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OFDM Channel
Block-sparsity

Sparse Bayesian Learning

—— Channel Realization
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Figure: OFDM channel

@ h e CH*': Sampled from h[t] = g;[t] * h[t] = g/[t], where
h(t]: Sparse, g;[f] and g,[{]: baseband transmit and
receive filters



Block Sparsity

OFDM Channel

Block-sparsity
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BSBL: M€R
hy ~ N(0,v1lm)

SBL:M =1

@ SBL:h(1) ~ CN(0,7(1))
@ Block SBL: [h(1),...,h(B)] ~ CN(0,~v(1))

hg e RM

hg ~ N(0,v8lm)




OFDM Channel
Block-sparsity

Why use the notion of Block-sparsity

@ Model Accuracy: Underwater acoustic channels (UWA)',
Ultra wideband channels (UWB) (Saleh-Valenzuela (S-V)
model)

@ Complexity

o v € R®*is the vector to be estimated (in SBL v € R:*")

@ Can we devise techniques that exploit the decrease in
problem dimension?

Clustered Adaptation for Estimation of Time-Varying Underwater Acoustic
Channels, Z. Wang, S. Zhou, J. C. Preisig, K. R. Pattipati, and P. Willett, IEEE
Trans. on Sig. Proc., Vol. 60, No. 6, June 2012
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Time Varying SISO-OFDM Channels

Parallel Cluster-SBL Algorithm

Hidden variables

(a) with hidden variable  (b) no hidden variable




Algoriimgbstivation Parallel Cluster-SBL Algorithm

Can we use the same trick?
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(YEITAIE (IERELE Parallel Cluster-SBL Algorithm

EM Algorithm

EM algorithm for estimating ~, as follows:

E-step : Q (v17") = Eypyyollog (Y.t hi )

M-step : v*1) = argmax Q (7|7(’)> .
"/GR?M

p(t. hly; v(7) = p(h[t,y; v()p(tly; +()
= p(h[t;+?) p(tly; v").
E

hit~ (") Eyyin(n)



(YEITAIE (IERELE Parallel Cluster-SBL Algorithm

Finding the posterior

To compute Q(v|v("): compute posterior distribution
p(hit;~(")
@ Likelihood: p(tm|hm) = N(®mhm, Bmo?ly) for1 <m< M
@ Prior p(hpm;v) = N(0,T), I = diag(~)



(YEITAIE (IERELE Parallel Cluster-SBL Algorithm

To compute p(tly; v(")
@ DefineH=1y® Iy
@ Hence,y = Ht
We obtain p(tly; v(7) = N (¢, 3¢), where

pt=(R+ ®gMg®L)H (HR + ®5Mp® )H )y
¥ =(R+®glg®L) — (R+ Pglg®L)HT
(HR + ®5Mg®L)HT) " 'H(R + 5P L).

o &g c RVMxBM i g block diagonal matrix with &4, ..., &y
along the diagonal

@ [g=B®TI,wherel =diag(v)
@ R is a diagonal matrix: mth diagonal entry R, = ﬁmale



(YEITAIE (IERELE Parallel Cluster-SBL Algorithm

M-step
the update for ~ is obtained as follows:

Y = argmaxEy .., [log p(t, h; 7)]
YERY Bx1

hFh

= argmax(¢’ — Eyy. 0 Epj.[—£— + 3109 [T5]])

Bx1
7€R+

M
A = argmin(c’ + ¥log|r| + 5 > Tr(r'Sp,,)
7€R§X1 m=1

)
+Tr (r—1 Zha S ey ) )

M
)
A1) Z diag (S, + Zntagrietm ),
m:



Algorithm: Derivati
PR (AT Parallel Cluster-SBL Algorithm

B-SBL

E-step: Q (’Yl|’)’/(r) ) = By y.ollog ply. hiv)]

r+1

M-step : 7" = argmax Q (,Wh/(r)) .

Lx1
YERY



Complexity

Complexity

Complexity of BSBL:
@ Inversion complexity: O(N?)
@ Multiplication complexity: O(N?L)
Complexity of P-CSBL:
@ Inversion complexity: O(N?)
@ Multiplication complexity: O(N2M) or O(NBL)?



Parallel Implementation

Complexity
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Time Varying SISO-OFDM Channels

@ Time varying channel: First order AR model
@ Use Kalman based tracking and smoothing
@ Can be implemented as M parallel Kalman filters
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