Group Discussion Compressed Sensing for Quaternion Signal

Pradip Sasmal

Indian Institute of Science, Bangalore

July 6, 2018

- Introduction to Quaternion
- Quaternion Hilbert Space
- Least square problem
- Compressed sensing for Quaternion Signals

• Quaternions are generally represented in the form:

$$\mathbb{H} = \{ \mathbf{a} + b\mathbf{i} + c\mathbf{j} + d\mathbf{k} : \mathbf{a}, b, c, d \in \mathbb{R} \}$$

• $\mathbf{i}^2 = \mathbf{j}^2 = \mathbf{k}^2 = \mathbf{i}\mathbf{j}\mathbf{k} = -1$

$$\begin{bmatrix} x & 1 & \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 1 & \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \mathbf{i} & \mathbf{i} & -1 & \mathbf{k} & -\mathbf{j} \\ \mathbf{j} & \mathbf{j} & -\mathbf{k} & -1 & \mathbf{i} \\ \mathbf{k} & \mathbf{k} & \mathbf{j} & -\mathbf{i} & -1 \end{bmatrix}$$

Quaternion ring

- $a = a_0 + a_1\mathbf{i} + a_2\mathbf{j} + a_3\mathbf{k} \in \mathbb{H}$ and $b = b_0 + b_1\mathbf{i} + b_2\mathbf{j} + b_3\mathbf{k} \in \mathbb{H}$ $a + b = (a_0 + b_0) + (a_1 + b_1)\mathbf{i} + (a_2 + b_2)\mathbf{j} + (a_3 + b_3)\mathbf{k} \in \mathbb{H}$ where addition of the real components $a_i + b_i$ is the usual addition in \mathbb{R} .
- addition in \mathbb{H} is associative it is easy to show that (a+b)+c = a+(b+c) for all $a, b, c \in \mathbb{H}$, using the fact that $(a_i+b_i)+c_i = a_i+(b_i+c_i)$ for all $a_i, b_i, c_i \in R$,
- ℍ has an additive identity, namely the real number
 0 = 0 + 0i + 0j + 0k,
- $\bullet\,$ every element of $\mathbb H$ has an additive inverse if

 $a = a_0 + a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k} \in \mathbb{H}$ then $-a = (-a_0) + (-a_1)\mathbf{i} + (-a_2)\mathbf{j} + (-a_3)\mathbf{k}$ is another quaternion (as all elements of \mathbb{R} have negatives in \mathbb{R}) and aa = 0,

- \bullet since addition is commutative in $\mathbb R$, it is also commutative in $\mathbb H.$
- This all shows that the quaternions form an abelian group wrt addition.

Multiplication

- $ab = (a_0b_0 a_1b_1 a_2b_2 a_3b_3) + (a_0b_1 + a_1b_0 + a_2b_3 a_3b_2)\mathbf{i} + (a_0b_2 + a_0b_0 + a_1b_3 a_3b_1)\mathbf{j} + (a_0b_3 + a_3b_0 + a_1b_2 a_2b_1)\mathbf{k}$
- multiplication in H is associative, which follows from the fact that the assoc and distributive laws hold in \mathbb{R} ,
- \mathbb{H} has a multiplicative identity, namely the real number $1 = 1 + 0\mathbf{i} + 0\mathbf{j} + 0\mathbf{k}$,
- the left and right distributive laws hold in \mathbb{H} , which follows from the fact that the associative and distributive laws hold in \mathbb{R} .
- The real quaternions form a unital ring wrt addition and multiplication as defined above.

Division ring

Definition

 $q = q_0 + q_1 \mathbf{i} + q_2 \mathbf{j} + q_3 \mathbf{k} \in \mathbb{H}$, define

$$|q| = \sqrt{q_0^2 + q_1^2 + q_2^2 + q_3^2}$$

Definition

$$q = q_0 + q_1 \mathbf{i} + q_2 \mathbf{j} + q_3 \mathbf{k} \in \mathbb{H}$$
, define

$$\overline{q} = q_0 - q_1 \mathbf{i} - q_2 \mathbf{j} - q_3 \mathbf{k}$$

•
$$q\overline{q} = |q|^2$$

•
$$q^{-1} = rac{q}{|q|^2}$$
, where $q
eq 0$

 The ring of real quaternions is a division ring. (Recall that a division ring is a unital ring in which every element has a multiplicative inverse. It is not necessarily also a commutative ring. A division ring that is commutative is simply a field.)

Definition

Let H be a right \mathbb{H} - module. A map

$$\langle . | . \rangle : H \times H \to \mathbb{H}$$

satisfying:

• If
$$u \in H$$
, then $\langle u | u
angle = 0 \implies u = 0$

•
$$\langle u|v+w\cdot q\rangle = \langle u|v\rangle + \langle u|w\rangle \cdot q$$
, for all $u,v\in H$ and $q\in\mathbb{H}$

•
$$\langle u|v\rangle = \overline{\langle v|u\rangle}$$
, for all $u, v \in H$,

is called an inner product on *H*. If we define $||u||^2 = \langle u|u \rangle$, for all $u \in H$, then |||| is a norm on *H* and is called the norm induced by $\langle .|. \rangle$. If (H, ||||) is complete space then it is called a right quaternionic Hilbert space.

Quaternion to complex

- $q = q_0 + q_1\mathbf{i} + q_2\mathbf{j} + q_3\mathbf{k} \in \mathbb{H} = (q_0 + q_1\mathbf{i}) + (q_2 + q_3\mathbf{i}) \cdot \mathbf{j}.$
- Let *H* be seperable right quaternionic Hilbert space (If *H* has a countable dense subset then *H* is called seperable.)
- Let $A \in \mathbb{M}_{m \times M}(\mathbb{H})$ with $m \leq M$ be a frame and Ax = y be a quaternion linear system.
- $A = A_1 + A_2 \cdot \mathbf{j}$, where $A_1, A_2 \in \mathbb{C}^{m \times M}$, $x = x_1 + x_2 \cdot \mathbf{j} \in \mathbb{H}^M$, where $x_1, x_2 \in \mathbb{C}^M$, and $y = y_1 + y_2 \cdot \mathbf{j} \in \mathbb{H}^m$, where $y_1, y_2 \in \mathbb{C}^m$,
- Ax = y is equivalent to

$$\chi_{A} \begin{bmatrix} x_{1} \\ -\overline{x}_{2} \end{bmatrix} = \begin{bmatrix} y_{1} \\ -\overline{y}_{2} \end{bmatrix},$$

where
$$\chi_A = \begin{bmatrix} A_1 & A_2 \\ -\overline{A}_2 & \overline{A}_1 \end{bmatrix}$$

Optimization problem

Definition

Let
$$x = (x_{1i} + x_{2i} \cdot \mathbf{j})_{i=1}^M \in \mathbb{H}^M$$
. Define

$$\|x\|_{p} = \left(\sum_{i=1}^{M} |(x_{1i} + x_{2i} \cdot \mathbf{j})|^{p}\right)^{\frac{1}{p}}, \quad p = 1, 2.$$

$$P_p: \min_x ||x||_p$$
 subject to $Ax = y$.

$$P_{\rho}: \min_{ \begin{bmatrix} x_1 \\ -\overline{x}_2 \end{bmatrix}} \| \begin{bmatrix} x_1 \\ -\overline{x}_2 \end{bmatrix} \|_{\rho} \text{ subject to } \chi_{A} \begin{bmatrix} x_1 \\ -\overline{x}_2 \end{bmatrix} = \begin{bmatrix} y_1 \\ -\overline{y}_2 \end{bmatrix}.$$

If
$$A^+$$
 be such that $AA^+(y_1 + y_2 \cdot \mathbf{j}) = y_1 + y_2 \cdot \mathbf{j}$ then
 $\chi_A \chi_{A^+} \begin{pmatrix} y_1 \\ -\overline{y}_2 \end{pmatrix} = \chi_{AA^+} \begin{pmatrix} y_1 \\ -\overline{y}_2 \end{pmatrix} = AA^+(y_1 + y_2 \cdot \mathbf{j}) = y_1 + y_2 \cdot \mathbf{j}.$
 $\implies (\chi_A)^+ = \chi_{A^+}$

we are using complex result to extend it to quaternion case.

Compressed sensing for quaternion signals

$$P_0: \min_x ||x||_0$$
 subject to $Ax = y$.

$$P_1: \min_x ||x||_1$$
 subject to $Ax = y$.

equivalent to

$$P_1: \min_{\begin{bmatrix} x_1 \\ -\overline{x}_2 \end{bmatrix}} \| \begin{bmatrix} x_1 \\ -\overline{x}_2 \end{bmatrix} \|_1 \text{ subject to } \chi_A \begin{bmatrix} x_1 \\ -\overline{x}_2 \end{bmatrix} = \begin{bmatrix} y_1 \\ -\overline{y}_2 \end{bmatrix}.$$

• If A satisfies $(2k, \delta)$ RIP then P_1 provides P_0 solution.

•
$$\delta_k \in (0,1), k-$$
 sparse signals $X = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$
 $(1 - \delta_k) \|X\|_{\mathbb{C}}^2 \leq \|\chi_A X\|^2 \leq (1 + \delta_k) \|X\|_{\mathbb{C}}^2$
• $\|\chi_A \begin{pmatrix} x_1 \\ -\bar{x}_2 \end{pmatrix}\| = \|A(x_1 + x_2 \cdot \mathbf{j})\|, \text{ for all } \begin{pmatrix} x_1 \\ -\bar{x}_2 \end{pmatrix} \in \mathbb{C}^n \oplus \mathbb{C}^n.$
 $\Rightarrow \|\chi_A\| = \|A\|.$
• $\|x_1 + x_2 \cdot \mathbf{j}\| = \|\begin{pmatrix} x_1 \\ -\bar{x}_2 \end{pmatrix}\|$
 $(1 - \delta_k) \|x_1 - \bar{x}_2 \cdot \mathbf{j}\|_{\mathbb{Q}}^2 \leq \|A(x_1 - \bar{x}_2 \cdot \mathbf{j})\|^2 \leq (1 + \delta_k) \|x_1 - \bar{x}_2 \cdot \mathbf{j}\|_{\mathbb{Q}}^2$
• $\chi_A - (2k, \delta) - \text{RIP} \Rightarrow A - (k, \delta) - \text{RIP}$
• $A - (k, \delta) - \text{RIP} \Rightarrow \chi_A - (k, \delta) - \text{RIP}$

- In literature *l*₁ minimization problem is solved through second-order cone programming.
- One can approach through solving the corresponding complex system of equations.
- OMP for quaternions

- R.Ghiloni, V. Moretti and A. Perotti, Continuous slice functional calculus in quaternionic Hilbert spaces, Rev.Math.Phys.25 (2013).
- Y. Feng, Y. Cao and H. Wang, Diagonalization of bounded linear operators on separable quaternionic Hilbert space, J. Math. Phys. **53** (2012).
- N Gomes, S Hartmann and U Kahler, "Compressed Sensing for Quaternionic Signals," Complex Analysis and Operator Theory, 2016.

Thank You