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Opportunistic File Transfer over a Fading Channel:
A POMDP Search Theory Formulation

with Optimal Threshold Policies
Leigh A. Johnston and Vikram Krishnamurthy, Fellow, IEEE

Abstract— We present a computationally efficient algorithm
that minimizes the transmission energy and latency associated
with transmitting a file across a Gilbert Elliott fading channel. We
formulate the optimal tradeoff between transmission energy and
latency as a partially observed Markov decision process problem
(POMDP). The channel state is not directly observed and hence
transmission decisions must be based on ACK/NAK information
provided over a feedback channel. The key idea is to reformulate
the resulting POMDP as a Markovian search problem, with
optimal transmission control policies that are threshold in nature.
Threshold policies are computationally inexpensive to implement.
Our analysis shows that for different parameter values of the
Gilbert Elliott fading channel, the optimal transmission policy,
while threshold in structure, exhibits vastly different behaviour
– from persistent retransmission to back-off and wait. Numerical
examples demonstrate the performance improvements that can
be obtained using the optimal threshold policies as compared to
existing heuristic algorithms.

Index Terms— Partially observed Markov decision process,
threshold policy, Gilbert Elliott channel, ARQ protocol, optimal
search theory.

I. INTRODUCTION

ENERGY conservation and latency minimization are im-
portant issues in personal communication services such

as mobile telephones and notebook computers, and also in
wireless sensor networks. ARQ (automatic repeat request)
protocols form the basis of transmission protocols for wireless
networks due to their inherent simplicity and flexibility. Due
to multipath fading and shadowing in wireless channels,
transmission errors are statistically correlated (i.e., memory is
introduced). This memory can be exploited to devise adaptive
ARQ schemes that adjust the operation of mobile users based
on the predicted state of the channel. Such adaptive ARQ
transmission schemes are useful for delay tolerant traffic
applications such as email, web-browsing and remote login.
Indeed, protocols at the data link and MAC layers have
flexibility to defer transmissions and voluntarily release the
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channel if the channel conditions deteriorate. Since each failed
transmission is a waste of power consumption and limited
network resources, there is strong motivation for devising
novel transmission control algorithms for retransmission or
suspension of transmission to enhance channel utilization as
well as conserve battery power for the mobile users. Such
transmission control algorithms that determine the optimal
tradeoff between latency and transmission energy are also
of interest in sensor networks where maximizing battery life
is of key importance. Several heuristic ARQ protocols such
as Stop-and-Wait, Back-Off-N and Selective-Repeat [1] have
been developed.

In this paper we present computationally efficient packet
transmission control algorithms that minimize a weighted sum
of the transmission energy and latency for file transfer over an
uplink fading channel. The evolution of the correlated fading
channel is modelled as a two state Gilbert Elliott Markovian
channel. We assume that a Stop-and-Wait ARQ protocol is
operating between the transmitter (user) and receiver (base
station). Thus a feedback channel relays positive acknowl-
edgements (AKs) of successful transmissions and negative
acknowledgements (NAKs) for failed transmissions to the
transmitter. These AKs and NAKs are a probabilistic function
of the underlying unobserved state of the Markovian channel.
That is, the sequence of AKs and NAKs fed back to the
transmitter form the realization of a Hidden Markov Model
and provides indirect information about the channel state.

The problem of computing the optimal adaptive file transfer
strategy for a Stop-and-Wait ARQ protocol over an uplink
Gilbert Elliott fading channel can then be formulated as an
instance of a stochastic control problem called a partially
observed Markov decision process (POMDP). The solution of
this POMDP yields the optimal tradeoff between transmission
energy and latency (transmission delay). Although POMDPs
have recently received much attention in sensor scheduling for
network-centric warfare [2] and artificial intelligence research
[3], in general they are PSPACE hard to solve, i.e., require
exponential computational complexity and memory. The main
contribution of this paper is to show that optimal file transfer
strategies are given by threshold policies. Such threshold
policies are computationally inexpensive to implement.

Main Results: The main ideas in this paper are as follows:
(i) We present a novel formulation of the opportunistic file
transfer problem using a Stop-and-Wait ARQ transmission
protocol over a Gilbert Elliott fading channel as an optimal
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search problem of a Markovian target. Optimal search theory
for a Markovian target has a long history – we refer the
reader to [4] and references therein for an excellent exposition.
We show in Sec. III that the existence of a threshold policy
for the optimal file transfer policy is a particular instance
of a well known conjecture made by Ross [5] regarding the
optimal search of a Markovian target. Until recently, Ross’
conjecture has remained unproven. In 1995, MacPhee and
Jordan proved Ross’ conjecture for a large class of search
problems [6]. By interpreting the results in [6], we show that
optimal transmission policy for file transfer does indeed satisfy
threshold policies.
(ii) We then interpret these optimal threshold policies by
demonstrating that depending on channel conditions there are
two types of optimal strategies: (a) Back-Off-N scheme, i.e.,
after a failed transmission the controller waits N intervals
(where N is a variable interval whose value depends on the
random evolution of the state of the channel and specified cost
parameters) before attempting retransmission, or (b) alternate
in a sequence between retransmission and suspension. The un-
discounted cost formulation we consider in this paper allows
us to consider more general problems such as determining
the optimal strategy to minimize the expected time until a
successful transmission (delay cost function). Also, under
certain ergodicity assumptions un-discounted search problems
are stochastic shortest path problems [7] that terminate in finite
time with probability one.
Context: The Gilbert Elliott model used in this paper describes
the evolution of a correlated fading channel as a two state
Markov chain. Such models have been widely used to abstract
the physical layer channel in the context of link and network
layer algorithm design [8]–[10]. For example, [8]–[10] analyze
the performance of various ARQ schemes in the presence
of Rayleigh fading using a 2 state Gilbert Elliott model.
In [9, pp.286] it is shown that for low correlation fading,
persistent ARQ is most efficient in terms of transmission
energy (since the channel is almost independent from slot
to slot) and for high correlation fading a probing protocol is
more efficient. We show in this paper that the threshold based
optimal transmission controller exhibits similar exhibit similar
properties.

At the physical layer, techniques for estimating/predicting
wireless channel states include pilot-symbol aided channel
estimation (see [11], [12], and references therein), blind esti-
mation [13], and techniques involving periodically probing the
channel to detect any changes in the channel state information
[9]. However, traditional ARQ protocols such as Stop-and-
Wait ARQ (used in IEEE802:11 standards, IEEE802:11a and
802:11b), Go-Back-N (GBN) ARQ and Selective- Repeat (SR)
ARQ recover from errors by retransmitting the erroneously
transmitted packets regardless of the channel state (channel
unaware). If the channel happens to be in the bad state, then
such persistent retransmission schemes may lead to wasted
energy consumption due to unnecessary packet losses and
therefore additional retransmissions [9]. In this paper we use
the probabilistic information contained in the ACKs and NAKs
about the channel state to determine the transmission policy
that optimizes an infinite horizon cost function comprising
of a weighted sum of the latency and energy. In a more

sophisticated setting, one could also consider a cross layer
approach where the finite state Markov model of the channel
dynamics at the link layer is combined with channel state
information from a channel estimator at the physical layer –
this is the subject of future work.
Related work: Several papers consider dynamic programming
methods for solving wireless resource allocation problems
with complete channel information. An excellent reference on
opportunistic file transfer over fading channels is the recent
preprint [14] – the paper also considers average delay con-
straints. Recently, Koole et al develop a POMDP formulation
for the optimal transmission policies of multiple users sharing
a single wireless link in [15]. They show that the policies
are myopic (threshold) in nature. The problem formulation in
[15] is different from ours – they assume the transmitter has
complete knowledge of the channel state via the receipt of
positive or negative acknowledgements. In [16], the problem
of determining the optimal transmission policy over a fading
channel is studied in the context of a Back-Off-N scheme. In
Sec. VI, we compare the throughput, efficiency and cost of
our optimal threshold policy with a Back-Off-N method.
Limitations of our analysis: A limitation of the threshold
policy result presented in this paper is that it can be proved
optimal only for a two-state Gilbert Elliott channel with fixed
transmission power and with ACK/NAK feedback (i.e., simple
ARQ protocol). For channels with a larger state space, or
multiple power levels, or where further information about the
channel is available (beyond ACKs and NAKs), the optimal
policy is not necessarily threshold. For these cases the optimal
policy for the equivalent search problem can be computed via
stochastic dynamic programming but the computational cost is
often prohibitive. In Sec.V, for completeness we outline how
the general search problem can be formulated as a POMDP
and solved using available software. However, we believe the
threshold policy for the two-state Gilbert Elliott model is of
interest as it allows us to gain deeper insight into how the
channel parameters affect the nature of the re-transmission
policies.

II. SYSTEM MODEL

The time axis is divided into slots of equal duration which
correspond to the round-trip time required for transmitting a
single fixed length packet. Propagation and processing delays
are assumed to be negligible.

Fading Channel: The uplink channel for transmission of
packets is assumed to evolve as a two-state Gilbert Elliott
model [17]. Under this model, the state of the channel evolves
according to a discrete-time, two-state first order Markov
chain {sk}, where k = 1, 2, . . . denotes the transmission
slot. The state of the channel at transmission slot k is
sk ∈

{
good, bad

}
. Denote the transition matrix governing

the channel model as

R =
[

g 1 − g
1 − b b

]
(1)

Here g denotes the probability that the channel remains in the
good state between discrete time instants, etc. We assume
{sk} is aperiodic and irreducible, i.e., 0 < g, b < 1. The
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Markovian channel memory is defined by μ = g + b − 1.
We assume throughout this paper that μ is non-negative, i.e.,
0 ≤ μ < 1. Boundary case μ = 0 denotes a memoryless
channel, while μ = 1 denotes a channel with infinite memory.
We refer the reader to [9, Eq(3)-(6)] for relating the transition
probabilities g and b to physical layer fading channel parame-
ters such as the fading margin and Doppler frequency.

The presence of memory allows the user to predict the state
of the channel via a Hidden Markov Model predictor, see (8)
below. Note that the optimal search formulation and threshold
policies in [6] holds for negative μ, i.e., −1 < μ < 0 as well
– however negative μ is without practical meaning in Gilbert
Elliott channels.

Transmission Controller and Feedback Information: At
each transmission slot k, the transmission controller chooses
an action ak ∈ {Tr

�
= Retransmit, Su

�
= Suspend}. At the end

of each transmission slot, the user receives error-free feedback
from the receiver specifying whether a packet is successfully
received. Let yk ∈ {ACK,NAK} denote the observation
(feedback). yk = ACK denotes a successful transmission.
yk = NAK occurs due to a failed transmission (when a
packet is lost or corrupted) or when the controller chooses
action ak = Su (conformation that no packet was sent). The
observation probabilities are modelled as:

P (yk = ACK|sk = good, ak = Tr) = 1 − Pe,

P (yk = ACK|sk = bad, ak = Tr) = 0,
P (yk = ACK|sk = good, ak = Su) = 0,

P (yk = ACK|sk = bad, ak = Su) = 0 (2)

and P (yk = NAK|sk, ak) = 1 − P (yk = ACK|sk, ak).
In words (2) states: The action ak = Tr (transmit packet)
while the channel in the sk = bad state results in either
the loss or corruption beyond redemption of that packet, both
of which result in a yk = NAK being returned. Conversely,
ak = Tr over an sk = good channel results in yk = NAK
with probability Pe. Thus a positive packet acknowledgement
(ACK) occurs with probability 1 − Pe when the transmission
is made over the channel in the good state. Notice that the
state of the channel is not directly observed – thus the state
of the channel is a Hidden Markov Model.

The value of Pe is determined by the system parameters
including packet length and codeword length for a pure ARQ
system, in which case Pe is a reflection of the error detection
capability. For hybrid-ARQ, Pe also incorporates the error
correction capability of the system (see [1, Sec.15.3] for
explicit expressions of error probabilities in type-I hybrid-
ARQ systems). Finally, a noisy feedback channel is easily
incorporated in the above formulation via adaptation of the
observation probabilities.

There are costs associated with the transmission control
decisions. Upon receipt of a NAK, the control algorithm
decides whether to retransmit the packet, or wait for a more
opportune moment to attempt retransmission. A latency cost of
c0 is associated with suspension of a packet, while the energy
required for retransmission incurs a cost of c1 (see (5)).

III. FORMULATION AS A SEARCH PROBLEM

The aim here is to formulate the optimal transmission
control problem as a two-state Markovian search problem
described in [5], [6]. The analogy between the transmission
control problem and the optimal search problem is this: In this
search problem a target (channel sk) moves between two boxes
(states) according to a Markov chain. At each time instant
the searcher is to choose one of two possible actions: search
a box (Tr) or wait (Su). The objective is to determine the
optimal sequence of actions to be taken to find the moving
target with minimum cost. Each search or suspension incurs
a cost and an observation is received – target found (ACK)
or target not found (NAK). The problem terminates when the
target has been found (ACK received). We now formulate this
Markovian search problem more precisely.

A. Dynamics and Cost Function

As long as the transmission controller receives ACKs, it is
easily seen that the optimal policy is to continue transmission
of packets, until a NAK is encountered. As soon as a NAK is
received, indicating a transmission failure, the search problem
commences (k = 1) and the transmission control algorithm
takes over to implement the optimal policy of retransmissions
and suspensions until an ACK is received, after which the
control algorithm terminates. (A complete summary of the
transmission control algorithm is given below in Sec.IV-B).
Note that time indexing k restarts at the beginning of each
control problem, i.e., upon receipt of the first NAK after a
sequence of ACK symbols.

To allow for termination of the search problem when
an ACK is received, it is necessary in our mathematical
formulation to replace sk with the observation dependent
Markov chain xk , k = 1, 2, . . ., on the augmented state space
X = {good, bad, T }. The state T is a fictitious “terminal”
state that is added in order to terminate the search upon the
reception of an ACK. The state of the target xk ∈ X evolves
according to the observation dependent transition probability
matrices Ry(i, j) = P (xk+1 = Xj |xk = Xi, yk = y)

RACK =
[
03×2 13×1

]
, RNAK =

[
R 02×1

01×2 1

]
. (3)

Here R defined in (1) is the transition probability matrix of
the Gilbert Elliott channel.

Let Ψ1
�
= {y0, a0}. Define the initial distribution of xk as

π1(i) = P (x1 = Xi|Ψ1), i = 1, 2,
π1(3) = P (x1 = T |Ψ1) = 0 (4)

The observation probabilities P (yk = y|xk = Xi, ak = a)
are defined identically to (2) for i = 1, 2 and P (yk =
ACK|xk = T, ak = a) = 1 regardless of the action,
a ∈ {Su,Tr}, taken. In search theory, P (yk = NAK|xk =
good, ak = Tr) = Pe is called the “overlook probability” [5],
[6].

The search costs are the latency cost for suspension and
energy cost for retransmission, respectively

c0
�
= c(xk = Xi, ak = Su) > 0,

c1
�
= c(xk = Xi, ak = Tr) ≥ 0. (5)
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The terminal state incurs no cost, i.e. c(xk = T, ak = a) = 0.
The assumption c0 strictly greater than zero is required to
make the transmission control problem meaningful – other-
wise if c0 = 0, it would be optimal to suspend for all time.

Define the observation and action histories: Yk =
[y1, . . . , yk], Ak = [a1, . . . , ak]. At slot k = 2, 3, . . ., the
information vector available to the transmission controller is
Ψk = {π1, Ak−1, Yk−1,ACK /∈ Yk−1}.

Let D denote the set of admissible stationary search poli-
cies. A stationary search policy is a measurable function that
maps the information vector Ψk to action ak ∈ {Tr, Su}, i.e.,
d ∈ D is such that ak = d(Ψk).

Let V (π1;d) denote the expected cost to find the target
(receive an ACK), given the initial state distribution π1. That
is,

V (π1;d) = lim
N→∞

Ed

{
N∑
k=1

c(xk, ak)
∣∣∣ π1

}
(6)

where Ed denotes expected value parametrized by the station-
ary policy d. The aim is to determine the optimal stationary
policy d∗ ∈ D and associated minimum expected cost V (π1)
defined as

V (π1,d∗) = V (π1)
�
= inf

d∈D
V (π1,d) (7)

Remarks: (i) The above problem is an instance of a partially
observed stochastic shortest path problem. We refer the reader
to [7] where the finiteness of this sum is proved for aperiodic
irreducible R.
(ii) The costs c0 and c1 should be chosen to reflect the relative
importance of latency and transmission energy, respectively. It
is interesting to note that choosing the latency cost equal to
the transmission energy cost, i.e., c0 = c1 in (7), minimizes
the expected search delay to find the object (receive an ACK).
This search delay cost was used in the classical search theory
paper [18].

B. Information State Formulation

To compute the optimal transmission (search) policy in
(7) via stochastic dynamic programming, it is necessary to
express the above search problem in terms of the information
state, see [19]. The conditional probability distribution of the
channel state, given the available information, is denoted by
the information state [19], πk(x) = P (xk = x|Ψk), x ∈ X .

Let πk =
[
πk(1) πk(2) πk(3)

]′
. The information state

vector is computed recursively via Bayes’ rule according to
the following Hidden Markov Model predictor [19]:

πk+1 =
Ryk ′Qak(yk)πk

1′Ryk
′Qak(yk)πk

(8)

where Qa(y) = diag[Pr(yk = y|xk = good, ak =
a),Pr(yk = y|xk = bad, ak = a),Pr(yk = y|xk = T, ak =
a)]. This HMM predictor predicts the state of the channel at
time k+1 given that a NAK was received at time k. Because
of the structure of Ry and Qa(y) it is easily verified from (8)
that πk+1 has the following structure:

πk+1 =

⎧⎨⎩
[
pk+1 qk+1 0

]′
if yk = NAK[

0 0 1
]′

if yk = ACK
(9)

where pk+1 + qk+1 = 1. Moreover, it is easily shown from
(8) that if yk = NAK then the HMM predictor yields

pk+1 =

{
LTr(pk)

�= Pe g pk+(1−b)qk

Pepk+qk
if ak = Tr

LSu(pk)
�
= μpk + 1 − b if ak = Su

(10)

Note that from (4) and (10) it follows that the initial state
distribution is given by

p1 = LTr(g) ⇒ π1 =
[
LTr(g) (1 − LTr(g)) 0

]′
(11)

It is well known [19] that πk contains all the information in
Ψk so that the action ak = d(Ψk) = d(πk) where d ∈ D. The
cost function (6) can be expressed in terms of the information
state πk as [19]

V (π1;d) = lim
N→∞

Ed

{
N∑
k=1

3∑
i=1

c(Xi, ak)πk(i)
∣∣∣ π1

}
(12)

Because qk+1 = 1 − pk+1 when yk = NAK for any k,
we can completely parameterize πk+1 by pk+1, see (9). In
particular we can write V (p1,d) for V (π1,d) and V (p1) for
the optimal cost V (π1). The optimal cost function V (p1) is
the solution of Bellman’s dynamic programming functional
equation [5]

V (p1) = min
{
c1 + V (LTr(p1))(Pep1 + 1 − p1),

c0 + V (LSu(p1))
}

(13)

It is well known [6] that (13) has a unique bounded solution,
V (p1), that is piecewise linear and concave in p1.

At this point, the ARQ transmission control has been for-
mulated as a Markovian search problem of the form described
in [6].

IV. THRESHOLD POLICY AND OPTIMAL TRANSMISSION

PROTOCOLS

In general the solution to the DP equation (13) can be
computed via a value iteration algorithm [20] – this is often
computationally intractable. We show that due to the special
structure of our search problem, the optimal retransmission
control takes the form of a threshold policy, whereby the
packet is retransmitted if the probability that the channel
is in the good state exceeds a certain threshold level, or a
suspension occurs if it does not.

A. Threshold Policies

The existence of optimal threshold policies for two-state
Markovian search problems was conjectured by Ross in [5].
Modified for the transmission control problem, the conjecture
reads as follows.

Ross’ conjecture applied to transmission control: There
exists a threshold value, P ∗, at any time n given the informa-
tion state, pn, such that for pn ≥ P ∗, the optimal policy is to
transmit, while for pn < P ∗, the optimal policy is to suspend.

MacPhee and Jordan [6] prove this conjecture for a class
of search problems that include the search problem we have
formulated above in Sec.III. The reader is referred to [6] for
details of the proof.
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The threshold value, P ∗, depends entirely on the channel
transition probabilities R and costs c0, c1. Solving for P ∗

requires determining the class to which the system under
consideration belongs. The classes are determined by the fixed
points of the HMM channel predictor (10). Denote by PTr the
fixed point of LTr, and PSu the fixed point of LSu in (10) of
the HMM predictor. That is:

PTr =
2 − (Pe g + b) −√(Pe g + b)2 − 4Pe μ

2 (1 − Pe)
(14)

PSu =
1 − b

1 − μ
(15)

Define also the mapping of a retransmission followed by
a suspension, and vice-versa, required in the class definitions
below:

PTr,Su(p)
�
= LSu(LTr(p)), PSu,Tr(p)

�
= LTr(LSu(p)) (16)

Lemma 1: PSu > PTr and PTr,Su > PSu,Tr for all p ∈ (0, 1).
Proof: Under the assumption that 0 < μ < 1 (see Sec.II),

LSu(pk) defined in (10) is both an increasing function of pk
and a contraction mapping because (LSu(x) − LSu(y))2 ≤
μ(x− y)2, for 0 < x, y < 1.

The mapping LTr(pk) (10) is increasing and convex since

L′
Tr(pk) =

Peμ

((Pe − 1)pk + 1)2
> 0,

L′′
Tr(pk) =

2Peμ(1 − Pe)
((Pe − 1)pk + 1)3

> 0.

Note also that LTr(0) = LSu(0) = 1 − b and LTr(1) =
LSu(1) = g. Therefore

LSu(p) > LTr(p) ∀p ∈ [0, 1] (17)

Due to (17), LSu(PTr) > LTr(PTr). As LSu(pk) is both increas-
ing and contractive, PSu = LSu(. . . (LSu(PTr))) > LTr(PTr) =
PTr. The proof of PTr,Su(p) > PSu,Tr(p) is given in [6, Lemma
4, pp.181].

The main result of [6, Sec.4 and 5] adapted to our trans-
mission control problem reads as follows:

Result 1: Depending on the system parameters
{b, g, c0, c1, Pe}, there are three classes into which the
ARQ transmission control system can fall – Class 1, 2a and
2b. Each class has a different threshold value, P ∗

1 , P ∗
2a and

P ∗
2b (19). Class membership rules are as follows:

Class 1: PTr > P ∗
1 and PSu > P ∗

1

Class 2a: PTr < P ∗
2a < PSu and

PSu,Tr(P ∗
2a) < P ∗

2a < PTr,Su(P ∗
2a) (18)

Class 2b: PTr < P ∗
2b < PSu and{

P ∗
2b < PSu,Tr(P ∗

2b) or P ∗
2b > PTr,Su(P ∗

2b)
}

The fixed points, PTr and PSu, are given in (14), while PTr,Su(·)
and PSu,Tr(·) are defined in (16). The three classes are mutually
exclusive and exhaustive, i.e. the system belongs to one and
only one of the classes.

An important consequence of the above result is that class
membership is a system property – the class is uniquely
determined by the system parameters {b, g, c0, c1, Pe}.

The statement in Result 1 that there are only three classes
can be argued as follows. There can be no class for which
PSu < PTr, as this violates the fixed point ordering in Lemma
1 above. Another potential case is that of PTr < PSu <
P ∗, however this results in a threshold P ∗ = 0 given the
parameters of the transmission system (see p.173 [6]), which
implies b = 1 (15), an illegal absorbing state in the channel
– since we assume that channel is an aperiodic irreducible
Markov chain.

The threshold values for Class 1 and 2a are explicitly
computed in [6] as

P ∗
1 =

(1 − b)(c1 − c0)
(1 − μ)c1

, P ∗
2a =

(1 − b)(c1 − μc0)
(1 − μ)(c1 + c0)

. (19)

The threshold for Class 2b, P ∗
2b, cannot be obtained in

closed form but is straightforwardly numerically computed as
described in [6, Sec.4.2.4] by applying multiple compositions
of LTr and LSu (10).

B. Optimal Transmission Protocols

Based on Result 1, our optimal threshold policy based
transmission controller operates as follows:

Optimal Transmission Control Algorithm

1) System classification: Given system parameters
{b, g, c0, c1, Pe} defined in (1) and (5),

• Compute critical points, PTr and PSu, according
to (14)-(15).

• Compute Class 1 and 2a thresholds, P ∗
1 and P ∗

2a,
according to (19).

• Determine class membership, m ∈ {1, 2a, 2b},
according to (18). If the system is in Class 2b,
determine the threshold numerically as described
in [6, Sec. 4.4.2, p.176].

2) Successful transmission until receipt of a NAK:
• Set time slot k = 0, and

– Transmit packet, a0 = Tr.
– Receive acknowledgement, y0 ∈

{ACK,NAK}.

∗ If y0 = ACK , repeat Step 2.
∗ Else if y0 = NAK , then set k = 1, initialise
p1 according to (11), and go to Step 3.

3) Unsuccessful transmission until receipt of an ACK:
(k = 1, 2, . . .)

• If pk < P ∗
m, then ak = Su.

• Else if pk ≥ P ∗
m, then

– Retransmit packet, ak = Tr.
– Receive acknowledgement, yk ∈

{ACK,NAK}.

∗ If yk = ACK , go to Step 2.
∗ Else if yk = NAK , then update pk to pk+1

according to (10). Set k = k + 1 and repeat
Step 3.

In the rest of this section, we analyze the properties of
the above optimal transmission control algorithm. We show
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that the class determines the structure of the optimal threshold
policy. The following theorem formalizes the optimal control
policies for the three different classes described in the above
algorithm.

Theorem 1: (i) If the transmission system is in Class 1
and with initial condition p1 < P ∗

1 , then the optimal policy
is to first suspend transmission for k∗(p1) slots and then
persistently retransmit until an ACK is received. Here k∗(p1)
is the smallest non-negative integer satisfying

k∗(p1) >
1

log(μ)
log
(

c0(1 − b)
c1(1 − b) − (1 − μ)c1p1

)
(20)

(ii) If the system is Class 1 and p1 > P ∗
1 , the optimal policy

is to persistently retransmit until an ACK is received.
(iii) If the system is in Class 2a or 2b, the optimal transmis-
sion policy is a threshold policy involving a combination of
suspensions and retransmissions.

Proof: From the threshold Result 1, it follows that for
Class 1, if p1 < P ∗

1 the optimal policy is to first suspend.
As LSu is increasing (10), p1 will increase monotonically
after each suspension until it exceeds P ∗

1 (which occurs
with probability 1, as PSu > P ∗

1 for Class 1 systems),
after which retransmission occurs until an ACK is received
(with the information state moving towards PTr). Suspension
cannot occur again once the threshold has been exceeded,
as PSu > PTr > P ∗

1 . Thus assertion (i) and (ii) follow. We
now show that the suspension time k∗ satisfies (20). Note that
k∗ = min {k ≥ 0 : pk ≥ P ∗

1 }. From (10),

pk+1 = μkp1 + (1 − b)
(1 − μk)
1 − μ

(21)

From the above equation and (19) we have pk+1 ≥ P ∗
1 implies

that
μk((1 − μ)p1 − (1 − b)) ≥ c0

c1
(b − 1)

But (1−μ)p1−(1−b) < 0. (This holds because by assumption
p1 < P ∗

1 = (1−b)
(1−μ) (1− c0/c1). This implies p1 <

(1−b)
(1−μ) which

in turn is equivalent to (1 − μ)p1 − (1 − b) < 0).
Thus from (21) we have

μk ≤ c0(1 − b)
c1(1 − b) − (1 − μ)c1p1

which in turn implies (20).
For Class 2 systems, due to the updates’ fixed points, PTr

and PSu, lying either side of the threshold (see (18)), the
optimal policy is a mixture of suspensions and retransmissions.

Remarks: (i) From (20) it follows that as the suspension
cost c0 decreases, k∗(p1) (the number of time slots for
suspension before persistent transmission) increases – which
makes intuitive sense. However, since c0 is strictly positive by
assumption (5), k∗(p1) is always finite. If the energy cost for
retransmission c1 = 0, then k∗(p1) = 1, i.e., for c1 = 0 it is
optimal to persistently retransmit – this also makes intuitive
sense.

(ii) As mentioned in Sec.I, there are many ARQ protocols
governing the retransmission of packets in wireless networks.
Persistent Retransmission is the simplest, the idea being to
retransmit a packet at each time instant until it transmits

successfully, at which point the next packet is transmitted and
so on. Persistent Retransmission is a Class 1 optimal policy
that arises only if p1 > P ∗

1 (as the information state starts
and remains above the threshold). In the numerical examples
of Sec. VI this is shown to occur for low channel memory
values.

C. Optimal Transmission Cost for Class 1 System

As described in Result 1 and Theorem 1 above, for Class
2a and 2b, the optimal transmission policies are threshold
policies involving mixtures of suspensions and retransmis-
sions. Therefore, apart from specifying the thresholds of the
optimal transmission policy, it is difficult to say anything
more specific about the policy of a Class 2 system since the
switching between suspensions and transmissions depends on
the specific parameters (g, b, Pe, c0, c1). However, for a Class
1 system, much more can be said about the performance of
the optimal transmission control algorithm. We now give an
explicit upper bound to the optimal cost incurred for a Class
1 system.

Recall from (9) that when the channel is in the terminal
state, xk = T , then the information state is

πk = eT
�
= [0, 0, 1]′

First we demonstrate in the following theorem that if persistent
transmission is applied, then after any two time transitions
the probability of successfully receiving an ACK is strictly
greater than zero. Recall from Theorem 1, that the optimal
transmission policy for a Class 1 system is to first suspend
transmission and then persistently retransmit.

Theorem 2: Consider a Class 1 system with informa-
tion state π = [π(1), π(2), π(3)]′ in which persistent re-
transmission is applied starting at or before time 2k − 1,
k = 1, 2, . . .. Then, the conditional probability of a successful
transmission is lower bounded as follows:

P (π2k+1 = eT |π2k−1 = π) ≥ α (22)

where the coefficient of contraction, α ∈ (0, 1], is

α
�
= (1 − Pe)(1 − b) (23)

Proof: See Appendix.
Note that (22) is equivalent to P (π2k+1 �= eT |π2k−1 =

π) < 1 − α, meaning that the probability of not reaching
the terminal state in any two slot time interval is strictly less
than one. Thus the constant α in the above theorem acts as
a discount factor (coefficient of contraction) that ensures that
the infinite sum (6) and hence (25) below (which represents
the expected number of retransmissions) is finite. In fact
the above search problem can be viewed as an instance of
a stochastic shortest path problem, see [19, pp.367]. It is
important to note that the above contraction property requires
at least two retransmission time steps. For one time step, it
is easily shown that P (π2k+1 = eT |π2k = π) is not always
positive for arbitrary π. For example π = [0, 1, 0]′ implies
P (π2k+1 = eT |π2k = π) = 0.

Suppose for any arbitrary time n, the information state πn
satisfies pn > P ∗

1 . From Theorem 1 above, the optimal policy
is to persistently retransmit. Starting at time n, let M(πn)
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denote the expected number of retransmissions required until
an is ACK received, i.e.,

M(πn)
�
= Ed

{ ∞∑
k=n

I(xk �= T )
∣∣∣ πn

}
(24)

where the policy d = (Tr,Tr,Tr, . . .) (i.e., persistently re-
transmit) and I(·) denotes the indicator function. Note that by
construction, if πn = eT , then M(πn) = 0 (since T is an
absorbing state).

The following theorem gives both an explicit expression for
the expected number of retransmissions, M(πn), for a Class
1 system, and a conservative upper bound on the expected
number of retransmissions.

Theorem 3: For a Class 1 system with pn > P ∗
1 at any

arbitrary time n, the expected number of retransmissions is

M(πn) =∑∞
k=1 k

[
1 1 0

]
QTr(ACK)

(
RNAK′

QTr(NAK)
)k−1

πn (25)

Furthermore, M(πn) is finite and upper bounded as

M(πn) ≤ 2
α
, (26)

where the coefficient of contraction, α, is defined in (23).
Proof: See Appendix
Remark: The proof of (26) is similar to the proof of finite
expected cost for a stochastic shortest path problem, see for
example [19, Sec.7.2]. However, we have the added com-
plexity that the state of the Markov chain is not observed
directly. Although (26) is conservative, it serves as an easily
computed upper bound and also shows that the expected cost
using persistent re-transmission is finite. Furthermore it is a
tighter bound than that obtained using norms as we now show.
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Fig. 1. A comparison of the expected number of retransmissions, M(πn),
determined numerically according to (25), the upper bound (26), and the norm
bound (27).

An upper bound on the expected number of retransmissions
can be derived using a l2 norm bound (see Appendix for the
derivation):

M(πn) ≤ (1 − Pe)
√
π(1)2 + π(2)2

(1 − σmax)2
(27)

Here σmax denotes the maximum singular value of the matrix
ANAK = RNAK′

QTr(NAK). Fig. 1 compares the expected
number of retransmissions (25) (determined numerically), the
2/α bound (26), and the norm bound (27), for the parameter
set (see Sec. VI) c0 = 1, c1 = 3, Pe = 0.1, π(1) = π(2) =
0.5. Note that the norm bound is at it’s minimum for this
choice of equiprobable initial channel state probabilities. As
is evidenced in the plot, the 2/α bound is tighter and follows
the shape of M(πn) across varying channel memory, while
the norm bound suffers from being symmetric.

The combination of Theorems 1 and 3 yields the following
corollary which gives an explicit upper bound for the expected
cost of the optimal transmission policy for a Class 1 system.

Corollary 1: For a Class 1 system, the expected cost of the
optimal policy is given by

c0k
∗(p1) + c1M(πk∗(p1)+1) if p1 < P ∗,

c1M(π1) if p1 ≥ P ∗ (28)

where k∗(p1) is defined in (20) and M(π) is upper bounded
by 2/α.

Thus we have shown in this section that for any Class
1 system, the optimal policy is to first suspend and then
persistent retransmit once the information state has crossed
the threshold P ∗

1 . Furthermore, the expected number of trans-
missions is finite due to the contraction coefficient α. Finally,
we have derived explicit expressions for the expected number
of retransmissions and the cost.

V. TRANSFORMATION TO A POMDP

In this section we reformulate the search problem in Sec.III
as a POMDP. This allows us to numerically solve the trans-
mission control problem when the channel has more than
two states or there are more than two observation symbols
– in such cases the threshold policy derived earlier in this
paper is no longer optimal. We can use available sophisticated
software and various efficient exact POMDP algorithms such
as the Witness algorithm, Incremental Pruning, etc which
have recently been developed in the artificial intelligence
community, see [21] for an excellent tutorial exposition with
graphics of these various algorithms. Such software for solving
POMDPs is typically designed assuming observation indepen-
dent transition probabilities – whereas the search problem has
observation dependent probabilities.

The search problem can be reformulated as a POMDP
by a suitable coordinate transformation as outlined be-
low, see [7] for details. Consider the augmented Markov

process x̄k
�
= (xk, yk−1) with state space X̄ =

{(good,NAK), (bad,NAK), (T,ACK)}.
The action and observation sets remain the same. The

transition probabilities of x̄k are

Ra =
[
Qa(NAK)R Qa(ACK)1

0′ 1

]
(29)

which are no longer observation dependent. The observation
probabilities P (yk = y|x̄k, ak) are

Oa(y) =
{

diag[1 1 0], y = NAK
diag[0 0 1], y = ACK

(30)
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The information state (π̄k(i) = P (x̄k = X̄i|Ψk) is recur-
sively computed via a Hidden Markov model filter update:

π̄k+1 =
OakRa

′
k π̄k

1′OakRa
′
k π̄k

(31)

The costs are g(x̄k, ak)
�
= c(xk, ak) – so that g(T, ak) = 0,

i.e., there is no cost for taking ak = Tr and receiving an ACK.
Solving the search problem (7) as formulated in Sec. III

is equivalent to solving the undiscounted, infinite horizon
POMDP:

V (p1) = sup
δ∈Δ

Vδ(π̄1), where

Vδ(π̄1) = lim
N→∞

E
{ N∑
k=1

g(x̄k, ak))
∣∣∣ π̄1

}
(32)

Here Δ denotes the class of stationary policies and δ : π̄k →
ak denotes a stationary policy.

Remark: The formulation is straightfowardly extended to a
S > 2 state channel with states xk ∈ {X1, X2, . . . , XS , T }
(T again denotes the terminal state) and

x̄k ∈ {(X1,NAK), (X2,NAK), . . . , (XS ,NAK), (T,ACK)}
Let Ra now denote the S × S transition probability matrix
of the channel and Qa(y) = diag[Pr(yk = NAK|sk =
1, ak = a), . . . ,Pr(yk = NAK|sk = L, ak = a)]. Then
(31), (32) hold. The POMDP solution software in [21] can
solve POMDPs with arbitrary finite state, finite observation
symbols and finite number of actions. For small size problems
of up to ten states, Lovejoy’s sub-optimal algorithm [22]
can be used. Lovejoy’s algorithm also includes a constructive
procedure for computing upper and lower bounds on the
approximate transmission policy. We refer the reader to [22]
and [2] for details of Lovejoy’s algorithm and applications to
sensor scheduling in network centric warfare. It is important
to note however, that if the channel has more than two states,
the optimal policy is not necessarily threshold.
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VI. NUMERICAL EXAMPLES

Throughout this section we consider a two-state Gilbert
Elliott channel with transition probabilities specified below,
error probability Pe = 0.10, and latency (suspension) and
transmission energy (failure) costs fixed, respectively, at c0 =
1 and c1 = 3. These parameter values were chosen since they
permit full exploration of the range of classes (1,2a and 2b)
through varying channel memory, μ = g + b − 1, as will be
shown in the following results.

a) Class Boundaries.: Here we elucidate the effect of the
channel parameters on the threshold values determining class
membership. Fig. 2 shows the class boundaries over the range
of transition probabilities, g, b, for channel memory μ ≥ 0.
i.e. the region for which g + b ≥ 1. These were computed
using the system classification step of the transmission control
algorithm summarized in Sec.IV-B. Each of the three classes,
Class 1, Class 2a and Class 2b, is observed to be active across
the range of channel memory values 0 ≤ μ < 1.

b) Equivalence of Search and POMDP Formulations.:
Recall that in Sec.V, we analytically demonstrated the equiv-
alence between the search and POMDP formulations. Here
we illustrate their equivalence numerically. To visualize the
thresholds on a 2-d plot we chose g = b. Thus we are moving
across the various classes in Fig. 2, along a diagonal line
starting at (g, b) = (0, 0) and ending in (g, b) = (1, 1).

Fig. 3 depicts the threshold values obtained using the search
formulation. For Class 1 and 2a these threshold were computed
using (19). For Class 2b the thresholds were numerically
computed as in [6, Sec.4.2.2]. Note that for low correlation
fading (small μ), the system is in Class 1 and suspensions
followed by persistent transmission is the optimal strategy.
This is similar to the finding of [9] where it was shown that for
low correlation fading persistent ARQ is more energy efficient.
For higher correlation fading (larger μ), the system is in Class
2a and 2b where the optimal policy is a mixture of suspensions
and transmissions.

Also shown in Fig. 3 are the threshold values obtained
via solving the POMDP formulated in Sec.V. As might be
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expected, there is an exact match. The POMDP was solved
using the “incremental-prune” algorithm recently developed
in the artificial intelligence community [3]. The software is
freely downloadable from [21].

c) Transmission Protocol Comparison.: Here we com-
pare the performance of our threshold based optimal trans-
mission control algorithm with two other schemes, namely,
Persistent Retransmission, and the Back-Off-N scheme. As
mentioned in Sec. I, Back-Off-N schemes are proposed in
[16] for energy efficient transmission over fading channels. We
therefore implement a Back-Off-N scheme with suspension
length, N , designed as a function of channel memory μ as
follows (the values of N chosen below are optimal for the
ARQ system in [16]):

μ 0 – .3 .35 – .6 .65 – .75 .8 .85 .9 .95
N 0 1 2 3 4 5 7

To visualize the performance of the three transmission
control algorithms on a 2-d plot, we consider g = b. Figs. 4-
6 compare performance statistics of three algorithms, for a
simulation of 1 million successful packet transmissions per
channel memory value. Note that the jagged nature of the plots
for the optimal transmission scheme is due to the fact that
with increasing channel memory μ, the system class changes
and thus the thresholds change. Similarly, for the Back-Off-N
scheme, the value of N jump changes according to the above
table thus exhibiting the jagged behaviour. It is important to
note that the jagged behaviour is not due to the statistical
variance of the simulation.

The performance statistics of the simulation depicted in
Figs. 4-6 are throughput, efficiency and average cost, defined
as follows:

Throughput =
number of packets successfully transmitted

total number of transmission slots

Efficiency =
number of packets successfully transmitted

total number of packets transmitted
Cost = c0 × number of packet suspensions

+ c1 × number of transmission failures

Average Cost =
Cost

total number of transmission slots

The Persistent Retransmission scheme shows constant per-
formance in throughput, efficiency and cost versus channel
memory μ. This is because choosing g = b renders the steady
state channel distribution [0.5 0.5]. Persistent Retransmission
provides an upper limit on the throughput since a packet is
transmitted every time slot, irrespective of the channel state.

Fig. 5 shows that the efficiency of the Back-Off-N scheme
increases monotonically as μ increases. This is due to the fact
that the number of suspensions N increases monotonically
with channel memory μ in the above table. Fig. 5 shows
that the efficiency of the optimal threshold based transmis-
sion controller also increases with μ. This can be intuitively
explained as follows: As μ increases, the system moves out
of Class 1 and into either Class 2a or 2b (see Fig. 2). In
Class 2a and 2b, the fixed point PTr lies below the threshold
(18). Therefore, in Class 2a and b, every transmission yields
an updated information state πk which results in a higher
probability of suspension. A higher probability of suspension
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implies that more time is allowed between transmissions for
the channel to recover to the good state.

The most important point to note from this example is the
comparison between the optimal controller and the Back-Off-
N scheme. For low channel memory both algorithms behave
like the Persistent Retransmission as theory predicts. When
packet suspensions start playing a role, (μ = 0.36), the
cost increases due to the impact of c0. For higher channel
memory values, the cost decreases as less retransmissions
are attempted. The non-optimized Back-Off-N scheme does
not match the decreasing cost curve of the search algorithm,
clearly supporting the optimality of this latter method. Simi-
larly for the throughput statistic, the search algorithm is supe-
rior to Back-Off-N across the entire memory range. Efficiency
is slightly better for the Back-Off-N scheme however, as it is
prone to suspend packets more than the search algorithm.

d) Numerical Evaluation of Class 1 System Perfor-
mance.: For a Class 1 system, the values in Figs. 4-6 can
be explicitly computed using (25) and (28) as follows: Since
we have chosen g = b = (μ+ 1)/2, for μ < 0.36 the system
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Fig. 6. Cost vs. channel memory. For the Class 1 system (μ < 0.36, refer
to Fig. 3), average cost = 3.67 (see (34)).

is in Class 1 (see Fig. 3) and p1 > P ∗
1 . Thus, from Corollary

1, the optimal policy is persistent retransmission. From (28),
M(π1) = 1.22. Considering also the failed transmission at
k = 0 which initiates the controller at each new session,
the expected number of total transmissions required for a
successful transmission of a packet in any one session is
1 +M(π) = 2.22. Therefore, as is verified in Figs. 4-5,

Class 1 efficiency = Class 1 throughput = 1/2.22 = 0.45
(33)

The average cost incurred =
P (controller starts to operate)(1 + M(π1))c1. In steady
state, P (channel = good) = P (channel = bad) = 0.5,
since g = b. Thus,

P (controller starts to operate)
= P (yk = NAK|sk = good)P (sk = good)
+ P (yk = NAK|sk = bad)P (sk = bad)

= Pe × 0.5 + 1 × 0.5 = 0.55

Hence the average cost for Class 1 (μ < 0.36) persistent
retransmission, as verified in Fig. 6, is

P (controller starts to operate) × (1 +M(π1)) × c1 = 3.67
(34)

VII. CONCLUSION

The ARQ transmission control problem was formulated as
an optimal search problem for a Markovian target which is
an instance of a partially observed Markov decision process
(POMDP). While in general POMDPs are computationally
intractable, due to the special structure of ARQ transmission
problem, we derived optimal threshold policies for transmis-
sion and suspension depending on the predicted state of a
two-state Gilbert Elliott channel. We showed that depending
on the system parameters {b, g, c0, c1, Pe}, there are only three
classes of systems – each exhibiting a threshold policy. The
resulting policies are computationally efficient to implement

and are shown in Sec.VI to outperform non-optimal heuristic
control algorithms.

Apart from the threshold policies derived in this paper, there
is one other instance of a POMDP that leads to computation-
ally tractable optimal policies – namely, multiarmed bandit
POMDPs. We refer the reader to [23] for details of multiarmed
POMDPs. It is of interest to exploit the results in [23] to
develop efficient cross-layer scheduling algorithms in wireless
networks.

REFERENCES

[1] S. Wicker, Error Control Systems for Digital Communication and
Storage. Upper Saddle River, NJ: Prentice Hall, 1995.

[2] V. Krishnamurthy, “Algorithms for optimal scheduling and management
of hidden markov model sensors,” IEEE Trans. Signal Processing,
vol. 50, pp. 1382–1397, June 2002.

[3] A. Cassandra, M. Littman, and N. Zhang, “Incremental pruning: A sim-
ple fast exact method for partially observed Markov decision processes,”
Proc. 13th Annual Conference on Uncertainty in Arficial Intelligence,
1997.

[4] L. Stone, “What’s happened in search theory since the 1975 Lanchester
prize,” Operations Research, vol. 37, pp. 501-506, May-June 1989.

[5] S. Ross, Introduction to Stochastic Dynamic Programming. San Diego:
Academic Press, 1983.

[6] I. MacPhee and B. Jordan, “Optimal search for a moving target,”
Probability in the Engineering and Information Sciences, vol. 9, pp. 159-
182, 1995.

[7] S. Singh and V. Krishnamurthy, “The optimal search for a Markovian
target when the search path is constrained: the infinite horizon case,”
IEEE Trans. Automat. Contr., vol. 48, pp. 487-492, Mar. 2003.

[8] M. Zorzi and R. Rao, “On the statistics of block errors in data
transmission over fading channels,” IEEE Trans. Commun., vol. 45,
pp. 660-667, June 1997.

[9] M. Zorzi and R. Rao, “Error control and energy consumption in
communications for nomadic computing,” IEEE Trans. Comput., vol. 46,
pp. 279-289, 1997.

[10] M. Zorzi, R. Rao, and L. Milstein, “Error statistics in data transmission
over fading channels,” IEEE Trans. Commun., vol. 46, pp. 1468-1477,
Nov. 1998.

[11] J. Cavers, “An analysis of pilot-symbol assisted modulation for Rayleigh
fading channels,” IEEE Trans. Veh. Technol., vol. 40, pp. 686-693, Nov.
1991.

[12] P. Spasojevic and C. Georghiades, “Complementary sequences for ISI
channel estimation,” IEEE Trans. Inform. Theory, vol. 3, pp. 1145-1152,
Mar. 2001.

[13] L. Tong and S. Perreau, “Multichannel blind identification: From sub-
space to maximum likelihood methods,” Proc. IEEE, vol. 86, no. 10,
pp. 1951-1968, 1998.

[14] H. Wang and N. Mandayam, “Opportunistic file tranfer over a fading
channel under energy and delay constraints,” IEEE Trans. Commun.,
vol. 53, no. 4, pp. 632-644, Apr. 2005.

[15] G. Koole, Z. Liu, and R. Righter, “Optimal transmission policies for
noisy channels,” Operations Research, vol. 49, pp. 892-899, Nov.-Dec.
2001.

[16] D. Zhang and K. M. Wasserman, “Energy efficient data communica-
tion over fading channels,” Proc. IEEE Wireless Communcations and
Networking Conference, pp. 986-991, 2000.

[17] M. Zorzi, R. R. Rao, and L. B. Milstein, “On the accuracy of a first-
order Markov model for data transmission on fading channels,” Prof.
IEEE Universal Pers. Commun. Conf., pp. 211-215, 1995.

[18] S. Pollock, “A simple model of search for a moving target,” Operations
Research, vol. 18, pp. 893-903, 1970.

[19] D. Bertsekas, Dynamic Programming and Optimal Control, vols. 1 and
2. Belmont, MA: Athena Scientific, 1995.

[20] W. Lovejoy, “A survey of algorithmic methods for partially observed
Markov decision processes,” Annals of Operations Research, vol. 28,
pp. 47-66, 1991.

[21] A. Cassandra, “Tony’s POMDP page.” Available:
http://www.cs.brown.edu/research/ai/pomdp/index.html.

[22] W. Lovejoy, “Computationally feasible bounds for partially observed
Markov decision processes,” Operations Research, vol. 39, pp. 162-175,
Jan.-Feb. 1991.



404 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 5, NO. 2, FEBRUARY 2006

[23] V. Krishnamurthy, “Emission management for low probability intercept
sensors in network centric warfare,” IEEE Trans. Aerosp. Electron. Syst.,
vol. 41, issue 1, pp. 133-151, Jan. 2005.

APPENDIX

PROOF OF THEOREM 2

For notational convenience denote e1 = [1, 1, 0]. Then,

P (π2k+1 = eT |π2k−1 = π) = P (π2k−1 = eT |π2k−1 = π)
+ P (π2k = eT , π2k−1 �= eT |π2k−1 = π)
+ P (π2k+1 = eT , π2k �= eT , π2k−1 �= eT |π2k−1 = π)
= π(3) + e1Q

Tr(ACK)π

+ e1Q
Tr(ACK)RNAK′

QTr(NAK)π (35)

Expanding (35) results in

P (π2k+1 = eT |π2k−1 = π)

= π(3) + (1 − Pe)
(
(1 + Peg)π(1) + (1 − b)π(2)

)
≥ π(3) + (1 − Pe)(1 − b)

(
π(1) + π(2)

)
≥ α

where the first inequality follows from the fact that (1+Peg) >
(1− b), and the second from the definition of α (23), and (9),
since either (π(1)+π(2)) = 1 and π(3) = 0, or π = [0, 0, 1]′.

PROOF OF THEOREM 3

To show (25) it is convenient to work with the following
equivalent definition of M(πn):

M(πn) =
∞∑
k=n

(k+ 1− n)P (yk = ACK, yk−1 = NAK, . . . ,

yn = NAK|πn) (36)

The equality is explained as follows. With the search
problem commencing at time n, P (yk = ACK, yk−1 =
NAK, . . . , yn = NAK|πn) represents the probability that the
object is found in the (k + 1 − n)th search, i.e., an ACK is
received for the first time. Similar to the derivation of (8) via
Bayes’ rule it readily follows by summing over all possible
realizations of (xk−1, . . . , xn) that

P (yk = ACK, xk, yk−1 = NAK, . . . , yn = NAK|πn)
= QTr(ACK)(RNAK′

QTr(NAK))k−1πn.

Summing over the possible outcomes xk = {good, bad}
(clearly xk = T is impossible since yk−1 = NAK) is
equivalent to pre-multiplying the LHS by

[
1 1 0

]
. Then

subsitituting this expression into (36) yields (25).
To simplify notation, in the remainder of the proof we

consider n = 1. (Dealing with n > 1 merely involves a time
shift.) Note that from (24), because the expected value of an
indicator variable is a probability, M(π1) =

∑∞
k=1 P (πk �=

eT |π1). Because of the Markovian transition structure of πk
in (8),

P (π2k+1 �= eT |π1)

=
∫
π �=eT

P (π2k+1 �= eT |π2k−1 = π)

pπ2k−1|π1(π2k−1 = π|π1)dπ

where pπ2k−1|π1(·|π1) denotes the conditional density of
π2k−1 given π1. As shown in Lemma 2, for any k, P (π2k+1 �=
eT |π2k−1) ≤ (1 − α). Thus

P (π2k+1 �= eT |π1) ≤ (1 − α)P (π2k−1 �= eT |π1) ≤ (1 − α)k

which implies that

M(π1) =
∞∑
k=1

P (πk �= eT |π1)

= P (π1 �= eT ) +
∞∑
k=1

[P (π2k �= eT |π1) + P (π2k+1 �= eT |π1)]

≤ 2
∞∑
k=1

(1 − α)k = 2/α

DERIVATION OF THE NORM BOUND (27)

The expected number of retransmissions, M(πn), is finite,
and therefore from (25):

M(πn) =∑∞
k=1 k

[
1 1 0

]
QTr(ACK)

(
RNAK′

QTr(NAK)
)k−1

πn (37)

=
∣∣∣∣∣∣∣∣ ∞∑
k=1

k
[
(1 − Pe) 0 0

]
Ak−1

NAK π

∣∣∣∣∣∣∣∣
2

(38)

≤
∞∑
k=1

k (1 − Pe)
∣∣∣∣∣∣ Ak−1

NAK π
∣∣∣∣∣∣

2
(39)

≤
∞∑
k=1

k (1 − Pe)
∣∣∣∣∣∣ANAK

∣∣∣∣∣∣k−1

2
||π||2 (40)

where ANAK
�
= RNAK′

QTr(NAK), and ‖ANAK‖2 denotes the l2
induced norm of the matrix ANAK, i.e., the maximum singular
value σmax of ANAK. Note that the first inequality above
follows from the triangle inequality and the second inequality
from the sub-multiplicative property of matrix induced norms.
Substitution of the l2 norm, σmax, gives

M(πn) ≤
∞∑
k=1

k (1 − Pe) σk−1
max

√
π(1)2 + π(2)2 (41)

which straightfowardly results in the bound (27) upon recog-
nizing the geometric sequence derivative in (41).
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