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Motivation

Cyber-physical system typically employ wireless sensors for keeping
track of physical processes such as temperature and pressure.

These measurements transmitted back to the central node (access
point).

The time between successive deliveries of packets is an important
metric.

All wireless sensor nodes are energy harvesting.
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System Model

All ’N’ sensor nodes are energy harvesting sensors.

Access point (AP) is powered by the mains.
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Problem statement

Atmost L(< N) sensors can simultaneously transmit in a time slot.

A Control message is sent at the beginning by the AP to select L
sensors out of N sensors.

A scheduling policy for N wireless energy harvesting nodes is to be
designed to the following constraints:

Uniform sized packets are generated at each node when the node is
scheduled by the AP.

Each node has a given some threshold time before which it needs to
be scheduled again.

The QoS requirement of client n is specified through an integer, the
packet inter-delivery time threshold τn.
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Assumptions:

Battery state of all the EH sensor nodes is known at the AP.

Packet success probability of all the EH sensor nodes is known at the
AP.

The energy harvesting rate of all the nodes is known at the AP.

The energy required to transmit a packet in a given time slot is 1 unit.

One unit of energy is harvested at the beginning of a timeslot with
harvesting rate (ρ).
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MDP Formulation:

Goal: Scheduling the nodes based on the battery energy level, Success
Probability and Time elapsed since the latest delivery of the client n’s
packet.

a) State space:

B = {0, 1, . . . , bmax} is the set of battery states.
B(t) := (b1(t), . . . , bN(t)), where bn(t) is the battery state of client in
time slot t.
X (t) := (x1(t), . . . , xN(t)), where xn(t) is the time elapsed since the
latest delivery of client n’s packet.

b) Action space:U(t) := (u1(t), . . . , uN(t)), where un(t) is the action
taken for client n, in time slot t.

N∑
n=1

un(t) ≤ L (1)
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Contd..

un(t) =

{
1 if client n is selected to transmit in slot t

0 otherwise

c) State transition function: Let two arbitrary states in S be s = (B,X )
and s ′ = (B ′,X ′). The state transition function is the probability that
the system starts in state s if it takes an action U and lands in state s ′.
The system state evolves as,

xn(t + 1) =

{
0 if a packet of client n is delivered in t

xn(t) + 1 otherwise

bn(t+1) =

{
max(min(bn(t) + 1, bn(max))− un(t), 0)with probab. ρn

max(bn(t)− un(t), 0) with probability 1− ρn
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Contd..

Consider a small network consisting of two EHS nodes and an Access
point.

Scheduling policy: The AP can schedule at most one sensor Node.
N = 2, L = {0, 1}

B = (b1, b2),X = (x1, x2),U = (u1, u2)

(b1, b2, x1, x2)
(u1,u2)−−−−→ (b′1, b

′
2, x
′
1, x
′
2)

possible action set: (u1, u2) = {(0, 0), (1, 0), (0, 1)}

Balaprasad (IISc) Scheduling an Energy Harvesting Network 13th May, 2017. 9 / 38



cntd..

Energy harvesting rate of client1 = ρ1

Energy harvesting rate of client2 = ρ2

Success Probability of client1 = p1

Success Probability of client2 = p2

The State Transition Probability is given by,

ψ((B,X ),U, (B ′,X ′)) = P((B ′,X ′)|(B,X ),U)
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cntd..

P((B ′,X ′)|(B,X )) =
Case-1:U = (u1 = 0, u2 = 0) None of the Nodes are Scheduled.

=



ρ1ρ2, j1 = min(i1 + 1, b1max), j2 = min(i2 + 1, b2max), y1 = x1 + 1,

y2 = x2 + 1

(1− ρ1)ρ2, j1 = i1, j2 = min(i2 + 1, b2max), y1 = x1 + 1, y2 = x2 + 1

ρ1(1− ρ2), j1 = min(i1 + 1, b1max), j2 = i2, y1 = x1 + 1, y2 = x2 + 1

(1− ρ1)(1− ρ2), j1 = i1, j2 = i2, y1 = x1 + 1, y2 = x2 + 1
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cntd..

Case-2: U = (u1 = 1, u2 = 0) Node1 is scheduled.

=



(1− p1)ρ1ρ2, j1 = min(i1 + 1− 1, b1max), j2 = min(i2 + 1, b2max),

y1 = x1 + 1, y2 = x2 + 1

(1− p1)(1− ρ1)ρ2, j1 = max(i1 − 1, 0), j2 = min(i2 + 1, b2max),

y1 = x1 + 1, y2 = x2 + 1

(1− p1)ρ1(1− ρ2), (j1 = min(i1 + 1− 1, b1max), j2 = i2, y1 = x1 + 1,

y2 = x2 + 1

(1− p1)(1− ρ1)(1− ρ2), j1 = max(i1 − 1, 0), j2 = i2, y1 = x1 + 1,

y2 = x2 + 1
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cntd...

=



p1ρ1ρ2, j1 = min(i1 + 1− 1, b1max), j2 = min(i2 + 1, b2max),

y1 = 0, y2 = x2 + 1

p1(1− ρ1)ρ2, j1 = max(i1 − 1, 0), j2 = min(i2 + 1, b2max),

y1 = 0, y2 = x2 + 1

p1ρ1(1− ρ2), (j1 = min(i1 + 1− 1, b1max), j2 = i2, y1 = 0,

y2 = x2 + 1

p1(1− ρ1)(1− ρ2), j1 = max(i1 − 1, 0), j2 = i2, y1 = 0, y2 = x2 + 1
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cntd..

Case-3: U = (u1 = 0, u2 = 1) Node2 is scheduled.

=



(1− p2)ρ1ρ2, j1 = min(i1 + 1, b1max), j2 = min(i2 + 1− 1, b2max),

y1 = x1 + 1, y2 = x2 + 1

(1− p2)(1− ρ1)ρ2, j1 = i1, j2 = min(i2 + 1− 1, b2max),

y1 = x1 + 1, y2 = x2 + 1

(1− p2)ρ1(1− ρ2), j1 = min(i1 + 1, b1max), j2 = max(i2 − 1, 0),

y1 = x1 + 1, y2 = x2 + 1

(1− p2)(1− ρ1)(1− ρ2), j1 = i1, j2 = max(i2 − 1, 0), y1 = x1 + 1,

y2 = x2 + 1
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cntd...

=



p2ρ1ρ2, j1 = min(i1 + 1, b1max), j2 = min(i2 + 1− 1, b2max),

y1 = x1 + 1, y2 = 0

p2(1− ρ1)ρ2, j1 = max(i1 − 1, 0), j2 = min(i2 + 1, b2max),

y1 = x1 + 1, y2 = 0

p2ρ1(1− ρ2), (j1 = min(i1 + 1− 1, b1max), j2 = i2, y1 = x1 + 1,

y2 = 0

p2(1− ρ1)(1− ρ2), j1 = max(i1 − 1, 0), j2 = i2, y1 = x1 + 1, y2 = 0
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Immediate cost:

NOTE: E = 1 unit in all the below mentioned cases.
Cost: Let s = (B,X ) be the state of the system.
The expected immediate cost is defined as,
c(S,U)

=



10 if b1 < E , b2 < E , u1 6= 0, u2 6= 0, x1 ≤ τ1 and x2 ≤ τ2

10 if b1 < E , b2 < E , u1 6= 0, u2 6= 0, x1 > τ1 and x2 > τ2

0 if b1 < E , b2 < E , u1 = 0, u2 = 0, x1 ≤ τ1 and x2 ≤ τ2

1 if b1 < E , b2 < E , u1 = 0, u2 = 0, x1 ≤ τ1 and x2 > τ2

1 if b1 < E , b2 < E , u1 = 0, u2 = 0, x1 > τ1 and x2 ≤ τ2

2 if b1 < E , b2 < E , u1 = 0, u2 = 0, x1 > τ1 and x2 > τ2
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when b1 < 1, b2 < 1:
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when b1 ≥ 1, b2 < 1:
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when b1 ≥ 1, b2 < 1:



0 if b1 ≥ E , b2 < E , u1 = 0, u2 = 0, x1 ≤ τ1 and x2 ≤ τ2

1 if b1 ≥ E , b2 < E , u1 = 0, u2 = 0, x1 ≤ τ1 and x2 > τ2

1 if b1 ≥ E , b2 < E , u1 = 0, u2 = 0, x1 > τ1 and x2 ≤ τ2

2 if b1 ≥ E , b2 < E , u1 = 0, u2 = 0, x1 > τ1 and x2 > τ2

0 if b1 ≥ E , b2 < E , u1 = 1, u2 = 0, x1 ≤ τ1 and x2 ≤ τ2

1 if b1 ≥ E , b2 < E , u1 = 1, u2 = 0, x1 ≤ τ1 and x2 > τ2

1− p1 if b1 ≥ E , b2 < E , u1 = 1, u2 = 0, x1 > τ1 and x2 ≤ τ2

2− p1 if b1 ≥ E , b2 < E , u1 = 1, u2 = 0, x1 > τ1 and x2 > τ2

10 if b1 ≥ E , b2 < E , u1 = 0, u2 = 1,∀ x1 and x2
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when b1 < 1, b2 ≥ 1:
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when b1 < 1, b2 ≥ 1:



0 if b1 < E , b2 ≥ E , u1 = 0, u2 = 0, x1 ≤ τ1 and x2 ≤ τ2

1 if b1 < E , b2 ≥ E , u1 = 0, u2 = 0, x1 ≤ τ1 and x2 > τ2

1 if b1 < E , b2 ≥ E , u1 = 0, u2 = 0, x1 > τ1 and x2 ≤ τ2

2 if b1 < E , b2 ≥ E , u1 = 0, u2 = 0, x1 > τ1 and x2 > τ2

0 if b1 < E , b2 ≥ E , u1 = 0, u2 = 1, x1 ≤ τ1 and x2 ≤ τ2

1− p2 if b1 < E , b2 ≥ E , u1 = 0, u2 = 1, x1 ≤ τ1 and x2 > τ2

1 if b1 < E , b2 ≥ E , u1 = 0, u2 = 1, x1 > τ1 and x2 ≤ τ2

2− p2 if b1 < E , b2 ≥ E , u1 = 0, u2 = 1, x1 > τ1 and x2 > τ2

10 if b1 ≥ E , b2 < E , u1 = 1, u2 = 0,∀ x1 and x2
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when b1 ≥ 1, b2 ≥ 1:

0 if b1 ≥ E , b2 ≥ E , u1 = 0, u2 = 0, x1 ≤ τ1 and x2 ≤ τ2

1 if b1 ≥ E , b2 ≥ E , u1 = 0, u2 = 0, x1 ≤ τ1 and x2 > τ2

1 if b1 ≥ E , b2 ≥ E , u1 = 0, u2 = 0, x1 > τ1 and x2 ≤ τ2

2 if b1 ≥ E , b2 ≥ E , u1 = 0, u2 = 0, x1 > τ1 and x2 > τ2

0 if b1 ≥ E , b2 ≥ E , u1 = 1, u2 = 0, x1 ≤ τ1 and x2 ≤ τ2

1 if b1 ≥ E , b2 ≥ E , u1 = 1, u2 = 0, x1 ≤ τ1 and x2 > τ2

1− p1 if b1 ≥ E , b2 ≥ E , u1 = 1, u2 = 0, x1 > τ1 and x2 ≤ τ2

2− p1 if b1 ≥ E , b2 ≥ E , u1 = 1, u2 = 0, x1 > τ1 and x2 > τ2

0 if b1 ≥ E , b2 ≥ E , u1 = 0, u2 = 1, x1 ≤ τ1 and x2 ≤ τ2

1− p2 if b1 ≥ E , b2 ≥ E , u1 = 0, u2 = 1, x1 ≤ τ1 and x2 > τ2

1 if b1 ≥ E , b2 ≥ E , u1 = 0, u2 = 1, x1 > τ1 and x2 ≤ τ2

2− p2 if b1 ≥ E , b2 ≥ E , u1 = 0, u2 = 1, x1 > τ1 and x2 > τ2
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Heuristic policy
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Heuristic policy

Cost Function:
The T-horizon optimal cost-to-go from initial state x, VT (x) is given by,

:= min
π:ΣnUn(t)≤L

E{
T−1∑
t=0

N∑
n=1

((Xn(t) + 1− τn)+1{Xn(t + 1) = 0})|X (0) = x}
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Simulation Results

Effect of Success Probability:

For all the simulations ρ1 = ρ2 = ρ
Total cost is decreasing as the harvesting rate increases.
Total cost is decreasing as the success probability increases.
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Effect of Success Probability:
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Effect of Effect of Battery Capacity:

Total cost is independent of the battery capacity at low and high
harvesting rates.
Higher battery capacity gives good performance in the range from 0.3
to 0.8.
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Comparison with Round-robin policy

MDP policy performs better than the Round-robin policy.
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Multi-armed Bandit problem

‘L out of N’ type sequential decision problems

Simple Multi-armed bandits: only active projects/arms incur the cost
and evolve

Restless multi-armed bandits: projects/arms which are not scheduled
also evolve and incur the cost, e.g., N queues served by L servers

Whittle Index based policy for RMABs

Compute the Whittle index for each arm

Choose arms with top L whittle index

Such policies are near-optimal, and can be shown to be
asymptotically optimal as N →∞ with L

N fixed
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ω-subsidy problem

For nth node:
The state space contains the battery and time elapsed Sn = (Bn(t), dn(t))
Bn(t) ∈ {0, 1, .., bmax

n }
dn(t) ∈ {0, 1, .., τn}
Total no.of states = (bmax

n + 1)(τn + 1).
The transition probabilities are given by,

=



ρ if Bn(t)
′

= min(Bn(t) + 1, bmax
n ), dn(t)

′
= dn(t) + 1, u = 0

(1− ρ) if Bn(t)
′

= Bn(t), dn(t)
′

= dn(t) + 1, u = 0

ρp if Bn(t)
′

= min(Bn(t) + 1− 1, bmax
n ), dn(t)

′
= 0, u = 1

ρ(1− p) if Bn(t)
′

= min(Bn(t) + 1− 1, bmax
n ), dn(t)

′
= dn(t) + 1,

u = 1

(1− ρ)p if Bn(t)
′

= max(Bn(t)− 1, 0), dn(t)
′

= 0, u = 1

(1− ρ)(1− p) if Bn(t)
′

= max(Bn(t)− 1, 0), dn(t)
′

= dn(t) + 1,

u = 1
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Threshold policy:

Bn(t) = 0: Only passive action is possible and subsidy ω = 0

Bn(t) = 1:(considering unit battery only, β = Bmax
n = 1)

φ(β, θ, q) =


Passive if dn(t) < θ

Passive with prob. ′q′ if dn(t) = θ

Active if dn(t) > θ

The optimal average reward R is the same for all initial states and together
with some vector f = {f (1), ..., f (n)} satisfies Bellman’s equation:

R + f (i) = min
u∈{0,1}

[c(i , u) +
n∑

j=1

pij(u)f (j)] (2)
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The Bellman’s equation can be written as,

R + f (Bn(t), dn(t)) = max
u∈{0,1}

{−1{i = τn}+ ω(1− u)1{Bn(t) ≥ 1}

+ ρ(1− u)f (((Bn(t) + 1) ∧ Bmax
n ), ((dn(t) + 1) ∧ τn))

+ (1− ρ)(1− u)f (Bn(t), ((dn(t) + 1) ∧ τn))

+ ρpu1{Bn(t) ≥ 1}f (((Bn(t) + 1− 1) ∧ Bmax
n ), 0))

+ (1− ρ)pu1{Bn(t) ≥ 1}f ((Bn(t)− 1), 0)

+ ρ(1− p)u1{Bn(t) ≥ 1}f (((Bn(t) + 1− 1) ∧ Bmax
n ), ((dn(t) + 1) ∧ τn))

+ (1− ρ)(1− p)u1{Bn(t) ≥ 1}f (((Bn(t)− 1) ∧ Bmax
n ), ((dn(t) + 1) ∧ τn))}

Balaprasad (IISc) Scheduling an Energy Harvesting Network 13th May, 2017. 32 / 38



Case1:φ(β, θ, q) = φ(1, 0, 0), Bmax
n = 1andτn = 1

Bn = 0: Always passive

R + f (0, 0) = ρf (1, 1) + (1− ρ)f (0, 1) (3)

R + f (0, 1) = −1 + ρf (1, 1) + (1− ρ)f (0, 1) (4)

Bn = 1:
dn = θ → Passive with prob. ’q=0’(Active)

R + f (1, 0) = ρpf (1, 0) + (1− ρ)pf (0, 0) + ρ(1− p)f (1, 1)

+(1− ρ)(1− p)f (0, 1)

dn > θ → Active

R + f (1, 1) = −1 + ρpf (1, 0) + (1− ρ)pf (0, 0) + ρ(1− p)f (1, 1)

+(1− ρ)(1− p)f (0, 1)

Solution: R = ρp − 1,f (0, 1) = −1,f (1, 0) = p,f (1, 1) = p − 1
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Case2:φ(β, θ, q) = φ(1, 1, 1), Bmax
n = 1andτn = 1

Bn = 0: Always passive

R + f (0, 0) = ρf (1, 1) + (1− ρ)f (0, 1) (5)

R + f (0, 1) = −1 + ρf (1, 1) + (1− ρ)f (0, 1) (6)

Bn = 1:
dn < θ → Passive

R + f (1, 0) = ω + ρf (1, 1) + (1− ρ)f (1, 1) (7)

dn = θ → Passive with prob. ’q=1’

R + f (1, 0) = −1 + ω + ρf (1, 1) + (1− ρ)f (1, 1) (8)

Solution: R = ω − 1,f (0, 1) = −1,f (1, 0) = ω
ρ ,f (1, 1) = ω−ρ

ρ
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Case3:φ(β, θ, q) = φ(1, 1, 0), Bmax
n = 1andτn = 1

Bn = 0: Always passive

R + f (0, 0) = ρf (1, 1) + (1− ρ)f (0, 1) (9)

R + f (0, 1) = −1 + ρf (1, 1) + (1− ρ)f (0, 1) (10)

Bn = 1:
dn < θ → Passive

R + f (1, 0) = ω + ρf (1, 1) + (1− ρ)f (1, 1) (11)

dn = θ → Passive with prob. ’q=0’

R + f (1, 1) = −1 + ρpf (1, 0) + (1− ρ)pf (0, 0) + ρ(1− p)f (1, 1)

+(1− ρ)(1− p)f (0, 1)

Solution: R = pρ+pρ2ω−pρ2−1
pρ2+1

,f (0, 1) = −1,f (1, 0) =
p+ω−pρ+pρω

pρ2+1
,f (1, 1) = −pρ2+pωρ+p−1

pρ2+1
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Future work

Average reward and ω-subsidy expressions are need to be computed
for general θ

Whittle index for unit battery case

Comparing whittle index policy optimality against MDP policy

Extending whittle index for general battery case
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