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Block Sparse Signal Recovery Problem

I Goal: To recover the block sparse signal x from y

I Block boundaries and sizes are unknown



Current Approaches

I Sparse Bayesian Learning
I Imposing a sparsity inducing prior on the vector x

x ∼ N(0,Γ)
I Hyperparameters γ estimated using evidence maximization or

type-II ML [1], [2]
I Posterior density of the weights [2] is given by

p(x|y; γ, σ2) = N(µ,Σx) (1)

where
Σx = (σ−2ΦTΦ + Γ−1)−1

µ = σ−2ΣxΦTy
I SBL Objective function: To maximize p(y; γ, σ2)

L = log|Σt|+ yTΣ−1t y (2)

where Σt = (σ2I + ΦΓΦT)



Current Approaches

I Iterative Reweighted `1 Minimization [4]

x(k+1) = arg minx‖y − Φx‖2 + λ
∑
i

w
(k)
i |xi| (3)

I xSBL satisfies the below equation [3]

xSBL = arg minx‖y − Φx‖2 + λgSBL(x) (4)

where gSBL(x) = minγ≥0x
TΓ−1x + log|αI + ΦΓΦT|

I gSBL(x) is a non-decreasing, concave function of |x| and can
be optimized using a reweighted `1 algorithm

gSBL(x) = minγ,z≥0x
TΓ−1x + zTγ − h∗(z) (5)

where h∗(z) is the concave conjugate of
h(γ) = log|αI + ΦΓΦT| given by

h∗(z) = minγ≥0z
Tγ − log|αI + ΦΓΦT| (6)



Proposed Approaches

I Solution 1: Tikhonov Regularizer term along with the SBL
regularizer

gSBL(x) = minγ,z≥0x
TΓ−1x + zTγ − h∗(z) + ‖Lγ‖22 (7)

where

L =


1 −1 0 0 . . . 0
0 1 −1 0 . . . 0
. . . . . . . . . . . . . . . .
0 0 0 0 . . . 1


I Numerical Method approach since there is no analytical

solution for the problem. Newton’s Method of solving
simultaneous linear equations

I Solution 2: `1 regularizer instead of `2 regularizer to impose
block sparsity constraint on the vector Lγ (Solution was
computationally complex and difficult to solve)



Proposed Approaches
I Conventional Expectation Maximization (EM) based

Approach (for SBL)
I Objective Function:

Ex|y,γ(k),σ2 [log(p(y, x; γ, σ2)] = Ex|y,γ(k),σ2 [log(p(x; γ))] (8)

I E Step: Treat x as hidden variables

Ex|y,γ(k),σ2 [x2
i ] = (Σx)i,i + µ2

i (9)

I M Step
γk+1
i = argmaxγi≥0Ex|y,γ(k),σ2 [x2

i ] (10)

where
Σx = (σ−2ΦTΦ + Γ−1)−1

µ = σ−2ΣxΦTy

I Prior Model:
γ = [ε1, ε1 + ε2, ...,

∑
i

εi]
T (11)

Constraint:
∑

i εi ≥ 0



EM based Approach

I Solution of the prior model shown above is same as that of
the SBL

I `1 Regularizer

argminε

N∑
i=1

bi∑i
j=1 εj

+ log(
i∑

j=1

εj) + λ‖ε‖1 (12)

where bi = (Σx)i,i
I Constrained optimization approach being derived to solve this

problem. Solving N simultaneous equations with the
constraint that

∑i
j=1 ≥ 0 for all i = 1, 2, ...,N
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