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PAC learning framework [Valiant ’84]

» PAC stands for Probably Approximately Correct

» Approximately
Provide guarantees on the approximation error of empirical
estimates

» Probably
Guarantees that hold with high probability
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» I(h, W) - expected loss of hypothesis h on entire X,
assuming input distribution to be W

» D - true but unknown distribution on X’
» I(h, D) = Exp [/(h,X)] - expected loss of hypothesis h
> I(h,S) = 13", I(h,x;) - empirical loss of hypothesis h
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PAC-Bayesian setting

» Start with a prior P on the hypothesis space H.

» After observing S, the algorithm A generates a posterior Q
onH

» In PAC-Bayes, the classifier is random/stochastic in nature
(Gibbs classifier)

1. For given input x € X, draw h from H acc. to Q.
2. Assign label y = h(x)

» Expected loss: /(Q, D) = Eq[/(h, D)]

» Empirical loss: I(Q, S) = Eq[/(h, S)]



PAC-Bayesian setting

» PAC-Bayesian framework:

P: Prior on H——»  Algorithm A —» (Q: Posterior on H

Training data S = {(x1,¥1), - .. (Xm, Ym)}

» Output of the algorithm is a Gibbs classifier.

» Let /(Q, S) denote the empirical loss/risk of the Gibbs
classifier generated by the algorithm A.

I(Q,S) =Eqli(h,S)], where I(h,S)=

3\—*

» Question?
How close is empirical loss /(Q, S) to the true loss /(Q, D)
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» Mc Allester bound ['98]

[Eq[I(h, S)] —Eqli(h, D)][* < 77

» Seeger bound ['02]

kI (Eq[i(h, S)] || Eql/(h,D)]) < 77

where ki(q||p) is called the small KL divergence given by

KI(qllp) = qlog & + (1 - q)log {1=%



PAC-Bayesian Bound [Seeger '02]

» With probability at least (1 — §) over the choice of S ~ D™,

KL(Q||P) + log T+

KI(I(Q,9)||I(Q,D)) < o
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Intuition behind the bound (1/2)
» With probability at least (1 — §) over the choice of S ~ D™,

KL(Q||P) + log 7+
m

KI(I(Q,9)||I(Q,D)) <

» KL(Q||P) = (Eqlog (,l>> - H(@)

N———————" entropy
cross-entropy

» Preferred choice for posterior Q:
1. has maximum entropy
2. reduces empirical loss /(Q, S)

» Preferred choice for prior P:

1. has low complexity
2. is close to posterior Q



Intuition behind the bound (2/2)

» With probability at least (1 — §) over the choice of S ~ D,

KL(Q||P) + log ™
m

K(I(Q. 9)|((Q, D)) <

» Other key take-away points:

w.h.p. guarantees on expected performance

explicit way to incorporate prior knowledge

non assumption on correctness of prior P

explicit dependence on the loss function

holds for any posterior Q

bound is meant for randomized/stochastic classifiers

oakwh~



Theory behind PAC Bayesian bound - major
milestones
» PAC Bayesian bound:

KL(Q||P) + log 1
m

K (I(Q, S)|I(Q,D)) < w.h.p.

» Milestone-1 Fenchel inequality in convex analysis
[Rockafeller, 70]

» Milestone-2 Variational factorization of KL divergence
[Donsker and Varadhan, 75]

» Also known as Compression Lemma

» Milestone-3 PAC Bayesian bound [Seeger, 02]



Duality in convex analysis (1/2)

» Dual definition of convex set: [Rockafeller, '70]

» Any closed convex set A can be defined as an
intersection of affine half spaces that contain the set A.



Duality in convex analysis (2/2)

» Dual definition of convex function: [Rockafeller, '70]

fx)

» Any closed convex function can be defined as the
pointwise supremum of collection of all affine
functions h majorized by f.
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Conjugate of a convex function (1/2)

» Let f: RY — R be a convex function.
» Let F* be the set of all tuples (z, v) such that
h(x) = (x,z) — v is majorized by f(x), i.e.,
f(%) > (x,2) — v

or equivalently,
V> (x,2) — f(x)

for all x € RY.
» Given z, if we choose v > sup (x,z) — f(x), then

xeRd
f(x) > h(x) for all x € RY.

» The convex function f and the set F* convey the same
information.
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Conjugate of a convex function (2/2)

» For convex function f, the set F* is the collection of tuples
(z, v) such that

v > sup (X,z) — f(x)

» The set F* is also the epigraph of the convex function f*

f*(z) = sup (x,z) — f(x)

» The function f* is called the dual or convex conjuate of f.
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Properties of conjugate functions

f* is also a convex function

v

> (f*)* —f

v

f(x) +£(y) =2 (x,y), ¥x,y

v

In fact, the conjugate pair f and f* are the best pair to
satisfy the below inequality:

f(x) +g(y) > (x,y)

Proof: We work out.



Fenchel’s inequality

» The convex conjugate pair f and f* always satisfy:

fx)+(y) = (xy) WXy



Compression Lemma [McAllester, 03]

» Let H be a parameter space.

» For any measureable function ¢(h) on H and any
distributions P and Q on H, we have:

Eq[¢(h)] —logEp [exp ¢(h)] < KL(Q||P)
Further,

sup (Eq[¢(h)] —logEp [exp ¢(h)]) = KL(Q|P)

» Also known by following names:

1. Change of measure inequality
2. Donsker-Varadhan formula



Compression Lemma - Proof

Eq [6(h)]
_Eq [Iog (QE’,’g exp(¢(h))g§’,’,§)]
(h)

=Eq {Iog <P(71)>] +Eq {'09 <eXp(¢(h))PEZ§>]
+E

= KL(Q||P) [Iog <exp(¢>(h)) g ((ZD
o e KL(@IP) +og (Ea [ exptolm) G |

= KL(Q[|P) + log (Ep [exp(¢(h))])
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Connection b/w Compression Lemma and

Fenchel’s Inequality
» For any measurable function ¢ : H — R, define

f(¢) = logEp [exp (¢(h))]

» fis convex with respect to ¢

» Choose ¢* to be the probability density corresponding to a
distribution Q on A so that

(¢,0") = Envqlo(h)]
» The conjugate of f is:
f(¢") = sup (¢, 9") — 1(9))
= sgp (Eq[¢(h)] — logEp [exp (¢(h))])
= KL(Q||P)



PAC-Bayesian Bound

» With probability at least (1 — §) over the choice of S ~ D,

KL(Q||P) + log 1
m

KI(I(Q,9)||I(Q,D)) <

» Can be derived as a special case of Compression Lemma.



PAC-Bayesian Bound - derivation (1/4)
» From compression lemma, for any measurable function
o(h), we have

Eq[s(h)] < KL(Q||P) + log (Ep [exp (¢(h))])

» Let ¢(h) =2 m.kl (I(h, S)||/(h, D)), where S is the sample
distribution and D is the true distribution. Then,

KL(Q||P) + log (Ep [exp (m-kI (I(h, S)[|/(h, D)))])
m

Eq Kl (I(h, S)[[I(h,D))] <

» We first fix the LHS.



PAC-Bayesian Bound - derivation (2/4)

» Since relative entropy is jointly convex in both its
arguments, by using Jensen’s inequality

KI(1(Q, S)II(Q, D)) < Eq [kl (I(h, S)IlI(h, D))]

» We next fix the RHS.



PAC-Bayesian Bound - derivation (3/4)

» We need to show that
Ep [exp (m.kI (I(h, S)||/(h, D)))] < ™ w.h.p.



PAC-Bayesian Bound - derivation (3/4)
» We need to show that
Ep [exp (m.ki (I(h, S)||/(h, D)))] < T w.h.p.

» From Markov’s inequality:

Ep [exp (m-ki (I(h, S)||/(h, D)))]
< Es~onEp[exp (m.kI (I(h, S)[|/(h, D)))]

J
with probability at least 1 — 6.

» Next we will show that
EspmEp [exp (m.kl (I(h, S)||/(h, D)))] < m+ 1.
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PAC-Bayesian Bound - derivation (4/4)

» Next we will show that
EspmEp [exp (m.kl (I(h, S)||I(h, D)))] < m+1

» Or equivalently, [Fubini’s theorem]
EpEs..pm [exp (m.kl (I(h, S)||I(h,D)))] < m+ 1

» Since m.I(h, S) is binomial distributed with probability
m = I(h, D), we have:
Es~pm [exp (m.kl (I(h, S)||/(h, D)))]
= > p(s) exp(m.ki(I(h,s)||r))

s~Binomial(m,m)

_ nz::mo <,:) 71— 7)™ " exp (m.kd (%HW))
= zm: <':> exp (—mH(%)) < ;:1 =m+1

n=0
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