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Recovery of Streaming Signal

Recovery of a discrete-time streaming signal x from a time-varying linear
measurement model

y t = Φtxt + et , t = 1, 2, . . .

xt =
[
x(Nt −N + 1) x(Nt −N + 2) . . . x(Nt)

]
∈ RN

y t ∈ RM , M < N
et ∼ N (0, σ2IM)

Goal: Sequential recovery over short, shifting time intervals
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Sparsity: Lapped Orthogonal Transform

w t =
[
P1 P0

] [xt−1
xt

]
⇔ xt =

[
PT

0 PT
1
] [ w t

w t+1

]
LOT matrix: P0PT

0 + P0PT
1 = I and P0PT

1 = PT
1 P0 = 0
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System Model

xt =
[
PT

0 PT
1
] [ w t

w t+1

]
=⇒ y t = Bt

[
w t

w t+1

]
+ et , t = 1, 2, . . .
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Online Recovery

Optimal estimation: joint estimation of {wτ}t
τ=1 from {yτ}t

τ=1

y t = Bt

[
w t

w t+1

]
+ et , t = 1, 2, . . .

Why online?
I Smaller reconstruction delay
I Low computational complexity
I Reduced memory demands

Approach: Sparse Bayesian Learning
I Easily accommodate the coupling among the measurements
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Offline Sparse Bayesian Learning
System model

y t = Btw t + et ,

w t =
[
w1 w2 . . . w t+1

]
∈ RN(t+1)

y t , et ∈ RMt and B ∈ RMt×N(t+1)

Two-stage hierarchal model: αt ∈ R
N(t+1)
+ - precision parameter

p(y t |w t) = N (y t |Btw t , σ2IMt)

p(w t |αt) =
t+1

∏
τ=1

N

∏
i=1
N (wτ,i0, α−1

τ,i )

p(αt |a, b) =
t+1

∏
τ=1

N

∏
i=1

Gamma(ατ,i |a, b)
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SBL Algorithm

Input: y t ,Bt measurements, measurement matrix
Initialization: Initialize αt precision parameter
Repeat

E-step
A−1

t = diag(αt)
Σt

w = A−1
t −A−1

t BT
t (σ

2IMt + BtA−1
t Bt)BtA−1

t covariance update
µt

w = σ−2Σt
wBT

t y t mean update

M-step
ατ,i = f (µt

τ,i ,Σt
tau,ii ) eq: ατ,i =

1+2a
(µt

τ,i )
2+Σt

τ,ii+2b

Until αt converges
Output: µt

w ,Σt
w , ατ,i
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Recursive SBL Using d-block Banded Approximation

Consider the inverse of covariance update:

Ht = At + σ−2BT
t Bt

Ht is block tridiagonal matrix

Figure: stucture of Bt and Ht
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Recursive SBL Using d-block Banded Approximation

Consider the inverse of covariance update:

Ht = At + σ−2BT
t Bt

Ht is block tridiagonal matrix

Result
Inverse of a banded matrix is band dominant matrix

Σt
w = H−1

t ≈ d-block banded matrix

d - design parameter
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Approximation: Adding A New Measurement

new sensing matrix
estimates to be recomputed

p(w1:t−d |y1:t+1) ≈ p(w1:t−d |y1:t) =⇒ estimates of w1:t−d remain
unchanged
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Approximation: Removing Old Measurements

new sensing matrix
estimates to be recomputed

p(w t−d :t+1|y1:t)≈p(w t−d :t+1|y t−2d−1:t) =⇒ estimates of w1:t−d remain
unchanged
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Effect of Approximation: d = 1 and t = 5

Adding y6
⇓

estimates of w1:4 remain
unchanged

Removing y1
⇓

estimate of w4:6 remain
unchanged

w4 depends only on y2:5
⇓

w t−d depends only on ỹ t = y t−2d−1:t

To estimate w t−d we consider only ỹ t

Allows for processing over overlapping sliding windows
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Sliding Processing Window
To estimate w t−d we consider ỹ t = B̃tw̃ t + ẽt

ỹ t = y t−2d−1:t

w̃ t = w t−2d−1:t+1
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Recursive SBL

Model: ỹ t = B̆tw̆ t︸ ︷︷ ︸
does not depend onỹ t

+ B̄tw̄ t︸ ︷︷ ︸
depends onỹ t

+ ẽt

Two stage hierarchical model

p(w̄ t |ᾱt) =
t+1

∏
τ=1−d

N

∏
i=1
N (wτ,i0, α−1

τ,i )

p(ᾱt |a, b) =
t+1

∏
τ=t−d

N

∏
i=1

Gamma(ατ,i |a, b)

p(ỹ t |w̄ t) = N (ỹ t |B̆tE(w̆ t |w̄ t) + B̄tw̄ t ,

B̆tcov(w̆ t |w̄ t)B̆
T
t + σ2I)

p(w̆ t |w̄ t): obtained from past estimates
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Algorithm

Input: ỹ t , B̃t , µt−1
w̃ , Σt−1

w̃ and ᾱt−1 measurements and past estimates
Initialization:

Compute p(w̆ t |w̄ t) using µt−1
w , Σt−1

w
Repeat

E-step
Compute p(ỹ t |w̄ t) using p(w̆ t |w̄ t)
Update µt

w and Σt
w

M-step
Update ᾱt

Until convergence criteria is met
Output:µt

w̃ , Σt
w̃ and ᾱt
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Numerical Results: Varying d

N 256
M 64

SNR 35dB
Φt ±1/

√
M with equal prob.

No significant improvement
beyond d = 1
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Numerical Results: Varying M

N 256
M N/R
Φt ±1/

√
M with equal prob.

Faster than l1 homotopy
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Summary: Recovery Procedure

Step 1
Apply lapped orthogonal transform to get sparse representation: x → w

Step 2
At time t use recursive algorithm to estimate w t−d using y t−2d−1:t

Sliding window processing
SBL framework
Utilizes previous estimates

Step 2
Reconstruct xt−d−1 as

x̂t−d−1 =
[
PT

0 PT
1
] [w t−d−1(t − 1)

w t−d (t)

]
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