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Introduction to Consensus

• Consensus: A number of nodes coming to an agreement with
each other

• Motivation:
• The cognitive radio system

Nodes: cognitive users
Desired Value: presence of primary

• Very important in cooperative control problems

• Classifications of Consensus:
• Distributed vs. centralized
• Average, majority,. . .
• Detection vs. estimation
• Physical vs. higher layers
• Static vs. dynamic
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How to Achieve Consensus?

• Need to exchange information: Transmission scheme

• Transmission scheme affects the performance

• Examples: Point-to-point, broadcast, multiple access, distributed
cophasing etc.

• Impact of transmission scheme is not well studied

• Typically consensus problems assume error-free links

• Consensus under noisy communication is not well studied
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Problem Statement
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Value ∈ {+1,−1}

• Each node has an estimate of the binary random variable

• Nodes are allowed to exchange information & update in a fully
connected network topology, till consensus is reached

Q: Will it reach consensus? If so, how long does it take?
Is it better than earlier schemes?
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The Tx Scheme of Distributed Cophasing (DCP)
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Figure: A DCP Session

• Pilot assisted transmission, no power control
• Nodes intend to transmit such that their signals coherently add

at the fusion center
• Channels are assumed to be reciprocal, i.i.d. and Rayleigh faded
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System Model
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• Assume perfect channel estimation at nodes
• After a DCP step, a node has a pair of values xi , yi where yi is

the received DCP symbol given by:

yi(t) =
∑
j 6=i
|hji |xj(t) + n , n ∼ CN (0, σ2)
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System Model
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h34 ∼ CN (0, 1)

n ∼ CN (0, σ2)

• Information at node i : xi(t) ∈ {+1,−1}
• The set of all nodes: N , {1, 2 . . . ,N}
• The channel matrix: H = [hij ]

• State-vector of binary values: D(t) = [x1(t), x2(t), . . . , xN(t)]

• The set of all possible 2N states: Φ

• The subset of Φ where majority is +1: Φ1
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Node Update Rules for DCP

• At each node:
1 Available Data: Own observation, received DCP symbol and

channel gains (xi(t), yi(t), {hji , j 6= i})

2 To estimate: Majority bit across the nodes

3 Question: What is the best estimate of majority?

• We propose two techniques for estimation:
1 Maximum Likelihood (ML) based estimation

2 Low complexity Linear Minimum Mean Squared Error (LMMSE)
based estimation
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ML Based Update Rule

• Then the ML estimate can be written as:

xML
i (t + 1) =

+1, if Θ(i) ≥ 0.5
−1, else

where Θ(i) is defined as the probability of +1 majority
Contd.
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ML Rule (Contd.)

• By Bayes’ rule:

Θ(i) , Pr
(

n/w state has majority + 1 | available data
)

= Pr
{
D(t) ∈ Φ1 | (xi , yi),H(t)

}

=

∑
φ∈Φ1

Pr
{

(xi , yi) | D(t) = φ,H(t)
}

∑
φ∈Φ

Pr
{

(xi , yi) | D(t) = φ,H(t)
}

Notation:
D(t) = [x1 x2 . . . xN ] — the network state at time t
Φ — the set of all possible states
Φ1 — the set of states where majority is +1

Harish, Venu and Chandra (IISc) Binary Consensus Using DCP January 26, 2013 11 / 26



LMMSE Based Update Rule

• Uses LMMSE estimate of the sum ∑
j xj based on the data

(yi , xi)

• Less complex and much easier to implement

• The estimate is given by:

xLMMSE
i (t + 1) = sign(̂si)

where ŝi is the LMMSE estimate of the sum s ,
∑

j xj at node i ,
at time t

Contd.
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LMMSE Rule (Contd.)

• Let ŝ′i denote the estimate of si
′ ,

∑
j 6=i xj

• si
′ is a function of the DCP symbol yi only. Therefore, a linear

estimate ŝ′i of si
′ suffices for the desired ŝi

ŝi , (̂s′i + xi),

ŝ′i = α∗i yi + β∗i ,

where α∗i =

∑
j 6=i |hji |∑

j 6=i |hji |2 + σ2 , β∗i = 0, ∀i ∈ N
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Performance Analysis

• The state transition depends solely on earlier state and the
channel state (channel gain matrix)

• Channel gains vary at each cycle
=⇒ Transition probability matrix (TPM) varies with time
=⇒ Its a time-varying Markov chain!

• Can study the average statistics of this dynamic system
Contd.
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Performance Analysis (Contd.)

• Performance metrics for consensus:

1 Probability of accurate consensus

2 Speed of convergence
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Probability of Accurate Consensus

• It can be seen that the average TPM P has all positive elements
P = [pij ], pij > 0 ∀i , j

(Every state is attainable from an arbitrary state)

• From Perron’s theorem, the stationary prob. distribution exists
& the same is attained for any initial distribution

=⇒ the final state is independent of the initial state!

• However, in the transient stage, we have observed through
simulations that the probability of accurate consensus increases
monotonically and approaches 1
=⇒ In finite number of cycles, accurate consensus can in fact

be achieved with very high probability
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Speed of Convergence Indicator
• Convergence (on an average) under consideration is:

E[π∞] = lim
n→∞

π0Pn

• The convergence of a matrix like Pn can be seen in its
diagonalized form:

Pn = SΛnS−1 =
n∑

i=1
λn

i uivT
i ,

where we denote the matrix S formed by eigenvectors
{ui , i = 1, 2 . . .N}, matrix Λ formed by eigenvalues as:

Λ =


λ1 0 . . . 0
0 λ2 . . . 0
...

. . .
...

0 0 . . . λN

 , S = [u1 u2 . . . uN ] and S−1 =


v1T

v2T

...
vN

T


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Pn = SΛnS−1 =
n∑

i=1
λn

i uivT
i ,

• If (|λ1| = 1) ≥ |λ2| ≥ . . . ≥ |λn|, as n→∞, Pn is dominated
more and more by the term with λn

2

• We can take |λ2| as a measure of convergence rate

• The closer |λ2| is to one, slower the speed of convergence to the
memoryless state and longer the system depends on the initial
state

• The proof extends in a similar way to non-diagonalizable P
matrices, using Jordan Canonical form
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The Second Eigenvalue Computation (Approx.)

• Closed-form expression for λ2 is difficult in general

• We need an approximation for the second eigenvalue λ2

• An approximation to λ2 is:

λ2 ≈ 1− 2γ(i)
all-zero,

where γ(i)
all-zero is the average error probability at node i in all-zero

state, i.e.,

γ
(i)
all-zero , EH

[
Pr
{
xi(t + 1) = +1|all-zero state,H(t)

}]
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Simulation Setup

• Number of nodes is N = 8. The TPM of the Markov chain is a
256× 256 matrix

• Averaged over 10, 000 channel instantiations to generate TPM

• Channel to noise ratio:

CNR ,
E [|h|2]

σ2

• Results:
1 Performance of LMMSE update rule
2 Comparison of the performance of DCP algorithm with an

existing scheme called Basic Affine Estimation (BAE)
3 Verifying the second eigenvalue approximation
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Simulations
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Figure: LMMSE vs ML for different initial majorities in a network of 8
nodes, in one cycle
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1 Mostofi Y. and Malmirchegini M., “Binary Consensus Over Fading Channels”,
IEEE Trans. Signal Proc., vol.58, no.12, Dec. 2010.
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Conclusions

• We proposed a feasible model for achieving improved
performance of physical layer binary consensus in fading
environment

• We have proposed a low complexity linear update rule at nodes
which performs comparable to the ML rule

• Significantly better performance over existing consensus
algorithms
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Future Work

• The explicit node scheduling difficulty in distributed setup —
The “Randomized Wake Policy” or “Pull” model

• A node randomly wakes up and updates itself after DCP protocol

• Simple & attractive in practical implementation

• Simulations suggest that its performance is on par with the case
where nodes are precisely scheduled!

• Current Challenges:
1 Theoretical analysis of convergence
2 Second eigenvalue computation to characterize the convergence

behavior
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Thank You!
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