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PAC learning framework [Valiant ’84]

I PAC stands for Probably Approximately Correct

I Approximately
Provide guarantees on the approximation error of empirical
estimates

I Probably
Guarantees that hold with high probability



Supervised learning - some definitions
I X - sample space

I Y - label space
I m - number of training samples
I S = {(x1, y1), . . . (xm, ym)} - training data set (i.i.d.)
I H - hypothesis space
I A : S → H - algorithm
I h(x) - prediction of hypothesis/classifier h ∈ H for input

sample x
I l(h,x) - instantaneous loss/risk of h on x
I l(h,W ) - expected loss of hypothesis h on entire X ,

assuming input distribution to be W
I D - true but unknown distribution on X
I l(h,D) = Ex∼D [l(h,x)] - expected loss of hypothesis h
I l(h,S) = 1

m
∑m

i=1 l(h,xi) - empirical loss of hypothesis h
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PAC-Bayesian setting

I Start with a prior P on the hypothesis space H.

I After observing S, the algorithm A generates a posterior Q
on H

I In PAC-Bayes, the classifier is random/stochastic in nature
(Gibbs classifier)

1. For given input x ∈ X , draw h from H acc. to Q.
2. Assign label y = h(x)

I Expected loss: l(Q,D) = EQ [l(h,D)]

I Empirical loss: l(Q,S) = EQ [l(h,S)]
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PAC-Bayesian setting
I PAC-Bayesian framework:

Algorithm AP : Prior on H Q: Posterior on H

Training data S = {(x1, y1), . . . (xm, ym)}

I Output of the algorithm is a Gibbs classifier.

I Let l(Q,S) denote the empirical loss/risk of the Gibbs
classifier generated by the algorithm A.

l(Q,S) = EQ [l(h,S)] , where l(h,S) =
1
m

m∑
i=1

l(h,xi)

I Question?
How close is empirical loss l(Q,S) to the true loss l(Q,D)
?



PAC-Bayesian bounds - different flavors

I Mc Allester bound [’98]

|EQ [l(h,S)]− EQ [l(h,D)] |2 ≤ ??

I Seeger bound [’02]

kl (EQ [l(h,S)] || EQ [l(h,D)]) ≤ ??

where kl(q||p) is called the small KL divergence given by
kl(q||p) = q log q

p + (1− q) log (1−q)
(1−p)
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PAC-Bayesian Bound [Seeger ’02]

I With probability at least (1− δ) over the choice of S ∼ Dm,

kl (l(Q,S)||l(Q,D)) ≤ KL(Q||P) + log m+1
δ

m



Intuition behind the bound (1/2)
I With probability at least (1− δ) over the choice of S ∼ Dm,

kl (l(Q,S)||l(Q,D)) ≤ KL(Q||P) + log m+1
δ

m

I KL(Q||P) = 〈EQ log
(

1
P

)
〉︸ ︷︷ ︸

cross-entropy

−H(Q)︸ ︷︷ ︸
entropy

I Preferred choice for posterior Q:
1. has maximum entropy
2. reduces empirical loss l(Q,S)

I Preferred choice for prior P:
1. has low complexity
2. is close to posterior Q
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Intuition behind the bound (2/2)

I With probability at least (1− δ) over the choice of S ∼ Dm,

kl (l(Q,S)||l(Q,D)) ≤ KL(Q||P) + log m+1
δ

m

I Other key take-away points:
1. w.h.p. guarantees on expected performance
2. explicit way to incorporate prior knowledge
3. non assumption on correctness of prior P
4. explicit dependence on the loss function
5. holds for any posterior Q
6. bound is meant for randomized/stochastic classifiers



Theory behind PAC Bayesian bound - major
milestones

I PAC Bayesian bound:

kl (l(Q,S)||l(Q,D)) ≤ KL(Q||P) + log m+1
δ

m
w.h.p.

I Milestone-1 Fenchel inequality in convex analysis
[Rockafeller, 70]

I Milestone-2 Variational factorization of KL divergence
[Donsker and Varadhan, 75]

I Also known as Compression Lemma

I Milestone-3 PAC Bayesian bound [Seeger, 02]



Duality in convex analysis (1/2)

I Dual definition of convex set: [Rockafeller, ’70]

I Any closed convex set A can be defined as an
intersection of affine half spaces that contain the set A.



Duality in convex analysis (2/2)

I Dual definition of convex function: [Rockafeller, ’70]

I Any closed convex function can be defined as the
pointwise supremum of collection of all affine
functions h majorized by f .



Conjugate of a convex function (1/2)
I Let f : Rd → R be a convex function.

I Let F ∗ be the set of all tuples (z, v) such that
h(x) = 〈x, z〉 − v is majorized by f (x), i.e.,

f (x) ≥ 〈x, z〉 − v

or equivalently,
v ≥ 〈x, z〉 − f (x)

for all x ∈ Rd .

I Given z, if we choose v ≥ sup
x∈Rd
〈x, z〉 − f (x), then

f (x) ≥ h(x) for all x ∈ Rd .

I The convex function f and the set F ∗ convey the same
information.
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Conjugate of a convex function (2/2)

I For convex function f , the set F ∗ is the collection of tuples
(z, v) such that

v ≥ sup
x
〈x, z〉 − f (x)

I The set F ∗ is also the epigraph of the convex function f ∗

f ∗(z) = sup
x
〈x, z〉 − f (x)

I The function f ∗ is called the dual or convex conjuate of f .
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Properties of conjugate functions

I f ∗ is also a convex function

I (f ∗)∗ = f

I f (x) + f ∗(y) ≥ 〈x,y〉, ∀x,y

I In fact, the conjugate pair f and f ∗ are the best pair to
satisfy the below inequality:

f (x) + g(y) ≥ 〈x,y〉

Proof: We work out.
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Fenchel’s inequality

I The convex conjugate pair f and f ∗ always satisfy:

f (x) + f ∗(y) ≥ 〈x,y〉 ∀x,y



Compression Lemma [McAllester, ’03]

I Let H be a parameter space.

I For any measureable function φ(h) on H and any
distributions P and Q on H, we have:

EQ [φ(h)]− logEP [expφ(h)] ≤ KL(Q||P)

Further,

sup
φ

(EQ [φ(h)]− logEP [expφ(h)]) = KL(Q||P)

I Also known by following names:
1. Change of measure inequality
2. Donsker-Varadhan formula



Compression Lemma - Proof

EQ [φ(h)]

= EQ

[
log
(

Q(h)
P(h)

exp(φ(h))
P(h)
Q(h)

)]
= EQ

[
log
(

Q(h)
P(h)

)]
+ EQ

[
log
(

exp(φ(h))
P(h)
Q(h)

)]
= KL(Q||P) + EQ

[
log
(

exp(φ(h))
P(h)
Q(h)

)]
≤

Jensen ineq.
KL(Q||P) + log

(
EQ

[
exp(φ(h))

dP(h)
dQ(h)

])
= KL(Q||P) + log (EP [exp(φ(h))])



Connection b/w Compression Lemma and
Fenchel’s Inequality

I For any measurable function φ : H → R, define

f (φ) = logEP [exp (φ(h))]

I f is convex with respect to φ

I Choose φ∗ to be the probability density corresponding to a
distribution Q on H so that

〈φ, φ∗〉 = Eh∼Q [φ(h)]

I The conjugate of f is:

f ∗(φ∗) = sup
φ

(〈φ, φ∗〉 − f (φ))

= sup
φ

(EQ [φ(h)]− logEP [exp (φ(h))])

= KL(Q||P)
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PAC-Bayesian Bound

I With probability at least (1− δ) over the choice of S ∼ Dm,

kl (l(Q,S)||l(Q,D)) ≤ KL(Q||P) + log m+1
δ

m

I Can be derived as a special case of Compression Lemma.



PAC-Bayesian Bound - derivation (1/4)

I From compression lemma, for any measurable function
φ(h), we have

EQ [φ(h)] ≤ KL(Q||P) + log (EP [exp (φ(h))])

I Let φ(h) , m.kl (l(h,S)||l(h,D)), where S is the sample
distribution and D is the true distribution. Then,

EQ [kl (l(h,S)||l(h,D))] ≤
KL(Q||P) + log (EP [exp (m.kl (l(h,S)||l(h,D)))])

m

I We first fix the LHS.



PAC-Bayesian Bound - derivation (2/4)

I Since relative entropy is jointly convex in both its
arguments, by using Jensen’s inequality

kl (l(Q,S)||l(Q,D)) ≤ EQ [kl (l(h,S)||l(h,D))]

I We next fix the RHS.



PAC-Bayesian Bound - derivation (3/4)

I We need to show that
EP [exp (m.kl (l(h,S)||l(h,D)))] ≤ m+1

δ w.h.p.

I From Markov’s inequality:

EP [exp (m.kl (l(h,S)||l(h,D)))]

≤ ES∼DmEP [exp (m.kl (l(h,S)||l(h,D)))]

δ

with probability at least 1− δ.

I Next we will show that
ES∼DmEP [exp (m.kl (l(h,S)||l(h,D)))] ≤ m + 1.
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PAC-Bayesian Bound - derivation (4/4)
I Next we will show that

ES∼DmEP [exp (m.kl (l(h,S)||l(h,D)))] ≤ m + 1

I Or equivalently, [Fubini’s theorem]
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