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Motivation

I Cyber-physical system typically employ wireless sensors for keeping track
of physical processes such as temperature and pressure. These nodes then
transmit data packets containing measurements back to the access point.

I The Time between successive deliveries of packets is an important metric.

I Wireless sensors are battery powered.Thus, energy-efficiency is also
important.



System Model



I Assumption: The Time is discrete.

I At most L sensors can simultaneously transmit in a time slot.

I Channel : unreliable

For client n :

I Packet success probability: Pn ∈ (0, 1)

I Each attempt consumes En units of energy



Problem statement

I Ojectives: regularity and energy-efficiency

I Designing a wireless scheduling policies that support the inter-delivery
requirements of such wireless clients in an energy-efficient way.

I The QoS requirement of client n is specified through an integer , the
packet inter-delivery time threshold τn.

Access point Goal: To select at most L clients to transmit in each
time-slot from among the N clients, so as to minimize the cost function.



Cost function

The cost function incurred by the system during the time interval {0,1,2,...,T}
is given by,
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selected to transmit.
η : energy efficiency parameter.



Solution steps

I step 1: The problem formulated as MDP (Infinite state MDP)

I step 2: Reduce it to an equivalent finite state MDP

I step 3: To decrease the computational complexity, finite state MDP
formulated as a restless multi-armed bandit problem, with the goal of
exploiting a low-complexity index policy



Reduction to Finite state problem

I The system state at time-slot t is denoted by a vector
X (t) := (X1(t), ...,XN(t)).
where Xn(t) : Time elapsed since the latest delivery of client n′s packet.

I The Action at time t is U(t) := (U1(t), ...,UN(t)), with
∑N

n=1 Un(t) ≤ L

Un(t) =

{
1 if client n is selected to transmit in slot t,

0 otherwise.
(2)

The system state evolve as,

Xn(t + 1) =

{
0 if a packet of client n is delivered in t

Xn(t) + 1 otherwise.
(3)



I The system forms a controlled Markov chain(MDP-1), with the transition
probabilities given by,

PMDP−1
x,y (u) := P[X (t + 1) = y|X (t) = x,U(t) = u]

=
N∏

n=1

P[Xn(t + 1) = yn|Xn(t) = xn,Un(t) = un]
(4)

P[Xn(t+1) = yn|Xn(t) = xn,Un(t) = un] :=


pn if yn = 0 and un = 1,

1− pn if yn = xn + 1 and un = 1,

1 if yn = xn + 1 and un = 0,

0 otherwise.

(5)



I The T-horizon optimal cost-to-go from initial state x is given by,

VT (x) := min
π:ΣnUn(t)≤L

E{
T−1∑
t=0

N∑
n=1

(ηEnUn(t)

+(Xn(t) + 1− τn)+1{Xn(t + 1) = 0})|X (0) = x},

minimization is over the class of history dependent policies.

I The Dynamic Programming (DP) recursion is,

VT (x) = min
u:Σnun≤L
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[
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(xn + 1− τn)+1{yn = 0}+ VT−1(y)]} (2)

MDP-1 involves infinite state space.



I Lemma 1: For the MDP-l,we have,
∀x1, ..., xN ≥ 0,VT (x1, .., τi + xi , ..., xN) = xi + VT (x1, .., τi , ..., xN).
Moreover, the optimal actions for the states (x1, .., τi + xi , ..., xN) and
(x1, .., τi , ..., xN) are the same.
proof:

I Corollary 2: For any system state x such that xn ≤ τn, ∀n,

VT (x) = min
u:Σnun≤L

E{
∑
n

(ηEnun + 1{xn = τn})

+
∑
y

PMDP−1
x,y VT−1(y ∧ τ)}. (3)

proof:

I Lemma 3: Y (t) := X (t) ∧ τ is a Markov decision Process

with P[Y (t + 1)|Y (t), · · · , Y (0), U(t), · · · , U(0)]

= P[Y (t + 1)|Y (t), U(t)].



By using the above results we can construct another MDP, denoted
MDP-2,which is equivalent to the MDP-1.
Y (t): State
U(t): control
For Yn(0) ∈ {0, 1, .., τn}, let Yn(t) evolves as,

Yn(t + 1) =

{
0 if a packet is delivered for client n at t,

(Yn(t) + 1) ∧ τn otherwise.

The transition probabilities of MDP-2, PMDP−2
x,y

State space Y :=
∏N

n=1{0, 1, ..τn}

P[Yn(t+1) = yn|Yn(t) = xn,Un(t) = un] :=


pn if yn = 0 and un = 1,

1− pn if yn = (xn + 1) ∧ τn & un = 1,

1 if yn = (xn + 1) ∧ τn & un = 0,

0 otherwise.

(4)



I The optimal cost-to-go function for MDP-2 is,

VT (x) := min
π:ΣnUn(t)≤L

E{
T−1∑
t=0

N∑
n=1

(ηEnUn(t)

+1{Yn(t) = τn}|Y (0) = x},

, ∀x ∈ Y (5)

I Theorem 4: MDP-2 is equivalent to the MDP-1 in that:
1. MDP-2 has the same transition probabilities as the accompanying
process of MDP-1, i.e., the process X (t) ∧ τ ;
2. Both MDPs satisfy the recursive relationship in (3); thus, their optimal
cost-to-go functions are equal for each starting state x with xn ≤ τn;
3. Any optimal control for MDP-1 in state x is also optimal for MDP-2 in
state x ∧ τ
The Dynamic Programming recursion for the optimal cost in MDP-2 is

VT (x) = min
u:Σnun≤L

E{
∑
n

(ηEnun + 1{xn = τn})

+
∑
y

PMDP−2
x,y VT−1(y)}. (6)



Formulation of Restless Multi-armed bandit Problem

Notations:

I α = L
N

, Maximum fraction of clients that can simultaneously transmit.

I Yn(t) associated with client n is denoted as project n.

I Un(t) = 1, if the project n is active in slot t.

I Un(t) = 0, if the project n is passive in slot t.
The infinite-horizon problem is to solve, with Y (0) = x ∈ Y,

max
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s.t.
N∑
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(1− Un(t)) ≥ (1− α)N, ∀t. (8)



Relaxations:
We consider an associated relaxation of the problem which puts a constraint
only on the time average number of active projects allowed:

max
π

lim
T→+

inf
∞

1

T
E[

T−1∑
t=0

N∑
n=1

−1{Yn(t) = τn} − ηEnUn(t)] (9)

s.t. lim
T→+

inf
∞

1

T
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(1− Un(t))] ≥ (1− α)N. (10)

Let us consider the Lagrangian associated with the problem (9)-(10), with
Y (0) = x ∈ Y,

l(π, ω) := lim
T→+

inf
∞

1

T
Eπ[
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t=0
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−1{Yn(t) = τn} − ηEnUn(t)]
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T
Eπ[
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N∑
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(1− Un(t))]− ω(1− α)N,

π: History dependent scheduling policy.
ω ≥ 0: Lagrangian multiplier



The Lagrangian dual function is d(ω) := maxπ l(π, ω) :

d(ω) ≤ max
π

lim
T→+

inf
∞

1

T
E[

T−1∑
t=0

N∑
n=1

−1{Yn(t) = τn}

−ηEnUn(t) + ω(1− Un(t))|Y (0) = x]− ω(1− α)N

≤ max
π

lim
T→

sup
+∞

1

T
E[

T−1∑
t=0

N∑
n=1

−1{Yn(t) = τn}

−ηEnUn(t) + ω(1− Un(t))|Y (0) = x]− ω(1− α)N

≤ max
π

N∑
n=1

lim
T→+

sup
∞

1

T
E[

T−1∑
t=0

−1{Yn(t) = τn}

−ηEnUn(t) + ω(1− Un(t))|Y (0) = x]− ω(1− α)N, (11)

equation (11) is the unconstrained problem.



It can be viewed as a composition of N independent ω-subsidy problems
interpreted as follows: For each client n, besides the original reward
-1{Yn(t) = τn} − ηEnUn(t), when Un(t) = 0, it receives a subsidy ω for being
passive.
Thus, the ω-subsidy problem associated with client n is defined as,

Rn(ω) = max
πn

lim
T→+

sup
∞

1

T
E[

T−1∑
t=0

−1{Yn(t) = τn}

−ηEnUn!(t) + ω(1− Un(t))|Yn(0) = xn], (12)

where πn is a history dependent policy which decides the action Un(t) for client
n in each time-slot.
We first solve this ω-subsidy problem, and then explore its properties to show
that strong duality holds for the relaxed problem (9)-(10), and thereby
determine the optimal relaxed policy.



I For θ ∈ {0, 1, ..., τn} and ρ ∈ [0, 1],
we define σn(θ, ρ) to be a threshold policy for project n, as follows:The
policy σn(θ, ρ)
at time t,
Yn(t) < θ :Project is Passive i.e.,Un(t) = 0
Yn(t) > θ :Project is Active i.e., Un(t) = 1
If Yn(t) = θ : then, Project stays Passive with Probability ρ, and is
activated with probability 1− ρ.

I For each project n, associate a function defined as,

Wn(θ) := pn(θ + 1)(1− pn)τn−(θ+1) − ηEn, (13)

I The Whittle Index Wn(i)of project n at state i is defined as the value of
the subsidy that makes the passive and active actions equally attractive
for the ω-subsidy problem associated with project n in state i.
When ω = Wn(i) The following holds the optimality,

−ηEn + pnf (0) + (1− pn)f ((i + 1) ∧ τn) = ω + f ((i + 1) ∧ τn)



I The n-th project is said to be indexable if:

I Bn(ω) be the set of states for which project n is passiveunder
an optimal policy corresponding ω-subsidy problem.

I Project n is indexable if, as ωincreases from −∞to +∞, the
set Bn(ω) increases monotonically from φ to the whole space.

I Lemma 5: Consider the ω-subsidy problem(12), for project n. Then,

I σn(0, 0) is optimal iff the subsidy ω ≤Wn(0).
I For θ ∈ {1, ..., τn − 1} is optimal iff the subsidy ω satisfies

Wn(θ − 1) ≤ ω ≤Wn(θ).
I σn(τn, 0)is optimal iff ω = Wn(τ − 1).
I σn(τn, 1)is optimal iff ω ≥Wn(τ − 1) .

In addition, for θ ∈ {1, ..., τn − 1}, the policies
{σn(θ, ρ) : ρ ∈ [0, 1]} are optimal when,
1. 0 ≤ θ ≤ τ − 1 and ω = Wn(θ),
2. θ = τ and ω = Wn(τ − 1).
Furthermore, for any θ ∈ {1, ..., τ} , under the σ(θ, 0) policy,
the average reward earned is,

pnθω − ηEn − (1− pn)τn−θ

1 + θpn
. (14)



I Consider the ω subsidy problem for project n,and denote by an(θ, ρ) the
average proportion of time that the active action is taken under the
policy σn(θ, ρ),i.e.,
an(θ, ρ) := limT→+∞

1
T
Eσn(θ,ρ)[

∑T−1
t=0 Un(t)].

Let an,min(ω) := minθ,ρ{an,min(θ, ρ) :
σn(θ, ρ)is optimal when the subsidy is ω}.

I Theorem 7:For the relaxed problem (9)-(10) and its dual Fd(ω), the

following results hold:

I The dual function d(ω) satisfies,

d(ω) =
N−1∑
n=0

Rn(ω)− ω(1− α)N. (13)

I Strong duality holds, i.e., the optimal average reward for the
relaxed problem, denoted Rrel , satisfies,
Rrel = minω≥0 d(ω)

I Define policy σ(θ, ρ)as the one that applies σn(θn, ρn) to each
project n. Then, for each α ∈ [0, 1],there exist vectors θ∗and
ρ∗ such that σ(θ∗, ρ∗)

I In addition, d(ω) is a convex and piecewise linear function of
ω. Thus, the value of Rrel can be easily solved.



Properties of d(ω):

I Each Rn(ω) is a piecewise linear function.

I To prove convexity of Rn(ω), note that the reward earned by any policy is
a linear function of ω, and the supremum of linear functions is convex.
Thus, d(ω) is also convex and piecewise linear.

I The value of Rrel , which is the minimum value of this known,convex, and
piecewise linear function d(ω),can be easily obtained.



Whittle index policy: At the beginning of each time slot t, client n is
scheduled if its whittle index Wn(Yn(t)) is positive, and moreover, is within the
top αN index values of all clients in that slot. Now not more than αN clients
are simultaneously scheduled.
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