Continuous Time Markov Chains

Ribhu 22 August 2015

Applications

- Queuing Theory
- Can be seen as generalizations of DTMCs and Poisson processes
- Also used for modelling biological systems

Formal Definition

A continuous time stochastic process $\{X(t), t \ge 0, X(t) \in \mathbb{Z}^+\}$ is known as a continuous time Markov Chain in for all $s, t \ge 0$ and for all non negative integers i, j, x(u) $(0 \le u \le s)$

$$P\{X(t+s) = j | X(s) = i, X(u) = x(u)\}$$

= $P\{X(t+s) = j | X(s) = i\}$

Stationarity is achieved when the above is independent of *s* Can something be said about the distribution time in a state?

Properties

The time spent in a state *i* before transitioning into the next state is exponentially distributed with mean $\frac{1}{v_i}$

The transition probability P_{ij} of transitioning into state j from state i satisfies

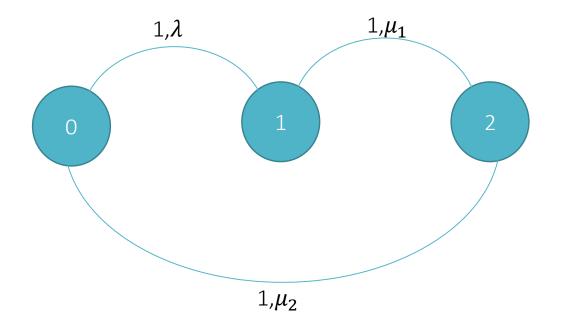
$$\sum_{j}^{P_{ii}} = 0$$

The next state is independent of the time spent in the present state. (Why?)

Example

Consider a shoe shine shop with the following rules

- a. There are two chairs with service rates μ_1 and μ_2
- b. A new customer enterswith a rate λ , only when the system is vacant The occupied chair may be used as the state of the system



Birth and Death Processes

System state represented by number of people in the system

For state *i*

- a. Arrival rate = λ_i
- b. Departure rate = μ_i
- c. Transition rate $v_i = \lambda_i + \mu_i$ (How?)
- d. $P_{i,i+1} = P\{Arrival \ before \ departure\} = \frac{\lambda_i}{\lambda_i + \mu_i}$

e.
$$P_{i,i-1} = P\{Departure \ before \ arrival\} = \frac{\mu_i}{\lambda_i + \mu_i}$$

Some Examples

- 1. The Yule Process
- 2. The Poisson Process
- 3. Linear Growth with immigration
- 4. Queueing systems with one or more servers

State-Transition Time

Let T_i denote the time that the system takes to enter state i + i1 starting from state *i*

Define

ti

$$I_{i} = \begin{cases} 1 & The system transitions to i + 1 \\ 0 & The system transitions to i - 1 \end{cases}$$

$$E[T_i|I_i = 1] = \frac{1}{\lambda_i + \mu_i}$$
 Mean Time for Transition
Mean time for transition + mean time to enter $i + 1$ from $i - 1$

State Transition Time

$$E[T_i] = \frac{1}{\lambda_i} + \frac{\mu_i}{\lambda_i} E[T_{i-1}]$$

This may be computed recursively with $E[T_0] = \frac{1}{\lambda_0}$

Mean time required for getting from state i to j $\sum_{k=i}^{j} E[T_k]$

Example : The M/M/1 queue

State Transition Time

$$E[T_i|I_i] = \frac{1}{\lambda_i + \mu_i} + (1 - I_i)(E[T_{i-1}] + E[T_i])$$

But

$$var(X) = E[var(X|Y)] + var(E[X|Y])$$

Using this,

$$var(E[T_i|I_i]) = var(I_i)(E[T_{i-1}] + E[T_i])^2$$

$$var(T_i|I_i = 1) = \frac{1}{(\lambda_i + \mu_i)^2}$$
Variance of
Transition time

$$var(T_i|I_i = 0) = \frac{1}{(\lambda_i + \mu_i)^2} + var(T_i) + var(T_{i-1})$$

State Transition Time

$$var(T_i) = \frac{1}{\lambda_i(\lambda_i + \mu_i)} + \frac{\mu_i}{\lambda_i}var(T_{i-1}) + \frac{\mu_i}{\lambda_i + \mu_i}(E[T_i] + E[T_{i-1}])^2$$

This may be computed recursively by using $var(T_0) = \frac{1}{\lambda_0^2}$

$$var(time \ to \ go \ from \ i \ to \ j) = \sum_{k=i}^{j} var(T_i)$$

Transition Probabilities

Let

$$P_{ij}(t) = P\{X(t+s) = j | X(s) = i\}$$

and

$$q_{ij} = v_i P_{ij}$$

consequently,

$$v_i = \sum_j q_{ij}$$

It may be shown that

$$P_{ij}(t+s) = \sum_{k=0}^{\infty} P_{ik}(t)P_{jk}(t)$$

and

$$\lim_{h \to 0} \frac{1 - P_{ii}(h)}{h} = v_i$$

$$\lim_{h \to 0} \frac{P_{ij}(h)}{h} = q_{ij}$$

Backward

$$P_{ij}'(t) = \sum_{k \neq i} q_{ik} P_{kj}(t) - v_i P_{ij}(t)$$

Forward

$$P'_{ij}(t) = \sum_{k \neq i} q_{kj} P_{ik}(t) - v_j P_{ij}(t)$$

Conclusions

CTMCs may be used to model queueing systems The mean time spent in a state may be computed recursively