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Quaternion

Quaternions are generally represented in the form:

H = {a + bi + cj + dk : a, b, c , d ∈ R}

i2 = j2 = k2 = ijk = −1
x 1 i j k
1 1 i j k
i i −1 k −j
j j −k −1 i
k k j −i −1


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Quaternion ring

a = a0 + a1i+ a2j+ a3k ∈ H and b = b0 + b1i+ b2j+ b3k ∈ H
a + b = (a0 + b0) + (a1 + b1)i + (a2 + b2)j + (a3 + b3)k ∈ H
where addition of the real components ai + bi is the usual
addition in R.
addition in H is associative - it is easy to show that
(a + b) + c = a + (b + c) for all a, b, c ∈ H, using the fact
that (ai + bi ) + ci = ai + (bi + ci ) for all ai , bi , ci ∈ R,
H has an additive identity, namely the real number
0 = 0 + 0i + 0j + 0k,
every element of H has an additive inverse - if
a = a0 + a1i + a2j + a3k ∈ H then
−a = (−a0) + (−a1)i+ (−a2)j+ (−a3)k is another quaternion
(as all elements of R have negatives in R ) and aa = 0,
since addition is commutative in R , it is also commutative in
H.
This all shows that the quaternions form an abelian group wrt
addition.
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Multiplication

ab = (a0b0−a1b1−a2b2−a3b3)+(a0b1+a1b0+a2b3−a3b2)i+
(a0b2 + a0b0 + a1b3 − a3b1)j + (a0b3 + a3b0 + a1b2 − a2b1)k

multiplication in H is associative, which follows from the fact
that the assoc and distributive laws hold in R,

H has a multiplicative identity, namely the real number
1 = 1 + 0i + 0j + 0k,

the left and right distributive laws hold in H, which follows
from the fact that the associative and distributive laws hold in
R.

The real quaternions form a unital ring wrt addition and
multiplication as defined above.
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Division ring

Definition

q = q0 + q1i + q2j + q3k ∈ H, define

|q| =
√

q20 + q21 + q22 + q23

Definition

q = q0 + q1i + q2j + q3k ∈ H, define

q = q0 − q1i− q2j− q3k

qq = |q|2
q−1 = q

|q|2 , where q 6= 0

The ring of real quaternions is a division ring.
(Recall that a division ring is a unital ring in which every
element has a multiplicative inverse. It is not necessarily also
a commutative ring. A division ring that is commutative is
simply a field.)
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Quaternion Hilbert Space

Definition

Let H be a right H- module. A map

〈.|.〉 : H × H → H

satisfying:

If u ∈ H, then 〈u|u〉 = 0 =⇒ u = 0

〈u|v + w · q〉 = 〈u|v〉+ 〈u|w〉 · q, for all u, v ∈ H and q ∈ H
〈u|v〉 = 〈v |u〉, for all u, v ∈ H,

is called an inner product on H. If we define ‖u‖2 = 〈u|u〉 , for all
u ∈ H, then ‖‖ is a norm on H and is called the norm induced by
〈.|.〉 . If (H, ‖‖) is complete space then it is called a right
quaternionic Hilbert space.
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Quaternion to complex

q = q0 + q1i + q2j + q3k ∈ H = (q0 + q1i) + (q2 + q3i) · j.
Let H be seperable right quaternionic Hilbert space (If H has
a countable dense subset then H is called seperable.)

Let A ∈Mm×M(H) with m ≤ M be a frame and Ax = y be a
quaternion linear system.

A = A1 + A2 · j, where A1,A2 ∈ Cm×M , x = x1 + x2 · j ∈ HM ,
where x1, x2 ∈ CM , and y = y1 + y2 · j ∈ Hm, where
y1, y2 ∈ Cm,

Ax = y is equivalent to

χA

[
x1
−x2

]
=

[
y1
−y2

]
,

where χA =

[
A1 A2

−A2 A1

]
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Optimization problem

Definition

Let x = (x1i + x2i · j)Mi=1 ∈ HM . Define

‖x‖p =

( M∑
i=1

|(x1i + x2i · j)|p
) 1

p

, p = 1, 2.

Pp : min
x
‖x‖p subject to Ax = y .

Pp : min x1
−x2


‖
[
x1
−x2

]
‖p subject to χA

[
x1
−x2

]
=

[
y1
−y2

]
.

9 / 15



Least square problem

If A+ be such that AA+(y1 + y2 · j) = y1 + y2 · j then

χAχA+

(
y1
−y2

)
= χAA+

(
y1
−y2

)
= AA+(y1 + y2 · j) = y1 + y2 · j.

=⇒ (χA)+ = χA+

we are using complex result to extend it to quaternion case.
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Compressed sensing for quaternion signals

P0 : min
x
‖x‖0 subject to Ax = y .

P1 : min
x
‖x‖1 subject to Ax = y .

equivalent to

P1 : min x1
−x2


‖
[
x1
−x2

]
‖1 subject to χA

[
x1
−x2

]
=

[
y1
−y2

]
.

If A satisfies (2k , δ) RIP then P1 provides P0 solution.
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δk ∈ (0, 1), k− sparse signals X =

(
x1
x2

)
(1− δk) ‖X‖2C ≤ ‖χAX‖2 ≤ (1 + δk) ‖X‖2C

‖χA

(
x1
−x2

)
‖ = ‖A(x1 + x2 · j)‖, for all

(
x1
−x2

)
∈ Cn ⊕ Cn.

=⇒
‖χA‖ = ‖A‖.

‖x1 + x2 · j‖ = ‖
(

x1
−x2

)
‖

(1−δk) ‖x1−x2·j‖2Q ≤ ‖A(x1−x2·j)‖2 ≤ (1+δk) ‖x1−x2·j‖2Q

χA - (2k , δ)−RIP =⇒ A - (k , δ)−RIP

A - (k , δ)−RIP =⇒ χA - (k , δ)−RIP
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In literature l1 minimization problem is solved through
second-order cone programming.

One can approach through solving the corresponding complex
system of equations.

OMP for quaternions
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