Coverage Analysis of Cellular Networks with Imperfect Channel Knowledge

Prashant Khanduri
SPC Lab, IISC Bangalore

13th July, 2013

Outline

- Preliminaries
- Poisson Point Process (PPP)
- System Model
- Uplink Training
- Downlink Transmission
- Problem Statement
- Derivations
- Results

Poisson Point Process (PPP)

- Spatial generalisation of a Poisson Process
- Stationary: Defined over complete plane \mathbb{R}^{2}
- Definition

1. The number of points in two bounded and disjoint sets $A_{1} \in \mathbb{R}^{2}$ and $A_{2} \in \mathbb{R}^{2}$ are independent
2. The number of points in a bounded set $A \subset \mathbb{R}^{2}$ are poisson distributed with mean $\lambda|A|$

$$
\mathbb{P}(\phi(A)=n)=\exp (-\lambda|A|) \frac{(\lambda|A|)^{n}}{n!}
$$

where λ is the density of point process ϕ and $|A|$ represents the area of the bounded region

Properties of PPP

- First Contact Distance Distribution
- Probability Distribution Function (PDF)

$$
f_{R}(r)=2 \pi r \lambda \exp \left(-\pi r^{2} \lambda\right)
$$

- Thinning of PPP of density λ
- Select a point with probability p independently
- Results in two independent PPPs of density $p \lambda$ and $(1-p) \lambda$
- Slivnyak's Theorem

$$
\mathbb{P}^{!o}=\mathbb{P}
$$

Reduced palm distribution is same as PPP distribution itself.

Theorem

- Campbell's Theorem: Sums over PPP
- If ϕ is a PPP of density λ and $f(x): \mathbb{R}^{2} \rightarrow \mathbb{R}^{+}$, then

$$
\mathbb{E}\left[\sum_{x \in \phi} f(x)\right]=\lambda \int_{\mathbb{R}^{2}} f(x) d x
$$

- Probability Generating Functional (PGFL): Products over PPP
- If ϕ is a PPP of density λ and $f(x): \mathbb{R}^{2} \rightarrow[0,1]$, then

$$
\mathbb{E}\left[\prod_{x \in \phi} f(x)\right]=\exp \left(-\lambda \int_{\mathbb{R}^{2}}(1-f(x)) d x\right)
$$

System Model

- Time Division Duplex (TDD) system
- Training
- Uplink Training: Training duration is L_{τ} symbol interval
- P_{τ}, Training Power per Symbol
- L_{τ} set of orthogonal sequences
- Randomly choose sequence
- Downlink
- Base Stations (BS): PPP ϕ_{B} of density λ_{B}
- Mobile Users (MU): Independent PPP ϕ_{m} of density λ_{m}
- MU connects to the nearest BS
- BS transmits with power P_{D}
- Rayleigh Fading
- Path Loss Model: $\min \left\{1, r^{-\alpha}\right\}$

Problem Statement

- Coverage Probability: The probability that a randomly selected user can achieve a target SINR, say θ

$$
P_{c}=\mathbb{P}(S I N R>\theta)
$$

Outage Probability: Randomly selected user is in outage

$$
P_{o}=1-P_{c}=\mathbb{P}(\operatorname{SINR}<\theta)
$$

- Ergodic Capacity: Average rate achieved by typical user

$$
C=\frac{\left(L-L_{\tau}\right)}{L} \mathbb{E}[\ln (1+S I N R)]
$$

where L is the Coherence interval

Goal

- To Compute: Coverage probability $P_{c \mid r}$ conditioned over first contact distance
- Uncondition by using PDF of first contact distance (Previous Slides: First Contact Distribution)
- Study the effect of training duration and SINR threshold θ on the coverage probability
- Comparison with the perfect channel state case

Training Selection, Thinning of PPP

- Select a training sequence form a set $\left(\mathbf{t}_{\mathbf{i}}\right)$ of L_{τ} orthogonal training sequences randomly

$$
\begin{aligned}
\mathbf{t}_{\mathbf{i}}^{\mathbf{t}_{\mathbf{j}}} & =0 \text { if } i \neq j \\
& =1 \text { if } i=j
\end{aligned}
$$

for $i, j=0$ to $L_{\tau}-1$, where $\mathbf{t}_{\mathbf{i}}$ is $L_{\tau} \times 1$ training symbol vector

- Thinning: PPP ϕ_{m} is divided into two independent PPPs:
- Interferers Using Training $\mathbf{t}_{\mathbf{o}}$: PPP $\phi_{m}^{t_{o}}$ with density $\frac{\lambda_{m}}{L_{\tau}}$
- Interferers Using Training other than $\mathbf{t}_{\mathbf{0}}$: PPP $\phi_{m}^{t_{i}}$ with density $\frac{\lambda_{m}\left(L_{\tau}-1\right)}{L_{\tau}}$

Training Phase

- Assuming the uplink transmission to be interference limited
- WLOG assuming typical user selects training sequence $\mathbf{t}_{\mathbf{o}}$
- Data \mathbf{y}_{τ} received at a typical BS (Slivnyak's Theorem) located at the origin 'o'

$$
\mathbf{y}_{\tau}=\sqrt{P_{\tau} L_{\tau} l_{o u}^{2}} h_{o u} \mathbf{t}_{\mathbf{o}}+\sum_{v \in \phi_{m}^{t_{o} \backslash u}} \sqrt{P_{\tau} L_{\tau} l_{o v}^{2}} h_{o v} \mathbf{t}_{\mathbf{o}}
$$

- $h_{\text {ou }}, h_{\text {ov }} \sim \mathcal{C N}(0,1)$
- \mathbf{y}_{τ} is $L_{\tau} \times 1$
- $I_{o u}^{2}=\min \left(1, r^{-\alpha}\right)$ where r is the distance of the BS form the typical user u
- $l_{o v}^{2}=\min \left(1,\|v\|^{-\alpha}\right)$ where $\|v\|$ is the distance of the interferers using training $\mathbf{t}_{\mathbf{o}}$ from the BS
- α is the pathloss coefficient

Channel Estimation: LMMSE

Linear Minimum Mean Square Error Estimate (LMMSE)

- Observation Signal: $y_{\tau}=\mathbf{t}_{\mathbf{o}}^{\mathbf{H}} \mathbf{y}_{\tau}$ (Scalar)
- LMMSE Estimate of $h_{o u}: \hat{h}_{o u}=\frac{\mathbb{E}\left[h_{o u} y_{*}^{*}\right]}{\mathbb{E}\left[y_{\tau} y_{\tau}^{*}\right]} y_{\tau}$
- We get the estimate conditioned over r (First Contact Distance) as:

$$
\hat{h}_{o u}=\frac{\sqrt{P_{\tau} L_{\tau} I_{o u}^{2}}}{P_{\tau} L_{\tau} I_{o u}^{2}+\mathbb{E}\left[\left.\sum_{v \in \phi_{m}^{t_{o}} \backslash u} P_{\tau} L_{\tau}\right|_{o v} ^{2}\left|h_{o v}\right|^{2}\right]} y_{\tau}
$$

Now to compute $\mathbb{E}\left[\left.\sum_{v \in \phi_{m}^{t_{o}} \backslash u} P_{\tau} L_{\tau}\right|_{o v} ^{2}\left|h_{o v}\right|^{2}\right]$

Channel Estimate

- Use Campbell's Theorem

$$
\mathbb{E}\left[\left.\sum_{v \in \phi_{m}^{t_{o}} \backslash u} P_{\tau} L_{\tau}\right|_{o v} ^{2}\left|h_{o v}\right|^{2}\right]=P_{\tau} \pi \lambda_{m}\left(\frac{\alpha}{\alpha-2}\right)
$$

therefore

$$
\begin{gathered}
\hat{h}_{o u}=\frac{\sqrt{\left.P_{\tau} L_{\tau}\right|_{o u} ^{2}}}{\left.P_{\tau} L_{\tau}\right|_{o u} ^{2}+P_{\tau} \pi \lambda_{m}\left(\frac{\alpha}{\alpha-2}\right)} y_{\tau} \\
\mathbb{E}\left[\left|\hat{h}_{o u}\right|^{2}\right]=\frac{\left.L_{\tau}\right|_{o u} ^{2}}{L_{\tau} l_{o u}^{2}+\pi \lambda_{m}\left(\frac{\alpha}{\alpha-2}\right)}
\end{gathered}
$$

Estimation Error

- Now

$$
h_{o u}=\hat{h}_{o u}+\tilde{h}_{o u}
$$

where $\tilde{h}_{o u}$ is the estimation error

- Estimation Error Variance (σ_{e}^{2})

Using the orthogonality of $\hat{h}_{o u}$ and $\tilde{h}_{o u}$

$$
\sigma_{e}^{2}=\mathbb{E}\left[\left|\tilde{h}_{o u}\right|^{2}\right]=\frac{1}{1+\frac{\left.L_{\tau}\right|_{o u} ^{2}}{\pi \lambda_{m}\left(\frac{\alpha}{\alpha-2}\right)}}
$$

- Note: The pilot symbols are getting corrupted by the MUs using same training sequence as typical user 'u'.
- The considered model inherently captures the effect of Pilot Contamination

λ_{m} vs σ_{e} for different L_{τ}

Figure: Plot of λ_{m} vs σ_{e}, for $\alpha=3$, distance $r=2$ and $L_{\tau}=1,5$ and 10

- Higher the MU density, higher the pilot contamination
- High estimation error

L_{τ} vs σ_{e} for different λ_{m}

Figure: Plot of L_{τ} vs σ_{e}, for $\alpha=3$, distance $r=2$ and $\lambda_{m}=0.01,0.05$ and 0.1

- As L_{τ} increases, thinning of PPP takes place
- Hence, pilot Contamination decreases and estimate becomes more accurate

Downlink Transmission

- Suppose the typical MU to be at the origin 'o'
- BS 'b' will now transmit and set of BS 'y' will interfere
- The signal y_{D} received at the MU will be

$$
y_{D}=\sqrt{P_{D} l_{b o}^{2}} h_{b o} s_{b o}+\sum_{y \in \phi_{B} \backslash b} \sqrt{P_{D} l_{y o}^{2}} h_{y o} s_{y o}+n
$$

- $h_{b o}, h_{y o} \sim \mathcal{C N}(0,1)$
- $h_{b o}=h_{o u}$ (reciprocity), also $l_{b o}^{2}=l_{o u}^{2}$
- $l_{y o}^{2}=\min \left(1,\|y\|^{-\alpha}\right)$ where $\|y\|$ is the distance of the interfering Base Stations form the MU
- Assume n to be AWGN $\sim \mathcal{C N}\left(0, \sigma_{n}^{2}\right)$

Precoding

- BS sends precoded signal as:

$$
s_{b o}=\frac{\hat{h}_{o u}^{*}}{\left|\hat{h}_{o u}\right|} x_{b o}
$$

- Using

$$
h_{o u}=\hat{h}_{o u}+\tilde{h}_{o u}
$$

- Therefore, the signal becomes

$$
\begin{array}{r}
y_{D}=\sqrt{P_{D} l_{o u}^{2}}\left|\hat{h}_{o u}\right| x_{o u}+\sqrt{P_{D} l_{o u}^{2}} \tilde{h}_{o u} \frac{\hat{h}_{o u}^{*}}{\left|\hat{h}_{o u}\right|} x_{o u} \\
+\sum_{y \in \phi_{B} \backslash b} \sqrt{P_{D} l_{y o}^{2}} h_{y o} s_{y o}+n
\end{array}
$$

Signal to Interference Plus Noise Ratio

- Signal To Noise + Interference Ratio (SINR)

$$
\operatorname{SINR}=\frac{P_{D} I_{o u}^{2}\left|\hat{h}_{o u}\right|^{2}}{\left.P_{D}\right|_{o u} ^{2}\left|\tilde{h}_{o u}\right|^{2}+P_{D} \mathcal{I}_{B}+\sigma_{n}^{2}}
$$

where

$$
\mathcal{I}_{B}=\sum_{y \in \phi_{B} \backslash b} I_{y o}^{2}\left|h_{y o}\right|^{2}
$$

- Note: The above SINR expression is a Random Variable
- Here, we can analyse the system in two ways
- Coverage Probability Analysis
- Worst Case Capacity: Using Worst Case Noise Theorem
- Here, we perform the analysis on Coverage Probability

Coverage conditioned on r

- Probability of Coverage ($P_{c \mid r}$), conditioned over the nearest neighbour distance (r)

$$
\begin{aligned}
P_{c \mid r} & =\mathbb{P}(S I N R>\theta \mid r) \\
& =\mathbb{P}\left(\left.\frac{P_{D} l_{o u}^{2}\left|\hat{h}_{o u}\right|^{2}}{P_{D} l_{o u}^{2}\left|\tilde{h}_{o u}\right|^{2}+P_{D} \mathcal{I}_{B}+\sigma_{n}^{2}}>\theta \right\rvert\, r\right) \\
=\mathbb{P}\left(\left|\bar{h}_{o u}\right|^{2}>\right. & \left.\left.\frac{\theta}{\left(1-\sigma_{e}^{2}\right)}\left|\tilde{h}_{o u}\right|^{2}+\frac{\theta}{l_{o u}^{2}\left(1-\sigma_{e}^{2}\right)} \mathcal{I}_{B}+\frac{\theta \sigma_{n}}{P_{D} l_{o u}^{2}\left(1-\sigma_{e}^{2}\right)} \right\rvert\, r\right)
\end{aligned}
$$

- Normalizing $\left|\hat{h}_{o u}\right|^{2}$ as

$$
\left|\hat{h}_{o u}\right|^{2}=\left(1-\sigma_{e}^{2}\right)\left|\bar{h}_{o u}\right|^{2}
$$

where, $\bar{h}_{o u} \sim \mathcal{C N}(0,1)$ and $\left|\bar{h}_{o u}\right|^{2}$ is exponentially distributed

- We get

$$
\begin{aligned}
P_{c \mid r}=\mathbb{E}\left[\exp \left(-\frac{\theta}{\left(1-\sigma_{e}^{2}\right)}\left|\tilde{h}_{o u}\right|^{2}\right)\right] \mathbb{E} & {\left[\exp \left(-\frac{\theta}{l_{o u}^{2}\left(1-\sigma_{e}^{2}\right)} \mathcal{I}_{B}\right)\right] } \\
& \exp \left(-\frac{\theta \sigma_{n}}{P_{D} l_{o u}^{2}\left(1-\sigma_{e}^{2}\right)}\right)
\end{aligned}
$$

- Note: All the expectations are conditioned on r
- Conditioned on $r, \exp \left(-\frac{\theta \sigma_{n}}{P_{D} l_{o u}^{u}\left(1-\sigma_{e}^{2}\right)}\right)$ is a constant
- Calculating each of the terms one by one

First Term

- First Term $=\mathbb{E}\left[\exp \left(-\frac{\theta}{\left(1-\sigma_{e}^{2}\right)}\left|\tilde{h}_{\text {ou }}\right|^{2}\right)\right]$
- Laplace transform of $\left|\tilde{h}_{o u}\right|^{2}$ evaluated at $s=-\frac{\theta}{\left(1-\sigma_{e}^{2}\right)}$

$$
\text { First Term }=\frac{1}{1+\frac{\theta \sigma_{e}^{2}}{1-\sigma_{e}^{2}}}
$$

- Using,

$$
\left|\tilde{h}_{o u}\right|^{2}=\sigma_{e}^{2}\left|\bar{h}_{o u}^{\prime}\right|^{2}
$$

where, $\bar{h}_{\text {ou }}^{\prime} \sim \mathcal{C N}(0,1)$ and $\left|\bar{h}_{\text {ou }}^{\prime}\right|^{2}$ is exponentially distributed

Second Term

- Second Term $=\mathbb{E}\left[\exp \left(-\frac{\theta}{I_{o u}\left(1-\sigma_{e}^{2}\right)} \mathcal{I}_{B}\right)\right]$
- Replace $\mathcal{I}_{B}=\sum_{y \in \phi_{B} \backslash b} I_{y o}^{2}\left|h_{y o}\right|^{2}$, we get

Second Term $=\mathbb{E}\left[\prod_{y \in \phi_{B} \backslash b} \exp \left(-\frac{\theta}{l_{o u}^{2}\left(1-\sigma_{e}^{2}\right)} l_{y o}^{2}\left|h_{y o}\right|^{2}\right)\right]$

$$
\stackrel{(a)}{=} \mathbb{E}\left[\prod_{y \in \phi_{B} \backslash b} \mathbb{E}_{h_{y_{o}}} \exp \left(-\frac{\theta}{l_{o u}^{2}\left(1-\sigma_{e}^{2}\right)^{2}} l_{y o}^{2}\left|h_{y o}\right|^{2}\right)\right]
$$

Second Term

$$
\stackrel{(b)}{=} \mathbb{E}\left[\prod_{y \in \phi_{B} \backslash b} \frac{1}{1+\frac{\theta l_{\nu o}^{2}}{l_{o u}^{2}\left(1-\sigma_{\varepsilon}^{2}\right)}}\right]
$$

where, (a) follows from independence of $h_{y o}$ and (b) follows from the laplace transform of $\left|h_{y o}\right|^{2}$ evaluated at $s=-\frac{\theta l_{o}^{2}}{I_{o u}\left(1-\sigma_{e}^{2}\right)}$

- Apply PGFL: Products over PPP

$$
\text { Second Term }=\exp \left(-\lambda_{B} \int_{\mathbb{R}^{2}}\left(1-\frac{1}{1+\frac{\theta l_{y o}^{2}}{l_{o u}^{o}\left(1-\sigma_{e}^{2}\right)}}\right) d y\right)
$$

Final Expression

$$
\text { Second Term }=\exp \left(-2 \pi \lambda_{B} \int_{r}^{\infty}\left(\frac{1}{1+\frac{I_{\Delta u}\left(1-\sigma_{c}^{2}\right)}{\theta l_{y_{o}}^{2}}}\right) y d y\right)
$$

- Note that the integral is from r to ∞
- As there are no BS closer than the tagged BS
- Probability of Coverage conditioned on r

$$
P_{c \mid r}=\text { First Term } \times \text { Second Term } \times \exp \left(-\frac{\theta \sigma_{n}}{P_{D} I_{o u}^{2}\left(1-\sigma_{e}^{2}\right)}\right)
$$

Final Expression: Unconditioning on r

- Unconditioning over r
- The PDF of r is (First Contact Distance Distribution)

$$
f_{R}(r)=2 \pi r \lambda_{B} \exp \left(-\pi r^{2} \lambda_{B}\right)
$$

- Probability of Coverage $\left(P_{c}\right)$

$$
P_{c}=\int_{0}^{\infty} P_{c \mid r} f_{R}(r) d r
$$

L_{τ} vs P_{c}

Figure : Plot of L_{τ} vs P_{c}, for $\alpha=3, \lambda_{m}=0.1, \lambda_{B}=0.01$, for SINR Threshold $\theta=0.1,0.5$ and $1, \frac{P_{D}}{\sigma_{n}}=20$

- The coverage probability increases with L_{τ}
- Interference making the coverage to saturate for large training durations

SINR Threshold θ vs P_{c}

Figure : Plot of SINR threshold θ vs P_{c}, for $\alpha=3, \lambda_{m}=0.1, \lambda_{B}=0.02$, $L_{\tau}=10,20$ and 30 and $\frac{P_{D}}{\sigma_{n}}=20$

$S N R$ vs P_{c}

Figure : Plot of SIR vs P_{c}, for $\alpha=3, \lambda_{m}=0.1, \lambda_{B}=0.02, L_{\tau}=10,20$ and $30, \theta=0.5$

- Only one of the three terms depends on P_{D}
- P_{c} saturates with increasing P_{D}

$S N R$ vs P_{c}

Figure : Plot of SIR vs P_{c}, for $\alpha=3, \lambda_{m}=0.1, \lambda_{B}=0.02, L_{\tau}=20$, $\theta=0.1,0.5$ and 1

- Again, P_{c} saturates with increasing P_{D}

Comparison with Perfect Channel Estimate

Figure : Comparison of P_{c} with SINR threshold θ for perfect and imperfect channel knowledge, for $\alpha=3, \lambda_{m}=0.1, \lambda_{B}=0.02, L_{\tau}=30$ and $\frac{P_{D}}{\sigma_{n}}=20$

Future Extensions

- Multi-tier heterogeneous networks
- Study for cell edge users
- Uplink Channel Study
- Connectivity based on SINR
- Dependency between ϕ_{B} and ϕ_{m}

Thank You

