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Introduction

@ What are concentration inequalities ?
@ Different methods

@ Moment method

Exponential Moment method

Martingale methods

Entropy Methods

Talagrand’s Inequality (Induction methods)
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Introduction

@ Some simple but very important statements:

@ In along sequence of tossing a fair coin, it is likely that
head will come up nearly half of the time

@ A random variable that depends (in a smooth way) on the
influence of many independent variables (but not too much
on any of them) is essentially constant

@ A random variable that depends (in a smooth way) on the
influence of many independent variables satisfies
Chernoff-type bounds

@ Concentration inequalities make the above statements precise

@ These inequalities are in general a manifestation of the
phenomena of (especially on product
spaces)

Concentration Inequalities



Introduction

Basic Setting

@ We'll consider random variables in product spaces

@ Xq,Xy,..., X, be nindependent RVs
@ What can be said about Sp = >, X; ?

@ If each of the X is of O(1), what is the typical size of S, ?
@ Linear processing of RVs (noise), projections etc.

@ What can be said about some non-linear "well-behaved”
F(X1,X2,...,%Xn) ?
@ Norms, Output of (say) a convex optimization program ?
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Moment Method for linear functions

Moment method: We already know this ...

@ For linear combinations moment method is very natural
and useful

@ First moment method (Use Markov Inequality)

P(|Sn| > 1) ZE|><| (1)

@ Second moment method (Use Chebyshev Inequality)

P(|Sy — ESa| > 1) < t%ZVar(Xi) @)
i=1
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Moment Method for linear functions

Moment method (Contd.)

@ Second moment: some remarks ...

o Informally, size of S, = ES, + O(y/>., Var (X))

@ Do not need full independence, just pairwise uncorrelated
will suffice

@ Instead of S, if we have some other function, then
Chebyshev bound still applies as long as we can estimate
(or upper bound) mean and the variance

@ Clearly this is way off the mark ... ( )

@ Using Markov’s inequality and some book-keeping this can
be extended to k moments with k even

k
B(|Sy| > t) < 2 [ VEK/2 3)
t
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Moment Method for linear functions

Moment method (Contd.)

@ k™ moment: some remarks ...

@ Informally, S, grows as O(v'nk)
@ For higher k we get higher decay rate (still polynomial
though) ...

@ What can full independence give us ?

@ We can use the above equation for any k. Thus by
optimizing in k we are able to get exponential quadratic
decay.

P(|Sn| > t) < Cexp(—ct?/n) (4)

@ But there are better ways to see this ...
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Hoeffding and related inequalities
Chernoff Bounding Method Truncation Tricks

Chernoff Bound: We know this also ..

@ Chernoff Bounding method

eSXi
P(|X] >t) < min
(| |_ )_s>0 est

@ Chernoff bound is well suited to tackle sums of
independent RVs (Why ?)

@ First estimate EeSX and then optimize over s

@ For bounded random variables, Hoeffding’s Lemma is one
of the best known results

(5)
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Hoeffding and related inequalities
Chernoff Bounding Method Truncation Tricks

Hoeffding’s Lemma

@ Let X be a bounded scalar random variable taking values
in [a,b]. Then for any t > O:

Ee™ < e!®™* {1 + O(t?var(X)exp(O(t(b — a))))}  (6)

@ In particular, if EX = 0 then,

Eetx < eSZ(b—a)z/S (7)

@ Proof ?
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Hoeffding and related inequalities
Chernoff Bounding Method Truncation Tricks

Hoeffding’s Inequality and cousins . ..

@ (Hoeffding’s Inequality): Let X;,i =1,2,...,n be
independent RVs taking values in an interval [a; b],
respectively. Then there exist constants C, c > 0 such that

n
P(|Sh—ESn| > t) < Cexp(—ct?/o®) where o =) (bj—a;)?
i—1

o If Var(X;) is known then the above bound is little
conservative

@ Bernstein, Bennet, Chernoff’s Inequality remedy that fact by
using variance in the upper bound and also tightening the
bounds further

@ But boundedness of all the RVs is still assumed
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Hoeffding and related inequalities
Chernoff Bounding Method Truncation Tricks

Chernoff Method: Norm of a Gaussian RV

@ X ~ N(0,5?l). Concentration inequality for ||X||3 ?
@ EeslIXlz = (1 — 2s02)~"/2 (Completion of squares)
o u=E(|X][3) =no?

@ Chernoff:

(||XH2 1+t < miQ(l _ 2502)7n/2efs(1+t)ngz
s>
@ Optimize ins =t/(2(1 +t)o?), and after some calculus

P(X|2 > (1+t)u) <e P8 for 0 <t <1/2

@ This forms the basis of one of the proofs of JL-Lemma
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Hoeffding and related inequalities
Chernoff Bounding Method Truncation Tricks

Truncation Methods

@ What happens if the RVs are not bounded ? (e.g.
Gaussian, exponential etc.)

@ Sometimes above results can be extended if the tails of
RVs decay sufficiently fast
@ Spirit of the method: Divide and conquer
@ Divide: X = X<y + Xsn
@ X<y is bounded; For X.n the hope is that if X has good
decay properties then we can use simple (Union bound or
First moment method) to control P(Xsy > t)
@ Classical examples: Weak LLN; Strong LLN;
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Hoeffding and related inequalities
Chernoff Bounding Method Truncation Tricks

Hoeffding’s Inequality for Sub-Gaussian RVs

@ Sub-Gaussian RV:
P(|X| > t) < Cexp(—ct?) < Ee™ < e®’(zero mean)
@ Let X; be zero-mean, independent sub-gaussian RV. Then

P(] zn:aixi\ > 1) < Cexp(—ct?/|al?)
i=1

@ Let X be iid sub-gaussian RV. Then for sufficently large A
(independent of n) we have:

P(|Sh — ESp| > An) < Caexp(—can)

Furthermore, ca grows linearlyin Aas A — oo
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Azuma'’s Inequality
McDiarmid’s Inequality
Efron-Stein Inequality

Martingale Methods

@ Let{0,Q} = Fo C F1... C Fn = F be afinite filtration of
sub-fields of (2, F,P)

@ A sequence Y; is martingale if E(Y;;1]|F) =Y

@ Basic results of conditional expectations

X € F1, then E(X|F1) = X

E(E(X|F)) = E(X) - lterated expectations

X € F, E(XY) = E(E(XY |F)) = E(XE(Y |F))

F1 C Fa, E(E(X|F1)[F2) = E(X|F1)

Fo C F1, E(E(X|F1)|F2) = E(X|F1). Smaller sub-field

always wins !!

E(X|F,) = X and E(X|Fo) = E(X)

(2
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Azuma'’s Inequality

McDiarmid’s Inequality

. Efron-Stein Inequalit
Marllngale Methods ron ein Inequality

Concentration using Martingales

@ Let X be aRYV, then X; £ E(X|F) is a martingale
o d; = Xj — Xj_1. Ord; = (E}—if}—i—l)(X)

[~ E(d| |-7:i—l) =0

e X —E(XX)=>1",d

@ Main result: For every t > 0,

n n
P(> di > 1) <e /20" where D2 > Y [|di|%,
i=1 i=1
@ Key is to come up with decomposition such that d; of a
given function can be controlled
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Azuma'’s Inequality
McDiarmid’s Inequality

. Efron-Stein Inequalit
Marllngale Methods ron ein Inequality

Proof idea

@ Chernoff scheme is not useful since independence is no
longer available; Iterated expectations come to rescue

@ For—1<u<1,et<flgs  LoUgs
o B(E17, 1) < cosh(s]oc) < I

0 E(esXiid) = E(eSXim diE(eh| £, _q)) <
es°lldnll% /2 (g5 Ty dh)

@ lIterate over i and then optimize over s
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Azuma'’s Inequality
McDiarmid’s Inequality
Efron-Stein Inequality

Martingale Methods

Concentration of functions with bounded difference

@ Letf : R" — R has a bounded difference property

(X1, ey Xisen oy Xm) — F(Xg, - X, Xm)| < €

for all X, Xp,...,%n,X/. Let Xj fori =1,2,...,n be
independent RVs. Then

P(f — E(f) > t) < e 2/Z¢f

@ Choose F = o(Xo, X1,...,X%); Letd; = (EFi—Fi-1)(f)
@ We can prove that d;|F_; is bounded by c; and then use
Hoeffding inequality to bound >, d
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Azuma'’s Inequality
McDiarmid’s Inequality
Efron-Stein Inequality

Martingale Methods

Simple bound of variance of a function ..

@ LetZ =f(Xyg,...,X,...,Xn), Where X; are independent
o E,(Z) =S E(Z‘Xl, ce, X, Xi+1, .. ,Xn)
o Var(Z) < Y, E[(Z —EiZ)?]
@ (Efron-Stein Inequality). Let X, XJ,..., X}, be an
independent copy of above RVs. Let
Z! =f(Xq,...,X/,..., Xn). Then

Var(Z) < % .; E [(z _ zi’)z} 8)

@ Proof using Martingale difference sequence

@ Once variance is bounded, we can use Chebyshev’s
inequality

@ Another way to prove McDiarmid’s inequality
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Azuma'’s Inequality
McDiarmid’s Inequality
Efron-Stein Inequality

Martingale Methods

Martingale method: another example

@ Norm of sum of independent RVs
@ Let F be generated by Y1,Y —2,....Y;

|di| = [(EF~Fi-1)(|[S]))| (9)
= [(BAF-)(IS] - IS = Yil) (10)
< [IYill + E(IYill) (11)

@ Thus if Y; are independent, bounded RVs and let
S =>Y,Yi. Then:

(IS —E(IS])| >t) <2672 (12)
where D2 > S0 [[Y; 2.
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Azuma'’s Inequality
McDiarmid’s Inequality
Efron-Stein Inequality

Martingale Methods
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Azuma'’s Inequality
McDiarmid’s Inequality
Efron-Stein Inequality

Martingale Methods

THANK YOU
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