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COVARIANCE ESTIMATION FROM COMPRESSIVE 
MEASUREMENTS

PROBLEM SETUP

• Vectors 

• Sample covariance 

• Measurements:                                           equivalently  

• At orthonormal basis for an m-dimensional subspace of Rd;      m-dimensional 
orthogonal projection matrix, both drawn uniformly at random 

• Distribution-free setting: no assumption on how xi are generated 

• Goal: estimate the sample covariance matrix from the measurements 

• Distributional setting: 

• Goal: estimate the population covariance  matrix      from the measurements 

• Goal: bounds on the sample complexity 
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COVARIANCE ESTIMATE

• Intuitive estimator: 

• Debiased estimator:  

• Reason: Proposition 1:  

• The paper derives upper and lower bounds on the sample 
complexity of the debiased estimator 
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UPPER BOUNDS

DISTRIBUTION FREE RESULTS

• Theorem 2: Let                                             . Then, there exist k1 
and k2 such that, with probability 

• Theorem 3: Let   
 
 
Then under the same conditions as Theorem 2, 
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UPPER BOUND

DISTRIBUTIONAL SETTING

• Corollary 4: when xi are Gaussian distributed:  

• Corollary 5: 

• Interpretation: if               , can set                             to get   
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REMARKS

• When               , ignoring logarithmic factors,  
 
 
 

• To est. the population cov. matrix in the fully observed setting:  
 
 

• Sample size shrinks from n to nm2/d2 due to compressed meas. 

• The above does not assume any structure on the covariance matrix
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PERFORMANCE OF PROPOSED ESTIMATOR

SIMULATION RESULTS


