Introduction to PAC Bayesian bounds

Saurabh Khanna,
Signal Processing for Communication, ECE, IISc

Outline

- PAC Bayesian framework
- Binary classification problem and Gibbs classifier
- PAC Bayesian bounds
- Statement
- Insights
- Theory behind the bound

PAC learning framework [Valiant '84]

- PAC stands for Probably Approximately Correct
- Approximately

Provide guarantees on the approximation error of empirical estimates

- Probably

Guarantees that hold with high probability

Supervised learning - some definitions

- \mathcal{X} - sample space

Supervised learning - some definitions

- \mathcal{X} - sample space
- \mathcal{Y} - label space

Supervised learning - some definitions

- \mathcal{X} - sample space
- \mathcal{Y} - label space
- m - number of training samples

Supervised learning - some definitions

- \mathcal{X} - sample space
- \mathcal{Y} - label space
- m - number of training samples
- $S=\left\{\left(\mathbf{x}_{1}, y_{1}\right), \ldots\left(\mathbf{x}_{m}, y_{m}\right)\right\}-$ training data set (i.i.d.)

Supervised learning - some definitions

- \mathcal{X} - sample space
- \mathcal{Y} - label space
- m - number of training samples
- $S=\left\{\left(\mathbf{x}_{1}, y_{1}\right), \ldots\left(\mathbf{x}_{m}, y_{m}\right)\right\}$ - training data set (i.i.d.)
- \mathcal{H} - hypothesis space

Supervised learning - some definitions

- \mathcal{X} - sample space
- \mathcal{Y} - label space
- m - number of training samples
- $S=\left\{\left(\mathbf{x}_{1}, y_{1}\right), \ldots\left(\mathbf{x}_{m}, y_{m}\right)\right\}-$ training data set (i.i.d.)
- \mathcal{H} - hypothesis space
- $\mathcal{A}: S \rightarrow \mathcal{H}$ - algorithm

Supervised learning - some definitions

- \mathcal{X} - sample space
- \mathcal{Y} - label space
- m - number of training samples
- $S=\left\{\left(\mathbf{x}_{1}, y_{1}\right), \ldots\left(\mathbf{x}_{m}, y_{m}\right)\right\}$ - training data set (i.i.d.)
- \mathcal{H} - hypothesis space
- $\mathcal{A}: S \rightarrow \mathcal{H}$ - algorithm
- $h(\mathbf{x})$ - prediction of hypothesis/classifier $h \in \mathcal{H}$ for input sample \mathbf{x}

Supervised learning - some definitions

- \mathcal{X} - sample space
- \mathcal{Y} - label space
- m - number of training samples
- $S=\left\{\left(\mathbf{x}_{1}, y_{1}\right), \ldots\left(\mathbf{x}_{m}, y_{m}\right)\right\}-$ training data set (i.i.d.)
- \mathcal{H} - hypothesis space
- $\mathcal{A}: S \rightarrow \mathcal{H}$ - algorithm
- $h(\mathbf{x})$ - prediction of hypothesis/classifier $h \in \mathcal{H}$ for input sample \mathbf{x}
- I(h, x) - instantaneous loss/risk of h on \mathbf{x}

Supervised learning - some definitions

- \mathcal{X} - sample space
- \mathcal{Y} - label space
- m - number of training samples
- $S=\left\{\left(\mathbf{x}_{1}, y_{1}\right), \ldots\left(\mathbf{x}_{m}, y_{m}\right)\right\}$ - training data set (i.i.d.)
- \mathcal{H} - hypothesis space
- $\mathcal{A}: S \rightarrow \mathcal{H}$ - algorithm
- $h(\mathbf{x})$ - prediction of hypothesis/classifier $h \in \mathcal{H}$ for input sample \mathbf{x}
- I($h, \mathbf{x})$ - instantaneous loss/risk of h on \mathbf{x}
- $I(h, W)$ - expected loss of hypothesis h on entire \mathcal{X}, assuming input distribution to be W

Supervised learning - some definitions

- \mathcal{X} - sample space
- \mathcal{Y} - label space
- m - number of training samples
- $S=\left\{\left(\mathbf{x}_{1}, y_{1}\right), \ldots\left(\mathbf{x}_{m}, y_{m}\right)\right\}-$ training data set (i.i.d.)
- \mathcal{H} - hypothesis space
- $\mathcal{A}: S \rightarrow \mathcal{H}$ - algorithm
- $h(\mathbf{x})$ - prediction of hypothesis/classifier $h \in \mathcal{H}$ for input sample \mathbf{x}
- I($h, \mathbf{x})$ - instantaneous loss/risk of h on \mathbf{x}
- I(h,W) - expected loss of hypothesis h on entire \mathcal{X}, assuming input distribution to be W
- D - true but unknown distribution on \mathcal{X}

Supervised learning - some definitions

- \mathcal{X} - sample space
- \mathcal{Y} - label space
- m - number of training samples
- $S=\left\{\left(\mathbf{x}_{1}, y_{1}\right), \ldots\left(\mathbf{x}_{m}, y_{m}\right)\right\}$ - training data set (i.i.d.)
- \mathcal{H} - hypothesis space
- $\mathcal{A}: S \rightarrow \mathcal{H}$ - algorithm
- $h(\mathbf{x})$ - prediction of hypothesis/classifier $h \in \mathcal{H}$ for input sample \mathbf{x}
- I($h, \mathbf{x})$ - instantaneous loss/risk of h on \mathbf{x}
- I(h,W) - expected loss of hypothesis h on entire \mathcal{X}, assuming input distribution to be W
- D - true but unknown distribution on \mathcal{X}
- $I(h, D)=\mathbb{E}_{\mathbf{x} \sim D}[I(h, \mathbf{x})]$ - expected loss of hypothesis h

Supervised learning - some definitions

- \mathcal{X} - sample space
- \mathcal{Y} - label space
- m - number of training samples
- $S=\left\{\left(\mathbf{x}_{1}, y_{1}\right), \ldots\left(\mathbf{x}_{m}, y_{m}\right)\right\}$ - training data set (i.i.d.)
- \mathcal{H} - hypothesis space
- $\mathcal{A}: S \rightarrow \mathcal{H}$ - algorithm
- $h(\mathbf{x})$ - prediction of hypothesis/classifier $h \in \mathcal{H}$ for input sample \mathbf{x}
- I($h, \mathbf{x})$ - instantaneous loss/risk of h on \mathbf{x}
- I(h,W) - expected loss of hypothesis h on entire \mathcal{X}, assuming input distribution to be W
- D - true but unknown distribution on \mathcal{X}
- $I(h, D)=\mathbb{E}_{\mathbf{x} \sim D}[I(h, \mathbf{x})]$ - expected loss of hypothesis h
- $I(h, S)=\frac{1}{m} \sum_{i=1}^{m} I\left(h, \mathbf{x}_{i}\right)$ - empirical loss of hypothesis h

PAC-Bayesian setting

- Start with a prior P on the hypothesis space \mathcal{H}.

PAC-Bayesian setting

- Start with a prior P on the hypothesis space \mathcal{H}.
- After observing S, the algorithm A generates a posterior Q on \mathcal{H}

PAC-Bayesian setting

- Start with a prior P on the hypothesis space \mathcal{H}.
- After observing S, the algorithm A generates a posterior Q on \mathcal{H}
- In PAC-Bayes, the classifier is random/stochastic in nature (Gibbs classifier)

1. For given input $\mathbf{x} \in \mathcal{X}$, draw h from \mathcal{H} acc. to Q.
2. Assign label $y=h(\mathbf{x})$

PAC-Bayesian setting

- Start with a prior P on the hypothesis space \mathcal{H}.
- After observing S, the algorithm A generates a posterior Q on \mathcal{H}
- In PAC-Bayes, the classifier is random/stochastic in nature (Gibbs classifier)

1. For given input $\mathbf{x} \in \mathcal{X}$, draw h from \mathcal{H} acc. to Q.
2. Assign label $y=h(\mathbf{x})$

- Expected loss: $I(Q, D)=\mathbb{E}_{Q}[/(h, D)]$
- Empirical loss: $I(Q, S)=\mathbb{E}_{Q}[I(h, S)]$

PAC-Bayesian setting

- PAC-Bayesian framework:

- Output of the algorithm is a Gibbs classifier.
- Let $I(Q, S)$ denote the empirical loss/risk of the Gibbs classifier generated by the algorithm \mathcal{A}.

$$
I(Q, S)=\mathbb{E}_{Q}[I(h, S)], \text { where } I(h, S)=\frac{1}{m} \sum_{i=1}^{m} I\left(h, \mathbf{x}_{i}\right)
$$

- Question?

How close is empirical loss $I(Q, S)$ to the true loss $I(Q, D)$

PAC-Bayesian bounds - different flavors

- Mc Allester bound ['98]

$$
\left|\mathbb{E}_{Q}[I(h, S)]-\mathbb{E}_{Q}[I(h, D)]\right|^{2} \leq ? ?
$$

PAC-Bayesian bounds - different flavors

- Mc Allester bound ['98]

$$
\left|\mathbb{E}_{Q}[I(h, S)]-\mathbb{E}_{Q}[I(h, D)]\right|^{2} \leq ? ?
$$

- Seeger bound ['02]

$$
k l\left(\mathbb{E}_{Q}[/(h, S)] \| \mathbb{E}_{Q}[/(h, D)]\right) \leq ? ?
$$

where $k l(q \| p)$ is called the small KL divergence given by $k l(q \| p)=q \log \frac{q}{p}+(1-q) \log \frac{(1-q)}{(1-p)}$

PAC-Bayesian Bound [Seeger '02]

- With probability at least $(1-\delta)$ over the choice of $S \sim D^{m}$,

$$
k l(I(Q, S) \| I(Q, D)) \leq \frac{K L(Q \| P)+\log \frac{m+1}{\delta}}{m}
$$

Intuition behind the bound (1/2)

- With probability at least $(1-\delta)$ over the choice of $S \sim D^{m}$,

$$
k l(I(Q, S) \| l(Q, D)) \leq \frac{K L(Q \| P)+\log \frac{m+1}{\delta}}{m}
$$

Intuition behind the bound (1/2)

- With probability at least $(1-\delta)$ over the choice of $S \sim D^{m}$,

$$
k l(I(Q, S) \| I(Q, D)) \leq \frac{K L(Q \| P)+\log \frac{m+1}{\delta}}{m}
$$

- $K L(Q \| P)=\underbrace{\left\langle\mathbb{E}_{Q} \log \left(\frac{1}{P}\right)\right\rangle}_{\text {cross-entropy }}-\underbrace{H(Q)}_{\text {entropy }}$

Intuition behind the bound (1/2)

- With probability at least $(1-\delta)$ over the choice of $S \sim D^{m}$,

$$
k l(I(Q, S) \| l(Q, D)) \leq \frac{K L(Q \| P)+\log \frac{m+1}{\delta}}{m}
$$

- $K L(Q \| P)=\underbrace{\left\langle\mathbb{E}_{Q} \log \left(\frac{1}{P}\right)\right\rangle}_{\text {cross-entropy }}-\underbrace{H(Q)}_{\text {entropy }}$
- Preferred choice for posterior Q :

1. has maximum entropy
2. reduces empirical loss $I(Q, S)$

Intuition behind the bound (1/2)

- With probability at least $(1-\delta)$ over the choice of $S \sim D^{m}$,

$$
k l(I(Q, S) \| I(Q, D)) \leq \frac{K L(Q \| P)+\log \frac{m+1}{\delta}}{m}
$$

- $K L(Q \| P)=\underbrace{\left\langle\mathbb{E}_{Q} \log \left(\frac{1}{P}\right)\right\rangle}_{\text {cross-entropy }}-\underbrace{H(Q)}_{\text {entropy }}$
- Preferred choice for posterior Q :

1. has maximum entropy
2. reduces empirical loss $I(Q, S)$

- Preferred choice for prior P :

1. has low complexity
2. is close to posterior Q

Intuition behind the bound (2/2)

- With probability at least $(1-\delta)$ over the choice of $S \sim D^{m}$,

$$
k l(I(Q, S) \| l(Q, D)) \leq \frac{K L(Q \| P)+\log \frac{m+1}{\delta}}{m}
$$

- Other key take-away points:

1. w.h.p. guarantees on expected performance
2. explicit way to incorporate prior knowledge
3. non assumption on correctness of prior P
4. explicit dependence on the loss function
5. holds for any posterior Q
6. bound is meant for randomized/stochastic classifiers

Theory behind PAC Bayesian bound - major milestones

- PAC Bayesian bound:

$$
k l(I(Q, S) \| I(Q, D)) \leq \frac{K L(Q \| P)+\log \frac{m+1}{\delta}}{m} \quad \text { w.h.p. }
$$

- Milestone-1 Fenchel inequality in convex analysis [Rockafeller, 70]
- Milestone-2 Variational factorization of KL divergence [Donsker and Varadhan, 75]
- Also known as Compression Lemma
- Milestone-3 PAC Bayesian bound [Seeger, 02]

Duality in convex analysis (1/2)

- Dual definition of convex set: [Rockafeller, '70]

- Any closed convex set A can be defined as an intersection of affine half spaces that contain the set A.

Duality in convex analysis (2/2)

- Dual definition of convex function: [Rockafeller, '70]

- Any closed convex function can be defined as the pointwise supremum of collection of all affine functions h majorized by f.

Conjugate of a convex function (1/2)

- Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a convex function.

Conjugate of a convex function (1/2)

- Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a convex function.
- Let F^{*} be the set of all tuples (\mathbf{z}, v) such that $h(\mathbf{x})=\langle\mathbf{x}, \mathbf{z}\rangle-v$ is majorized by $f(\mathbf{x})$, i.e.,

$$
f(\mathbf{x}) \geq\langle\mathbf{x}, \mathbf{z}\rangle-v
$$

or equivalently,

$$
v \geq\langle\mathbf{x}, \mathbf{z}\rangle-f(\mathbf{x})
$$

for all $\mathbf{x} \in \mathbb{R}^{d}$.

Conjugate of a convex function (1/2)

- Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a convex function.
- Let F^{*} be the set of all tuples (\mathbf{z}, v) such that $h(\mathbf{x})=\langle\mathbf{x}, \mathbf{z}\rangle-v$ is majorized by $f(\mathbf{x})$, i.e.,

$$
f(\mathbf{x}) \geq\langle\mathbf{x}, \mathbf{z}\rangle-v
$$

or equivalently,

$$
v \geq\langle\mathbf{x}, \mathbf{z}\rangle-f(\mathbf{x})
$$

for all $\mathbf{x} \in \mathbb{R}^{d}$.

- Given \mathbf{z}, if we choose $v \geq \sup \langle\mathbf{x}, \mathbf{z}\rangle-f(\mathbf{x})$, then $\mathbf{x} \in \mathbb{R}^{d}$
$f(\mathbf{x}) \geq h(\mathbf{x})$ for all $\mathbf{x} \in \mathbb{R}^{d}$.

Conjugate of a convex function (1/2)

- Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a convex function.
- Let F^{*} be the set of all tuples (\mathbf{z}, v) such that $h(\mathbf{x})=\langle\mathbf{x}, \mathbf{z}\rangle-v$ is majorized by $f(\mathbf{x})$, i.e.,

$$
f(\mathbf{x}) \geq\langle\mathbf{x}, \mathbf{z}\rangle-v
$$

or equivalently,

$$
v \geq\langle\mathbf{x}, \mathbf{z}\rangle-f(\mathbf{x})
$$

for all $\mathbf{x} \in \mathbb{R}^{d}$.

- Given \mathbf{z}, if we choose $v \geq \sup \langle\mathbf{x}, \mathbf{z}\rangle-f(\mathbf{x})$, then $\mathbf{x} \in \mathbb{R}^{d}$ $f(\mathbf{x}) \geq h(\mathbf{x})$ for all $\mathbf{x} \in \mathbb{R}^{d}$.
- The convex function f and the set F^{*} convey the same information.

Conjugate of a convex function (2/2)

- For convex function f, the set F^{*} is the collection of tuples (\mathbf{z}, v) such that

$$
v \geq \sup _{\mathbf{x}}\langle\mathbf{x}, \mathbf{z}\rangle-f(\mathbf{x})
$$

Conjugate of a convex function (2/2)

- For convex function f, the set F^{*} is the collection of tuples (\mathbf{z}, v) such that

$$
v \geq \sup _{\mathbf{x}}\langle\mathbf{x}, \mathbf{z}\rangle-f(\mathbf{x})
$$

- The set F^{*} is also the epigraph of the convex function f^{*}

$$
f^{*}(\mathbf{z})=\sup _{\mathbf{x}}\langle\mathbf{x}, \mathbf{z}\rangle-f(\mathbf{x})
$$

Conjugate of a convex function (2/2)

- For convex function f, the set F^{*} is the collection of tuples (\mathbf{z}, v) such that

$$
v \geq \sup _{\mathbf{x}}\langle\mathbf{x}, \mathbf{z}\rangle-f(\mathbf{x})
$$

- The set F^{*} is also the epigraph of the convex function f^{*}

$$
f^{*}(\mathbf{z})=\sup _{\mathbf{x}}\langle\mathbf{x}, \mathbf{z}\rangle-f(\mathbf{x})
$$

- The function f^{*} is called the dual or convex conjuate of f.

Properties of conjugate functions

- f^{*} is also a convex function
- $\left(f^{*}\right)^{*}=f$
- $f(\mathbf{x})+f^{*}(\mathbf{y}) \geq\langle\mathbf{x}, \mathbf{y}\rangle, \quad \forall \mathbf{x}, \mathbf{y}$

Properties of conjugate functions

- f^{*} is also a convex function
- $\left(f^{*}\right)^{*}=f$
- $f(\mathbf{x})+f^{*}(\mathbf{y}) \geq\langle\mathbf{x}, \mathbf{y}\rangle, \quad \forall \mathbf{x}, \mathbf{y}$
- In fact, the conjugate pair f and f^{*} are the best pair to satisfy the below inequality:

$$
f(\mathbf{x})+g(\mathbf{y}) \geq\langle\mathbf{x}, \mathbf{y}\rangle
$$

Proof: We work out.

Fenchel's inequality

- The convex conjugate pair f and f^{*} always satisfy:

$$
f(\mathbf{x})+f^{*}(\mathbf{y}) \geq\langle\mathbf{x}, \mathbf{y}\rangle \quad \forall \mathbf{x}, \mathbf{y}
$$

Compression Lemma [McAllester, '03]

- Let \mathcal{H} be a parameter space.
- For any measureable function $\phi(h)$ on \mathcal{H} and any distributions P and Q on \mathcal{H}, we have:

$$
\mathbb{E}_{Q}[\phi(h)]-\log \mathbb{E}_{P}[\exp \phi(h)] \leq K L(Q \| P)
$$

Further,

$$
\sup _{\phi}\left(\mathbb{E}_{Q}[\phi(h)]-\log \mathbb{E}_{P}[\exp \phi(h)]\right)=K L(Q \| P)
$$

- Also known by following names:

1. Change of measure inequality
2. Donsker-Varadhan formula

Compression Lemma - Proof

$\mathbb{E}_{Q}[\phi(h)]$

$$
=\mathbb{E}_{Q}\left[\log \left(\frac{Q(h)}{P(h)} \exp (\phi(h)) \frac{P(h)}{Q(h)}\right)\right]
$$

$$
=\mathbb{E}_{Q}\left[\log \left(\frac{Q(h)}{P(h)}\right)\right]+\mathbb{E}_{Q}\left[\log \left(\exp (\phi(h)) \frac{P(h)}{Q(h)}\right)\right]
$$

$$
=K L(Q \| P)+\mathbb{E}_{Q}\left[\log \left(\exp (\phi(h)) \frac{P(h)}{Q(h)}\right)\right]
$$

$$
\underset{\text { Jensen ineq. }}{\leq} K L(Q \| P)+\log \left(\mathbb{E}_{Q}\left[\exp (\phi(h)) \frac{d P(h)}{d Q(h)}\right]\right)
$$

$$
=K L(Q \| P)+\log \left(\mathbb{E}_{P}[\exp (\phi(h))]\right)
$$

Connection b/w Compression Lemma and Fenchel's Inequality

- For any measurable function $\phi: \mathcal{H} \rightarrow \mathbb{R}$, define

$$
f(\phi)=\log \mathbb{E}_{P}[\exp (\phi(h))]
$$

Connection b/w Compression Lemma and Fenchel's Inequality

- For any measurable function $\phi: \mathcal{H} \rightarrow \mathbb{R}$, define

$$
f(\phi)=\log \mathbb{E}_{P}[\exp (\phi(h))]
$$

- f is convex with respect to ϕ

Connection b/w Compression Lemma and Fenchel's Inequality

- For any measurable function $\phi: \mathcal{H} \rightarrow \mathbb{R}$, define

$$
f(\phi)=\log \mathbb{E}_{P}[\exp (\phi(h))]
$$

- f is convex with respect to ϕ
- Choose ϕ^{*} to be the probability density corresponding to a distribution Q on \mathcal{H} so that

$$
\left\langle\phi, \phi^{*}\right\rangle=\mathbb{E}_{h \sim Q}[\phi(h)]
$$

Connection b/w Compression Lemma and Fenchel's Inequality

- For any measurable function $\phi: \mathcal{H} \rightarrow \mathbb{R}$, define

$$
f(\phi)=\log \mathbb{E}_{P}[\exp (\phi(h))]
$$

- f is convex with respect to ϕ
- Choose ϕ^{*} to be the probability density corresponding to a distribution Q on \mathcal{H} so that

$$
\left\langle\phi, \phi^{*}\right\rangle=\mathbb{E}_{h \sim Q}[\phi(h)]
$$

- The conjugate of f is:

$$
\begin{aligned}
f^{*}\left(\phi^{*}\right) & =\sup _{\phi}\left(\left\langle\phi, \phi^{*}\right\rangle-f(\phi)\right) \\
& =\sup _{\phi}\left(\mathbb{E}_{Q}[\phi(h)]-\log \mathbb{E}_{P}[\exp (\phi(h))]\right) \\
& =K L(Q \| P)
\end{aligned}
$$

PAC-Bayesian Bound

- With probability at least $(1-\delta)$ over the choice of $S \sim D^{m}$,

$$
k l(I(Q, S) \| I(Q, D)) \leq \frac{K L(Q \| P)+\log \frac{m+1}{\delta}}{m}
$$

- Can be derived as a special case of Compression Lemma.

PAC-Bayesian Bound - derivation (1/4)

- From compression lemma, for any measurable function $\phi(h)$, we have

$$
\mathbb{E}_{Q}[\phi(h)] \leq K L(Q \| P)+\log \left(\mathbb{E}_{P}[\exp (\phi(h))]\right)
$$

- Let $\phi(h) \triangleq m \cdot k l(I(h, S) \| I(h, D))$, where S is the sample distribution and D is the true distribution. Then,

$$
\begin{aligned}
& \mathbb{E}_{Q}[k l(I(h, S) \| I(h, D))] \leq \\
& \frac{K L(Q \| P)+\log \left(\mathbb{E}_{P}[\exp (m \cdot k l(I(h, S) \| I(h, D)))]\right)}{m}
\end{aligned}
$$

- We first fix the LHS.

PAC-Bayesian Bound - derivation (2/4)

- Since relative entropy is jointly convex in both its arguments, by using Jensen's inequality

$$
k l(I(Q, S) \| l(Q, D)) \leq \mathbb{E}_{Q}[k l(I(h, S) \| I(h, D))]
$$

- We next fix the RHS.

PAC-Bayesian Bound - derivation (3/4)

- We need to show that

$$
\mathbb{E}_{P}[\exp (m . k l(I(h, S) \| I(h, D)))] \leq \frac{m+1}{\delta} \text { w.h.p. }
$$

PAC-Bayesian Bound - derivation (3/4)

- We need to show that $\mathbb{E}_{P}[\exp (m \cdot k l(I(h, S) \| l(h, D)))] \leq \frac{m+1}{\delta}$ w.h.p.
- From Markov's inequality:

$$
\begin{aligned}
& \mathbb{E}_{P}[\exp (m \cdot k l(I(h, S) \| I(h, D)))] \\
& \quad \leq \frac{\mathbb{E}_{S \sim D^{m}} \mathbb{E}_{P}[\exp (m \cdot k l(I(h, S) \| I(h, D)))]}{\delta}
\end{aligned}
$$

with probability at least $1-\delta$.

- Next we will show that $\mathbb{E}_{S \sim D^{m}} \mathbb{E}_{P}[\exp (m \cdot k l(I(h, S) \| l(h, D)))] \leq m+1$.

PAC-Bayesian Bound - derivation (4/4)

- Next we will show that
$\mathbb{E}_{S \sim D^{m}} \mathbb{E}_{P}[\exp (m \cdot k l(l(h, S) \| l(h, D)))] \leq m+1$

PAC-Bayesian Bound - derivation (4/4)

- Next we will show that
$\mathbb{E}_{S \sim D^{m}} \mathbb{E}_{P}[\exp (m \cdot k l(l(h, S) \| l(h, D)))] \leq m+1$
- Or equivalently, [Fubini's theorem] $\mathbb{E}_{P} \mathbb{E}_{S \sim D^{m}}[\exp (m \cdot k l(I(h, S) \| I(h, D)))] \leq m+1$

PAC-Bayesian Bound - derivation (4/4)

- Next we will show that
$\mathbb{E}_{S \sim D^{m}} \mathbb{E}_{P}[\exp (m \cdot k l(l(h, S) \| l(h, D)))] \leq m+1$
- Or equivalently, [Fubini's theorem] $\mathbb{E}_{P} \mathbb{E}_{S \sim D^{m}}[\exp (m \cdot k l(l(h, S) \| l(h, D)))] \leq m+1$
- Since $m . I(h, S)$ is binomial distributed with probability $\pi=I(h, D)$, we have:

$$
\begin{aligned}
& \mathbb{E}_{S \sim D^{m}}[\exp (m \cdot k l(I(h, S) \| I(h, D)))] \\
& \quad=\sum_{s \sim \operatorname{Binomial}(\pi, m)} p(s) \exp (m \cdot k l(l(h, s) \| \pi)) \\
& \quad=\sum_{n=0}^{m}\binom{m}{n} \pi^{n}(1-\pi)^{m-n} \exp \left(m \cdot k l\left(\frac{n}{m} \| \pi\right)\right) \\
& \quad=\sum_{n=0}^{m}\binom{m}{n} \exp \left(-m H\left(\frac{n}{m}\right)\right) \leq \sum_{n=1}^{m} 1=m+1
\end{aligned}
$$

References

- On Bayesian Bounds, Arindam Banerjee, ICML, 2006
- PAC Bayesian Analysis: Background and Applications, Yevgeny Seldin, John Shawe-Taylor, Francois Laviolette

