $U_n(t) = 0$ $Y_n(t) > \theta$:Project is Active i.e., $U_n(t) = 1$ If $Y_n(t) = \theta$: then, Project stays Passive with Probability ρ , and is activated with probability $1 - \rho$.
- For each project n, associate a function defined as,

$$W_n(\theta) := p_n(\theta+1)(1-p_n)^{\tau_n-(\theta+1)} - \eta E_n, \qquad (13)$$

The Whittle Index W_n(i) of project n at state i is defined as the value of the subsidy that makes the passive and active actions equally attractive for the ω-subsidy problem associated with project n in state i. When ω = W_n(i) The following holds the optimality,

$$-\eta E_n + \rho_n f(0) + (1 - \rho_n) f((i+1) \wedge \tau_n) = \omega + f((i+1) \wedge \tau_n)$$

- The n-th project is said to be indexable if:
 - B_n(ω) be the set of states for which project n is passiveunder an optimal policy corresponding ω-subsidy problem.
 - Project n is indexable if, as ωincreases from −∞to +∞, the set B_n(ω) increases monotonically from φ to the whole space.

Lemma 5: Consider the ω -subsidy problem(12), for project n. Then,

•
$$\sigma_n(0,0)$$
 is optimal iff the subsidy $\omega \leq W_n(0)$.

- ► For $\theta \in \{1, ..., \tau_n 1\}$ is optimal iff the subsidy ω satisfies $W_n(\theta 1) \le \omega \le W_n(\theta)$.
- $\sigma_n(\tau_n, 0)$ is optimal iff $\omega = W_n(\tau 1)$.
- $\sigma_n(\tau_n, 1)$ is optimal iff $\omega \ge W_n(\tau 1)$. In addition, for $\theta \in \{1, ..., \tau_n - 1\}$, the policies $\{\sigma_n(\theta, \rho) : \rho \in [0, 1]\}$ are optimal when, 1. $0 \le \theta \le \tau - 1$ and $\omega = W_n(\theta)$, 2. $\theta = \tau$ and $\omega = W_n(\tau - 1)$. Furthermore, for any $\theta \in \{1, ..., \tau\}$, under the $\sigma(\theta, 0)$ policy, the average reward earned is,

$$\frac{p_n\theta\omega-\eta E_n-(1-p_n)^{\tau_n-\theta}}{1+\theta p_n}.$$
 (14)

Consider the ω subsidy problem for project n,and denote by a_n(θ, ρ) the average proportion of time that the active action is taken under the policy σ_n(θ, ρ), i.e., a_n(θ, ρ) := lim_{T→+∞} ¹/_T E_{σ_n(θ,ρ)}[∑^{T-1}_{t=0} U_n(t)]. Let a_{n,min}(ω) := min_{θ,ρ}{a_{n,min}(θ, ρ) : σ_n(θ, ρ)is optimal when the subsidy is ω}.

Theorem 7:For the relaxed problem (9)-(10) and its dual Fd(ω), the following results hold:

• The dual function $d(\omega)$ satisfies,

$$d(\omega) = \sum_{n=0}^{N-1} R_n(\omega) - \omega(1-\alpha)N.$$
(13)

- Strong duality holds, i.e., the optimal average reward for the relaxed problem, denoted *R_{rel}*, satisfies, *R_{rel}* = min_{ω≥0} d(ω)
- Define policy $\sigma(\theta, \rho)$ as the one that applies $\sigma_n(\theta_n, \rho_n)$ to each project n. Then, for each $\alpha \in [0, 1]$, there exist vectors θ^* and ρ^* such that $\sigma(\theta^*, \rho^*)$
- In addition, d(ω) is a convex and piecewise linear function of ω. Thus, the value of R_{rel} can be easily solved.

Properties of $d(\omega)$:

- Each $R_n(\omega)$ is a piecewise linear function.
- To prove convexity of R_n(ω), note that the reward earned by any policy is a linear function of ω, and the supremum of linear functions is convex. Thus, d(ω) is also convex and piecewise linear.
- ▶ The value of R_{rel} , which is the minimum value of this known, convex, and piecewise linear function $d(\omega)$, can be easily obtained.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Whittle index policy: At the beginning of each time slot t, client n is scheduled if its whittle index $W_n(Y_n(t))$ is positive, and moreover, is within the top αN index values of all clients in that slot. Now not more than αN clients are simultaneously scheduled.

Thank you