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PROBLEM SETUP

COVARIANCE ESTIMATION FROM COMPRESSIVE
MEASUREMENTS
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* Measurements: (A4, ATz,)",, A; € R¥*™ equivalently (&, &.a,)?,, &, € R4X¢

* A, orthonormal basis for an m-dimensional subspace of R®, ®; m-dimensional
orthogonal projection matrix, both drawn uniformly at random

* Distribution-free setting: no assumption on how x; are generated
* Goal: estimate the sample covariance matrix from the measurements
* Distributional setting: x; ~ N (0, X)

- Goal: estimate the population covariance matrix >, from the measurements

* Goal: bounds on the sample complexity n = f(m,d,¢,0) to achieve error e w. p. >1—4



COVARIANCE ESTIMATE
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Debiased estimator: S
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The paper derives upper and lower bounds on the sample
complexity of the debiased estimator




DISTRIBUTION FREE RESULTS

UPPER BOUNDS

» Theorem 2: Let d > 2, § € (0,1), § > 4d%e~"/'2. Then, there exist k;
and kz such that, with probability >1 -4
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* Theorem 3: Let S
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Then under the same conditions as Theorem 2,
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DISTRIBUTIONAL SETTING

UPPER BOUND

» Corollary 4: when x; are Gaussian distributed:
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* Corollary 5: rank(}) <k
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* Interpretation: if n = ©(d), can set m = O(klog?(d)/¢®) to get
[DESHPETE




REMARKS
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When 7 > — « ignoring logarithmic factors,
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To est. the population cov. matrix in the fully observed setting:
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Sample size shrinks from n to nm?/d* due to compressed meas.

The above does not assume any structure on the covariance matrix




SIMULATION RESULTS

PERFORMANCE OF PROPOSED ESTIMATOR
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