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Motivation

» Cyber-physical system typically employ wireless sensors for keeping track
of physical processes such as temperature and pressure. These nodes then
transmit data packets containing measurements back to the access point.

» The Time between successive deliveries of packets is an important metric.

> Wireless sensors are battery powered.Thus, energy-efficiency is also
important.



System Model




> Assumption: The Time is discrete.

» At most L sensors can simultaneously transmit in a time slot.

Time required for
Access point tosend Time required for L assignd nodes to prepare and transmit a packet
control message

Il( Time slot 3|

» Channel : unreliable

For client n :
> Packet success probability: P, € (0,1)

> Each attempt consumes E, units of energy



Problem statement

> Qjectives: regularity and energy-efficiency

» Designing a wireless scheduling policies that support the inter-delivery
requirements of such wireless clients in an energy-efficient way.

» The QoS requirement of client n is specified through an integer , the
packet inter-delivery time threshold T,.

Access point Goal: To select at most L clients to transmit in each
time-slot from among the N clients, so as to minimize the cost function.



Cost function

The cost function incurred by the system during the time interval {0,1,2,..., T}
is given by,

v MY +
E[Z(Z(Dfn) _T")++ <T_ tD("g) _Tn> "FﬂMS[P)En)] (1)
n=1 =1 s

T

D,.(") : time between the deliveries of the i-th and (i41)-th packets for client n.
M(T") : The number of packets delivered for the n-th client by the time T.
tym Time slot in which the j-th packet for client n is delivered.

i

M(T") : Total number of slots in {0,1,...,T-1} in which the n-th client is
selected to transmit.
n . energy efficiency parameter.



Solution steps

> step 1: The problem formulated as MDP (Infinite state MDP)
> step 2: Reduce it to an equivalent finite state MDP

> step 3: To decrease the computational complexity, finite state MDP
formulated as a restless multi-armed bandit problem, with the goal of
exploiting a low-complexity index policy



Reduction to Finite state problem

> The system state at time-slot t is denoted by a vector
X(t) = (Xa(£), s Xn(2)).
where X,(t) : Time elapsed since the latest delivery of client n’s packet.

> The Action at time t is U(t) := (Ui(t), ..., Un(t)), with S Un(t) < L

1 if client n is selected to transmit in slot t,
Un(t) = : (2)
0 otherwise.
The system state evolve as,
0 if a packet of client n is delivered in t
Xo(t+1) = P (3)
Xa(t) +1 otherwise.



> The system forms a controlled Markov chain(MDP-1), with the transition
probabilities given by,

P,f_”yDP_l(u) = P[X(t+ 1) = y|X(t) = x, U(t) = u]

a 4
CTLPPOE+ D) = X = Un) =]

n=1

Pn if y,=0and u, =1,
1—p, fyn=xa+1and u, =1,
1 if yo =x,+1and u, =0,
0 otherwise.

P[Xn(t+1) = ya|Xa(t) = Xn, Un(t) = un] :=

()



» The T-horizon optimal cost-to-go from initial state x is given by,

T-1 N

Vr(x) = wzmum {ZZ nEnUn(t

t=0 n=1
+H(Xn(t) + 1= 7) "L{Xn(t + 1) = 0})|X(0) = x},
minimization is over the class of history dependent policies.

» The Dynamic Programming (DP) recursion is,

VT(X): mln E{UZ E,,u,,—i—X:PMDP 1

N

D 0 +1 =) 1yn = 0} + Vra(v)]}

n=1

MDP-1 involves infinite state space.

(2)



» Lemma 1: For the MDP-I,we have,
Vi, ..., xn > 0, VT(X1, . Ti + Xi, ...,XN) =X + VT(X1, oy Tiy ...,XN),
Moreover, the optimal actions for the states (xi, .., 7i + Xi, ..., xn) and
(x1 .., Tiy ..., xn) are the same.
proof:

> Corollary 2: For any system state x such that x, < 7,,Vn,

Vr(x) = min_ E{> (nEtn+ 1{xs = a})

wXpu,<L

+> PPV a(y AT}
y

proof:
> Lemma 3: Y(t) := X(t) A 7 is a Markov decision Process
with P[Y(t +1)|Y(¢t), ---, Y(0), U(¢), ---, U(0)]
=P[Y(t+ 1)|Y(¢), U(t)]



By using the above results we can construct another MDP, denoted
MDP-2,which is equivalent to the MDP-1.

Y(t): State

U(t): control

For Y,(0) € {0,1,..,7n}, let Ya(t) evolves as,

0 if a packet is delivered for client n at t,
(Ya(t) + 1) A 7, otherwise.

Yi(t+1) = {

The transition probabilities of MDP-2, P,i\,/)’,DP*2
State space Y := [[",{0,1,..7,}

Pn if y =0and u, =1,
1—py fya=0Cn+1)ATh & up=1,
PlYn(t+1) = ya|Ya(t) = xn, Un(t) = un] :=
Yo{t+1) = yol Yo(1) (O =wml =1y if Yo = (o + 1) A 7o & Uy = 0,
0 otherwise.

(4)



» The optimal cost-to-go function for MDP-2 is,

T-1 N

Vr(x) = min E{ZZ(nEU

t=0 n=1

+1{Yn(f) =7} Y(0) = X},

» Theorem 4: MDP-2 is equivalent to the MDP-1 in that:
1. MDP-2 has the same transition probabilities as the accompanying
process of MDP-1, i.e., the process X(t) A T;
2. Both MDPs satisfy the recursive relationship in (3); thus, their optimal
cost-to-go functions are equal for each starting state x with x, < 7;
3. Any optimal control for MDP-1 in state x is also optimal for MDP-2 in
state x A 7
The Dynamic Programming recursion for the optimal cost in MDP-2 is

xeY (5)

Vr(x) = min E{Z(nEnun + 1{x, = 7n})

wX,u,<L

+ZPMDP *Vra(y)} (6)



Formulation of Restless Multi-armed bandit Problem

Notations:
> o= A , Maximum fraction of clients that can simultaneously transmit.
(t) associated with client n is denoted as project n.
Un(t) = 1, if the project n is active in slot t.
) =

Un(t) = 0, if the project n is passive in slot t.
The infinite-horizon problem is to solve, with Y(0) =x € Y,

max |T+|nf —E[Z Z {Yn(t) = 7} — nE Un(t)] (7)

sty (1= Us(t)) > (1— )N, Vt. (8)



Relaxations:
We consider an associated relaxation of the problem which puts a constraint
only on the time average number of active projects allowed:

T-1

R |
max lim inf —E[
T T—+ oo

Mz

—1{Ya(t) = 7} — nEaUn(t)] (9)

t=0

3
Il
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M=

s‘

7[@+ Tof 7 [ (1-=Un(t))] > (1= a)N. (10)

o

n=1

Let us consider the Lagrangian associated with the problem (9)-(10), with
Y(0)=x€Y,

T—-1 N

(7, w) = Jim |nf—E D> —1{Ya(t) = 7} — nEaUa(1)]
t=0 n=1
o fim. |nf—E [Z > (1= Us(t)] - w(1 = )N,
t=0 n=1

7: History dependent scheduling policy.
w > 0: Lagrangian multiplier



The Lagrangian dual function is d(w) := max:l(7,w) :

T-1 N

d(w) < max lim inf %E[Z D —HYa(t) =7}
t=0 n=1

—nE Un(t) + w(1 — Un(t))|Y(0) = x] — w(l — )N

< max Iij ilig ;_E[tzg nz:; =1{Ya(t) = 7a}

—nEnUn(t) + w(1 — Ua(t))|Y(0) = x] —w(l — a)N
< mfxz 71[>n+ sup %E[Z —1{Yan(t) =70}
n=1 o t=0
—NEaUn(t) +w(1l — Ua(t))|Y(0) = x] —w(1 — a)N, (11)

equation (11) is the unconstrained problem.



It can be viewed as a composition of N independent w-subsidy problems
interpreted as follows: For each client n, besides the original reward

-1{Ya(t) = 1o} — nEaUa(t), when U,(t) =0, it receives a subsidy w for being
passive.

Thus, the w-subsidy problem associated with client n is defined as,

T-1

Rofw) = max lim sup TE[>_ ~1{Ys(t) = 7}
—nE,Usl(t) + w(l — Ua(t))|Ya(0) = xa], (12)

where 7, is a history dependent policy which decides the action U,(t) for client
n in each time-slot.

We first solve this w-subsidy problem, and then explore its properties to show
that strong duality holds for the relaxed problem (9)-(10), and thereby
determine the optimal relaxed policy.



> For 6 € {0,1,...,7} and p € [0, 1],
we define 0,(8, p) to be a threshold policy for project n, as follows: The
policy o4(8, p)
at time t,
Ya(t) < 0 :Project is Passive i.e.,Un(t) =0
Ya(t) > 0 :Project is Active i.e., Un(t) =1
If Ya(t) =0 : then, Project stays Passive with Probability p, and is
activated with probability 1 — p.

» For each project n, associate a function defined as,
Wa(0) := pa(6 + 1)(1 — po)™~ D —nE,, (13)

> The Whittle Index W, (i)of project n at state i is defined as the value of
the subsidy that makes the passive and active actions equally attractive
for the w-subsidy problem associated with project n in state i.
When w = W, (i) The following holds the optimality,

—nEn 4 paf(0) + (1 = po)f((F + 1) Amn) = w + F((1 + 1) A7)



» The n-th project is said to be indexable if:

» B,(w) be the set of states for which project n is passiveunder
an optimal policy corresponding w-subsidy problem.

» Project n is indexable if, as wincreases from —ooto + 0o, the
set B,(w) increases monotonically from ¢ to the whole space.

> Lemma 5: Consider the w-subsidy problem(12), for project n. Then,

» 0,(0,0) is optimal iff the subsidy w < W,(0).
» For 0 € {1,...,7, — 1} is optimal iff the subsidy w satisfies
Wo(0 — 1) < w < W,(0).
> 0n(7h,0)is optimal iff w = W,(7 — 1).
> o,(Th, 1)is optimal iff w > W, (7 — 1) .
In addition, for 6 € {1,...,7, — 1}, the policies
{on(0,p) : p € [0,1]} are optimal when,
1.0<O8<7—1and w= W,0),
2. 0=7and w= W,(r —1).
Furthermore, for any 6 € {1,...,7} , under the o(6,0) policy,
the average reward earned is,
pnfw —nE, — (1 — pn)T"ﬂL)
1+ 6p,

(14)



> Consider the w subsidy problem for project n,and denote by a,(6, p) the
average proportion of time that the active action is taken under the
policy an(0, p),i.e.,
a”(aa p) = limT—>+OO %Ean(e,p)[zz—::)l U"(t)]
Let an,min(w) := ming, o{anmin(6, p) :
on(0, p)is optimal when the subsidy is w}.

» Theorem 7:For the relaxed problem (9)-(10) and its dual Fd(w), the
following results hold:

» The dual function d(w) satisfies,

=

d(w) = 9 Ro(w) —w(1l — a)N. (13)

n

Il
o

» Strong duality holds, i.e., the optimal average reward for the
relaxed problem, denoted R,, satisfies,
Rrer = ming, >0 d(w)

» Define policy o(8, p)as the one that applies 0,(0,, p,) to each
project n. Then, for each « € [0, 1],there exist vectors 6#*and
p* such that o(6*, p*)

> In addition, d(w) is a convex and piecewise linear function of
w. Thus, the value of R, can be easily solved.



Properties of d(w):
> Each R,(w) is a piecewise linear function.

> To prove convexity of R,(w), note that the reward earned by any policy is
a linear function of w, and the supremum of linear functions is convex.
Thus, d(w) is also convex and piecewise linear.

» The value of Ry, which is the minimum value of this known,convex, and
piecewise linear function d(w),can be easily obtained.



Whittle index policy: At the beginning of each time slot t, client n is
scheduled if its whittle index W, (Y;,(t)) is positive, and moreover, is within the
top alN index values of all clients in that slot. Now not more than a/N clients
are simultaneously scheduled.
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