Group Discussion
 Compressed Sensing for Quaternion Signal

Pradip Sasmal

Indian Institute of Science, Bangalore

$$
\text { July 6, } 2018
$$

Organization

- Introduction to Quaternion
- Quaternion Hilbert Space
- Least square problem
- Compressed sensing for Quaternion Signals

Quaternion

- Quaternions are generally represented in the form:

$$
\mathbb{H}=\{a+b \mathbf{i}+c \mathbf{j}+d \mathbf{k}: a, b, c, d \in \mathbb{R}\}
$$

- $\mathbf{i}^{2}=\mathbf{j}^{2}=\mathbf{k}^{2}=\mathbf{i j k}=-1$
$\left[\begin{array}{ccccc}x & 1 & \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 1 & \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \mathbf{i} & \mathbf{i} & -1 & \mathbf{k} & -\mathbf{j} \\ \mathbf{j} & \mathbf{j} & -\mathbf{k} & -1 & \mathbf{i} \\ \mathbf{k} & \mathbf{k} & \mathbf{j} & -\mathbf{i} & -1\end{array}\right]$

Quaternion ring

- $a=a_{0}+a_{1} \mathbf{i}+a_{2} \mathbf{j}+a_{3} \mathbf{k} \in \mathbb{H}$ and $b=b_{0}+b_{1} \mathbf{i}+b_{2} \mathbf{j}+b_{3} \mathbf{k} \in \mathbb{H}$ $a+b=\left(a_{0}+b_{0}\right)+\left(a_{1}+b_{1}\right) \mathbf{i}+\left(a_{2}+b_{2}\right) \mathbf{j}+\left(a_{3}+b_{3}\right) \mathbf{k} \in \mathbb{H}$ where addition of the real components $a_{i}+b_{i}$ is the usual addition in \mathbb{R}.
- addition in \mathbb{H} is associative - it is easy to show that $(a+b)+c=a+(b+c)$ for all $a, b, c \in \mathbb{H}$, using the fact that $\left(a_{i}+b_{i}\right)+c_{i}=a_{i}+\left(b_{i}+c_{i}\right)$ for all $a_{i}, b_{i}, c_{i} \in R$,
- \mathbb{H} has an additive identity, namely the real number $0=0+0 \mathbf{i}+0 \mathbf{j}+0 \mathbf{k}$,
- every element of \mathbb{H} has an additive inverse - if $a=a_{0}+a_{1} \mathbf{i}+a_{2} \mathbf{j}+a_{3} \mathbf{k} \in \mathbb{H}$ then $-a=\left(-a_{0}\right)+\left(-a_{1}\right) \mathbf{i}+\left(-a_{2}\right) \mathbf{j}+\left(-a_{3}\right) \mathbf{k}$ is another quaternion (as all elements of \mathbb{R} have negatives in \mathbb{R}) and $a a=0$,
- since addition is commutative in \mathbb{R}, it is also commutative in \mathbb{H}.
- This all shows that the quaternions form an abelian group wrt addition.

Multiplication

- $a b=\left(a_{0} b_{0}-a_{1} b_{1}-a_{2} b_{2}-a_{3} b_{3}\right)+\left(a_{0} b_{1}+a_{1} b_{0}+a_{2} b_{3}-a_{3} b_{2}\right) \mathbf{i}+$ $\left(a_{0} b_{2}+a_{0} b_{0}+a_{1} b_{3}-a_{3} b_{1}\right) \mathbf{j}+\left(a_{0} b_{3}+a_{3} b_{0}+a_{1} b_{2}-a_{2} b_{1}\right) \mathbf{k}$
- multiplication in H is associative, which follows from the fact that the assoc and distributive laws hold in \mathbb{R},
- \mathbb{H} has a multiplicative identity, namely the real number $1=1+0 \mathbf{i}+0 \mathbf{j}+0 \mathbf{k}$,
- the left and right distributive laws hold in \mathbb{H}, which follows from the fact that the associative and distributive laws hold in \mathbb{R}.
- The real quaternions form a unital ring wrt addition and multiplication as defined above.

Division ring

Definition

$q=q_{0}+q_{1} \mathbf{i}+q_{2} \mathbf{j}+q_{3} \mathbf{k} \in \mathbb{H}$, define

$$
|q|=\sqrt{q_{0}^{2}+q_{1}^{2}+q_{2}^{2}+q_{3}^{2}}
$$

Definition

$q=q_{0}+q_{1} \mathbf{i}+q_{2} \mathbf{j}+q_{3} \mathbf{k} \in \mathbb{H}$, define

$$
\bar{q}=q_{0}-q_{1} \mathbf{i}-q_{2} \mathbf{j}-q_{3} \mathbf{k}
$$

- $q \bar{q}=|q|^{2}$
- $q^{-1}=\frac{\bar{q}}{|q|^{2}}$, where $q \neq 0$
- The ring of real quaternions is a division ring.
(Recall that a division ring is a unital ring in which every element has a multiplicative inverse. It is not necessarily also a commutative ring. A division ring that is commutative is simply a field.)

Quaternion Hilbert Space

Definition

Let H be a right \mathbb{H} - module. A map

$$
\langle. \mid .\rangle: H \times H \rightarrow \mathbb{H}
$$

satisfying:

- If $u \in H$, then $\langle u \mid u\rangle=0 \Longrightarrow u=0$
- $\langle u \mid v+w \cdot q\rangle=\langle u \mid v\rangle+\langle u \mid w\rangle \cdot q$, for all $u, v \in H$ and $q \in \mathbb{H}$
- $\langle u \mid v\rangle=\overline{\langle v \mid u\rangle}$, for all $u, v \in H$,
is called an inner product on H. If we define $\|u\|^{2}=\langle u \mid u\rangle$, for all $u \in H$, then $\|\|$ is a norm on H and is called the norm induced by $\langle. \mid$.$\rangle . If (H,\| \| \|)$ is complete space then it is called a right quaternionic Hilbert space.

Quaternion to complex

- $q=q_{0}+q_{1} \mathbf{i}+q_{2} \mathbf{j}+q_{3} \mathbf{k} \in \mathbb{H}=\left(q_{0}+q_{1} \mathbf{i}\right)+\left(q_{2}+q_{3} \mathbf{i}\right) \cdot \mathbf{j}$.
- Let H be seperable right quaternionic Hilbert space (If H has a countable dense subset then H is called seperable.)
- Let $A \in \mathbb{M}_{m \times M}(\mathbb{H})$ with $m \leq M$ be a frame and $A x=y$ be a quaternion linear system.
- $A=A_{1}+A_{2} \cdot \mathbf{j}$, where $A_{1}, A_{2} \in \mathbb{C}^{m \times M}, x=x_{1}+x_{2} \cdot \mathbf{j} \in \mathbb{H}^{M}$, where $x_{1}, x_{2} \in \mathbb{C}^{M}$, and $y=y_{1}+y_{2} \cdot \mathbf{j} \in \mathbb{H}^{m}$, where $y_{1}, y_{2} \in \mathbb{C}^{m}$,
- $A x=y$ is equivalent to

$$
\chi_{A}\left[\begin{array}{c}
x_{1} \\
-\bar{x}_{2}
\end{array}\right]=\left[\begin{array}{c}
y_{1} \\
-\bar{y}_{2}
\end{array}\right],
$$

where $\chi_{A}=\left[\begin{array}{cc}A_{1} & A_{2} \\ -\bar{A}_{2} & \bar{A}_{1}\end{array}\right]$

Optimization problem

Definition

Let $x=\left(x_{1 i}+x_{2 i} \cdot \mathbf{j}\right)_{i=1}^{M} \in \mathbb{H}^{M}$. Define

$$
\|x\|_{p}=\left(\sum_{i=1}^{M}\left|\left(x_{1 i}+x_{2 i} \cdot \mathbf{j}\right)\right|^{p}\right)^{\frac{1}{p}}, \quad p=1,2
$$

$P_{p}: \min _{x}\|x\|_{p}$ subject to $\quad A x=y$.
$P_{p}: \min _{\left[\begin{array}{c}x_{1} \\ -\bar{x}_{2}\end{array}\right]}\left\|\left[\begin{array}{c}x_{1} \\ -\bar{x}_{2}\end{array}\right]\right\|_{p}$ subject to $\quad \chi_{A}\left[\begin{array}{c}x_{1} \\ -\bar{x}_{2}\end{array}\right]=\left[\begin{array}{c}y_{1} \\ -\bar{y}_{2}\end{array}\right]$.

Least square problem

If A^{+}be such that $A A^{+}\left(y_{1}+y_{2} \cdot \mathbf{j}\right)=y_{1}+y_{2} \cdot \mathbf{j}$ then
$\chi_{A} \chi_{A^{+}}\binom{y_{1}}{-\bar{y}_{2}}=\chi_{A A^{+}}\binom{y_{1}}{-\bar{y}_{2}}=A A^{+}\left(y_{1}+y_{2} \cdot \mathbf{j}\right)=y_{1}+y_{2} \cdot \mathbf{j}$.
$\Longrightarrow\left(\chi_{A}\right)^{+}=\chi_{A^{+}}$
we are using complex result to extend it to quaternion case.

Compressed sensing for quaternion signals

$$
\begin{aligned}
& P_{0}: \min _{x}\|x\|_{0} \text { subject to } A x=y \\
& P_{1}: \min _{x}\|x\|_{1} \text { subject to } A x=y
\end{aligned}
$$

equivalent to

$$
P_{1}: \min _{\left[\begin{array}{c}
x_{1} \\
-\bar{x}_{2}
\end{array}\right]\left\|\left[\begin{array}{c}
x_{1} \\
-\bar{x}_{2}
\end{array}\right]\right\|_{1} \text { subject to } \quad \chi_{A}\left[\begin{array}{c}
x_{1} \\
-\bar{x}_{2}
\end{array}\right]=\left[\begin{array}{c}
y_{1} \\
-\bar{y}_{2}
\end{array}\right] . . ~ . ~}^{\text {. }}
$$

- If A satisfies $(2 k, \delta)$ RIP then P_{1} provides P_{0} solution.
- $\delta_{k} \in(0,1), k-$ sparse signals $X=\binom{x_{1}}{x_{2}}$

$$
\left(1-\delta_{k}\right)\|X\|_{\mathbb{C}}^{2} \leq\left\|\chi_{A} X\right\|^{2} \leq\left(1+\delta_{k}\right)\|X\|_{\mathbb{C}}^{2}
$$

$\left\|\chi_{A}\binom{x_{1}}{-\bar{x}_{2}}\right\|=\left\|A\left(x_{1}+x_{2} \cdot \mathbf{j}\right)\right\|$, for all $\binom{x_{1}}{-\bar{x}_{2}} \in \mathbb{C}^{n} \oplus \mathbb{C}^{n}$.

$$
\left\|\chi_{A}\right\|=\|A\| .
$$

- $\left\|x_{1}+x_{2} \cdot \mathbf{j}\right\|=\left\|\binom{x_{1}}{-\bar{x}_{2}}\right\|$
$\left(1-\delta_{k}\right)\left\|x_{1}-\bar{x}_{2} \cdot \boldsymbol{j}\right\|_{\mathbb{Q}}^{2} \leq\left\|A\left(x_{1}-\bar{x}_{2} \cdot \mathbf{j}\right)\right\|^{2} \leq\left(1+\delta_{k}\right)\left\|x_{1}-\bar{x}_{2} \cdot \mathbf{j}\right\|_{\mathbb{Q}}^{2}$
- $\chi_{A}-(2 k, \delta)-\mathrm{RIP} \Longrightarrow A-(k, \delta)-\mathrm{RIP}$
- $A-(k, \delta)-\mathrm{RIP} \Longrightarrow \chi_{A}-(k, \delta)-\mathrm{RIP}$
- In literature I_{1} minimization problem is solved through second-order cone programming.
- One can approach through solving the corresponding complex system of equations.
- OMP for quaternions

References

國 R．Ghiloni，V．Moretti and A．Perotti，Continuous slice functional calculus in quaternionic Hilbert spaces， Rev．Math．Phys． 25 （2013）．
击 Y．Feng，Y．Cao and H．Wang，Diagonalization of bounded linear operators on separable quaternionic Hilbert space，J． Math．Phys． 53 （2012）．
目 N Gomes，S Hartmann and U Kahler，＂Compressed Sensing for Quaternionic Signals，＂Complex Analysis and Operator Theory， 2016.

Thank You

