Pattern-Coupled Sparse Bayesian Learning for Recovery of Block-Sparse Signals

Geethu Joseph

SPC Lab, IISc

July 18, 2015

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Paper Reviewed

- Title: Pattern-Coupled Sparse Bayesian Learning for Recovery of Block-Sparse Signals
- Authors: Jun Fang, Yanning Shen, Hongbin Li, and Pu Wang
- Publication date: January 15, 2015
- Journal name: IEEE Transactions on Signal Processing, vol. 63, no. 2, pp. 360-372

(ロ) (型) (E) (E) (E) (O)

Block-Sparse Signal Recovery Problem

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Goal: Recover block-sparse vector x from y
- Unknown block-sparsity structure

Sparse Bayesian Learning

Impose a fictitious sparsity inducing prior on x

$$oldsymbol{x} \sim \mathcal{N}(0, oldsymbol{\Gamma})$$

 $oldsymbol{\Gamma} = ext{diag}\{\gamma_1, \gamma_2, \dots, \gamma_n\}$

(a)

Э

E-step:
$$Q(\Gamma | \Gamma^{(r)}) = E_{\mathbf{x} | \mathbf{y}; \Gamma^{(r)}} \log p(\mathbf{y}, \mathbf{x}; \Gamma)$$

Iterate
M Step: $\Gamma^{(r+1)} = \arg \max Q(\Gamma | \Gamma^{(r)})$
ML estimate of Γ
 $\hat{\mathbf{x}} = E(\mathbf{x} | \mathbf{y}; \Gamma)$

Pattern-Coupled Hierarchical Model

- Sparsity patterns of neighboring coefficients are statistically dependent
- Parameters:
 - \blacktriangleright lpha: hyperparameters associated with co-efficients

• As $\alpha_i \to \infty$, then $x_i \to 0$

• β : pattern relevance between neighboring coefficients

$$p(\mathbf{x}|\boldsymbol{\alpha}) \sim \prod_{i=1}^{n} p(x_i|\alpha_i, \alpha_{i+1}, \alpha_{i-1})$$
$$p(x_i|\alpha_i, \alpha_{i+1}, \alpha_{i-1}) = \mathcal{N}\left(x_i|\mathbf{0}, (\alpha_i + \beta\alpha_{i+1} + \beta\alpha_{i-1})^{-1}\right)$$

• Assume $\alpha_0 = \alpha_{n+1} = 0$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Pattern-Coupled Hierarchical Model

 Sparsity patterns of neighboring coefficients are statistically dependent

$$p(\boldsymbol{x}|\boldsymbol{\alpha}) \sim \prod_{i=1}^{n} p(x_i|\alpha_i, \alpha_{i+1}, \alpha_{i-1})$$
$$p(x_i|\alpha_i, \alpha_{i+1}, \alpha_{i-1}) = \mathcal{N}\left(x_i|\boldsymbol{0}, (\alpha_i + \beta\alpha_{i+1} + \beta\alpha_{i-1})^{-1}\right)$$

Gamma distribution over hyperparameters

$$p(oldsymbol{lpha}) = \prod_{i=1}^n \mathsf{Gamma}(lpha_i | a, b)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Some Insights

Model: $p(x_i | \alpha_i, \alpha_{i+1}, \alpha_{i-1}) = \mathcal{N}\left(x_i | 0, (\alpha_i + \beta \alpha_{i+1} + \beta \alpha_{i-1})^{-1}\right)$

• As
$$\alpha_i \to \infty$$
, then $x_i \to 0$

- Sporadic errors are reduced and consecutive errors are much unlikely
 - \blacktriangleright Nonzero to zero misidentification drives the associated hyperparameter to ∞
 - \blacktriangleright Zero to nonzero misidentification is reduced as either one of its neighboring hyperparameters goes to ∞
- Flexible to accommodate conventional sparse signals
 - ▶ If $x_i \neq 0$ is an isolated nonzero coefficient, $\{\alpha_i, \alpha_{i\pm 1}\}$ have finite values and $\{\alpha_{i\pm 2}\}$ becomes ∞
- Associating multiple neighbor parameters could lead to excessive coupling

Proposed Bayesian Approach

- Assume noise variance σ^2 is known
- Posterior distribution $p(x|lpha, y) = \mathcal{N}(\mu, \phi)$

$$\mu = \sigma^{-2} \phi \mathbf{A}^{\mathsf{T}} \mathbf{y}$$

$$\phi = \left(\mathbf{A}^{\mathsf{T}} \mathbf{A} + \sigma^{2} \mathbf{D} \right)^{-1}$$

$$\mathbf{D} = \operatorname{diag} \left\{ \alpha_{i} + \beta \alpha_{i+1} + \beta \alpha_{i-1} \right\}_{i=1}^{n}$$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

- MAP estimate of sparse vector: $\hat{x}_{MAP} = \mu$
- Problem: Estimate the set of n hyperparameters α
 - ► Use EM formulation with *x* as hidden variable

EM Algorithm

E-step

$$Q(\boldsymbol{\alpha}|\boldsymbol{\alpha}^{(t)}) = \sum_{i=1}^{n} \left(a \log \alpha_{i} - b \alpha_{i} + \frac{1}{2} \log \left(\alpha_{i} + \beta \alpha_{i+1} + \beta \alpha_{i-1} \right) - \frac{1}{2} \left(\alpha_{i} + \beta \alpha_{i+1} + \beta \alpha_{i-1} \right) \left(\hat{\mu}_{i}^{2} + \hat{\phi}_{i,i} \right) \right)$$

 $ightarrow \mu$ and ϕ are mean and covariance of x computed using $lpha^{(t)}$

 \blacktriangleright M-step: No closed form expression for lpha

- Gradient descent methods are computationally intense
- \blacktriangleright At the optimal point $\alpha_i^* \in \left[\frac{a}{0.5c_i+b}, \frac{a+1.5}{0.5c_i+b}\right]$

•
$$c_i = \left(\hat{\mu}_i^2 + \hat{\phi}_{i,i}\right) + \beta \left(\hat{\mu}_{i+1}^2 + \hat{\phi}_{i+1,i+1}\right) + \beta \left(\hat{\mu}_{i-1}^2 + \hat{\phi}_{i-1,i-1}\right)$$

Choose sub-optimal solution

$$\hat{\alpha}_i = \frac{a}{0.5c_i + b}$$

► Update rule gives negative feedback when α_i is large

Algorithm

- ▶ Input: $\{\boldsymbol{y}, \boldsymbol{A}, \sigma^2\}$
- Parameters: $\{a, b, \beta, \tau, \epsilon\}$
- At iteration t

• Update hyperparamters:
$$\hat{\alpha}_{i}^{(t)} = \begin{cases} \frac{a}{0.5c_{i}^{(t)}+b} & \text{if }\hat{\alpha}_{i}^{(t)} < \tau \\ 10^{8} & \text{if }\hat{\alpha}_{i}^{(t)} \geq \tau \end{cases}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

- Compute $\hat{\mu}^{(t)}$ and $\hat{\phi}^{(t)}$ using $\alpha^{(t)}$
- ▶ MAP estimate of sparse vector: $\hat{x}^{(t)} = \hat{\mu}^{(t)}$ ▶ Continue until $\|\hat{x}^{(t)} \hat{x}^{(t-1)}\|_2 \le \epsilon$

• Output: $\hat{x}^{(t)}$

Choice of Parameters

- ► Choice of a is not critical: Stable recovery in a reasonable region a ∈ [0.5, 2]
- \blacktriangleright As in conventional SBL, b is chosen as small value $\sim 10^{-4}$
- Chocosing $\beta \in (0,1]$ performs better than $\beta = 0$
 - Safe choice is value closer to 0 imposing mild coupling effect

ション ふゆ く 山 マ チャット しょうくしゃ

• Stable recovery over a range of values for $\tau \in [0.5 \times 10^3, 5 \times 10^3]$

Complexity and Convergence

• Number of floating point operations per iterations $\mathcal{O}(m^3)$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- Same as conventional SBL
- No convergence guarantees
 - ► Works in practice

Summary

- A new SBL algorithm for handling block sparsity
- Outperforms other existing methods
- Interesting directions to explore:
 - 1. An algorithm with convergence guarantees
 - 2. Automatically learn whether or not signal has block structure

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

3. Other models for capturing block sparsity