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Multi-User System model

k th UT is being scheduled

k − thUser

Base Station

Figure: Multi-user system model and scheduling of the k th UT. There
are M users in the network.
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System model and data transmission scheme

System model

Node A Node B

Perfect CSI

1

nA

1

nB

H = UΣV H
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System model and data transmission scheme

Data Transmission Scheme

Spatial Multiplexing (SM) with equal power allocation
Transmission over m dominant modes of the channel
(H = UΣV H )
Use Vm, the first m columns of V as a pre-coding matrix
Input output equation (data transmission):

yB,d = HVmxA,d + wB,d

Need to acquire the matrix Vm at Node A!
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System model and data transmission scheme

How do we
acquire Vm? TDD: RCT

FDD:
Feedback
of Quan-
tized CSI
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System model and data transmission scheme

1 Assumptions
SM with equal power allocation during data transmission
Perfect reciprocity of the channel (TDD System)
Perfect CSI at Node B

2 Question: What should the RCT signal be?

How do we
acquire Vm? TDD: RCT
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Problem statement

Training Sequence Design

Reverse-link training:

YA,τ = HHXB,τ + WA,τ

Problem: Find XB,τ that optimizes a metric

Metric:
1 Mean Square Error (MSE)
2 Capacity Lower Bound
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Proposed channel dependent training scheme

The proposed training sequence:

XB,τ =
√

PB,τLB,τφcUD

where D = diag{d1, . . . , dm} such that ‖D‖2
F = 1 and

Eφc = 1

Received training signal at Node A:

ȲA,τ ,
YA,τ

√

PB,τLB,τ

=
√

φcVΣHD +
WA,τ

√

PB,τLB,τ

Estimate of the k th BF vector:

v̂k =
ȳk ,A,τ

‖ȳk ,A,τ‖2
, 1 ≤ k ≤ m

where ȳk ,A,τ is the k th column of ȲA,τ
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MSE performance

Problem Statement

Problem:

min
D,φc :‖D‖2

F =1,and,Eφc=1
E‖Vm − V̂m‖2

F
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MSE performance

MSE as a metric

Theorem
∣

∣

∣
E‖Vm − V̂m‖2

F − MSEapprox

∣

∣

∣
= O

(

1
(PB,τLB,τ )2

)

,

where

MSEapprox =

(

2nA − 1
2

)

E

m
∑

k=1

1
σ2

kd2
k φc
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MSE performance

Optimization problem:
1

min
dk :
∑m

i=1 d2
i =1

E

m
∑

k=1

1
σ2

k d2
k
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MSE performance

Solution: MSE as a metric

Lemma

The optimal D and φc are given by

d2
k =

σ−1
k

∑m
i=1 σ−1

i

, (1)

and

φ∗
c =

∑m
i=1 σ−1

i

E
∑m

i=1 σ−1
i

. (2)

The corresponding approximate expression for MSE is

E‖Vm − V̂m,approx‖2
F =

2nA − 1
2PB,τLB,τ

(

E

m
∑

i=1

σ−1
i

)2

. (3)
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MSE performance

Performance gains: MSE as a metric
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Mse Orthogonal
Proposed: D = I

n
B
 × m

 and Φ
c
 =1

Proposed: D in (16) and Φ
c
 = 1

Proposed: D in (16) and Φ
c
 in (17)

Theoretical MSE in (18)

Figure: MSE versus training power for a 3 × 4 MIMO system with
m = 3 with PA,d = 0.5PB,τ
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Capacity lower bound performance

Capacity lower bound

A capacity lower bound for the proposed data transmission
scheme:

Cexact ,
Lc − LB,τ

Lc
E log2

∣

∣

∣

∣

∣

Im×m +
PA,d

m
GGH

1
m EH‖w̃eff‖2

F

∣

∣

∣

∣

∣

, (4)

where G , Σm,m − ΣmV H
E{Ve|H}, Ve , Vm − V̂m, and

w̃eff ,

√

PA,d

m
ΣmV H

E{Ve|H}xA,d −
√

PA,d

m
ΣmV HVexA,d + w̃B,d .

(5)
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Capacity lower bound performance

Approximate capacity lower bound

Approximate capacity lower bound:

Ca =
Lc − LB,τ

Lc
E log

∣

∣

∣

∣

∣

Im +
PA,d

m
ΣmΣH

m

σ2
eff + 1

∣

∣

∣

∣

∣

,

with σ2
eff =

PA,d

PB,τ LB,τ m2

∑m
i=1

βi
φcd2

i
and βi , 1

2 +
∑m

j=1,j 6=i σ
2
j

σ2
i

More precisely,

1

∣

∣

∣
Cexact − C(1)

a

∣

∣

∣
→ 0 as PA,d , PB,τ → ∞ s.t.

PA,d

PB,τ
= µ > 0

2 obtained by ignoring the terms of the order 1/(PB,τLB,τ )3/2

and higher

Note: D enters the expression only through σ2
eff
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Capacity lower bound performance

Simulation Results:Tightness
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Exact lower bound in (23)
Approximate lower bound in (26)

Figure: Illustration of the tightness for a 3 × 4 MIMO system with
data power of PA,d = 0.5PB,τ and training duration of 3 symbols.
Here, m = 3
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Capacity lower bound performance

Problem Statement and Solution

Problem Statement:

max
D,φc :‖D‖2

F =1,Eφc=1
Ca

Equivalently,
max

φc ,Eφc=1
max

D:‖D‖2
F =1

Ca

Optimal D is obtained by solving:

min
D:‖D‖2

F =1

PA,d

PB,τLB,τm2

m
∑

i=1

βi

d2
i

, βi ,
1
2

+

∑m
j=1,j 6=i σ

2
j

σ2
i
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Capacity lower bound performance

Optimal D and φc

Theorem

The optimal D with diagonal terms {d1, d2, . . . , dm} that
maximizes Ca for a given LB,τ is

d2
i =

√
βi

∑m
j=1

√

βj
, 1 ≤ i ≤ m

Theorem

The φ∗
c satisfies the following necessary and sufficient condition

λ = H(φ∗
c) ,

m
∑

k=1

PA,dσ2
kτ

(PA,dσ2
k + m)φ∗

c + mτ

(

1
τ + φ∗

c

)

, (6)

where λ is the Lagrange multiplier chosen s.t. Eφ∗
c = 1
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Capacity lower bound performance

Simulation Results:Capacity Lower Bound as a Metric
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Proposed: D in (32) and optimal φ

c

Proposed: D in (32) and φ
c
 = 1

Proposed: D = I
n

B
 × m

 and optimal φ
c

Orthogonal training

Figure: Capacity lower bound versus reverse training power for a
3 × 4 MIMO system with data power of PA,d = 0.5PB,τ and training
duration of 3 symbols. Here, m = 3
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Capacity lower bound performance

Multi-user Scenario

Data rate optimal

Scheduling criterion: k∗ = arg max1,...,M{R1, . . . , RM},
where

Rk ,
Lc − L(k)

B,τ

Lc
log2

∣

∣

∣

∣

∣

∣

Im +
P(k)

A,d

m

Σk ,m,mΣH
k ,m,m

σ2
k ,eff + 1

∣

∣

∣

∣

∣

∣

,

with

σ2
k ,eff ,

P(k)
A,d

P(k)
B,τL(k)

B,τm2

m
∑

i=1

(

√

β
(k)
i )2, k = 1, . . . , M,

and Σk ,m,m is the first m rows and m columns of the
singular value matrix of Hk .
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Capacity lower bound performance

Multi-user data rate comparison
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Proposed: 4 users
Proposed: 2 users
Orthogonal: 4 users
Orthogonal: 2 users

Figure: Capacity lower bound for a multi-user system with
max-scheduling versus reverse training power for a 3 × 4 MIMO
system with data power of PA,d = 0.5PB,τ and training duration of 3
symbols. Here, m = 3
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Capacity lower bound performance

Multi-user Scenario: MSE optimal scheme for BF system

Scheduling rule

Scheduling criterion:
k∗ = arg min1,...,M{MSE1, . . . , MSEM}, where

MSEk ,
2nA − 1

2P(k)
B,τL(k)

B,τ

E

(

1
σ1,k

)

1
σ1,k

Average MSE achieved

Approximate MSE

E min{MSE1, . . . , MSEM}

Is there a closed form expression for the above?
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Capacity lower bound performance

Closed form for the special case of nA = nB

Approximate MSE

E min{MSE1, . . . , MSEM} =

∫ ∞

0
(1 − exp(−A/t2))Mdt

where A ,
2nA−1

2P(k)
B,τ

L(k)
B,τ

E

(

1
σ1,k

)



Introduction Proposed Solution Conclusions

Summary

Proposed a novel channel dependent training for an SM
based TDD-MIMO system that was optimized using

MSE as a metric
a capacity lower bound as a metric

MSE as metric
i-th singular value of the RCT sequence is ∝ the square
root of the inverse of the i-th singular value of the channel

Capacity lower bound as a metric
i-th singular value of the RCT sequence ↑ with the power of
all j 6= i modes relative to its singular value

Take home lesson
RCT that adapts to the current CSI can significantly
improve the performance of a TDD-MIMO OFDMA system
compared to channel agnostic RCT scheme
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