D2D Routing Schemes and The Optimum Operating Points

Vinnu Bhardwaj and Chandra R. Murthy

SPC Lab

January 31, 2015

V. Bhardwaj and C.R. Murthy (SPC Lab)

(ロ) (回) (三) (三)

Outline

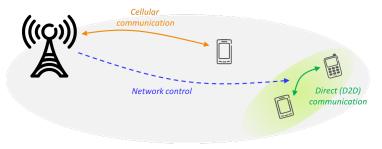
Recap (Downlink-inband D2D)

2 Routing Schemes

- Fixed Rate Scheme
- Fixed Power Scheme

Simulation Results

Optimum Operating Points

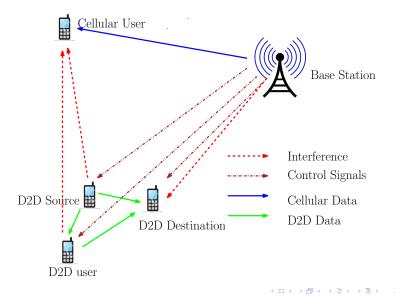

- Fixed Rate Scheme
- Fixed Power Scheme

5 Uplink inband D2D

・ロト ・日下・ ・ ヨト・

What is D2D

- Direct communication between devices without traversing the core cellular network
- Inband D2D: Communication over licensed spectrum
- Outband D2D: Communication over unlicensed spectrum


Figure: Simplest illustration of D2D communication

System Model

- Underlay Inband D2D
- N BSs and M D2D devices
- D2D users reuse Downlink frequencies
- Two types of interference in the system :
 - Base Station to D2D receiver
 - 2 D2D transmitter to cellular receiver
- Cellular users given priority
- Reliability (γ, γ_b) and Interference constraints (γ_d)
- D2D links rendered infeasible if they cause intolerable interference to the cellular users

(日) (同) (日) (日)

Model

Feasible D2D links I

- All BSs assumed to transmit at the same power P
- Aim: To find all the feasible D2D pairs
- Algorithm
 - Find the interference + noise power $(P_{int}^{d_R})$ at a D2D device (d_R)
 - **(a)** Find the transmit power required by d_T to communicate reliably with d_R and repeat for all d_R s and d_T s

$$P_{d_T}^{d_R} = P_{int}^{d_R} + \gamma + 10 \alpha \log(d_{d_T}^{d_R})$$

(a) Find the region around the BSs in which the SNR for the cellular users is at least γ_b dB.

$$egin{aligned} \mathcal{P} - 10lpha \log(d) \geq \gamma_b \ d_{max} = 10^{\left(rac{\mathcal{P} - \gamma_b}{10lpha}
ight)} \end{aligned}$$

Feasible D2D links II

- Shut down all the D2D transmitters in the region
- **③** Find the max power that d_T can use without causing intolerable interference to the cellular users

$$\mathcal{P}_{d_{T},BS_{i}}^{max} = \gamma_{d} + 10lpha \log(D_{d_{T},BS_{i}} - d_{max})$$

$$P_{d_T}^{max} = \min_{1 \le i \le N} P_{d_T, BS_i}^{max}$$

() Declare the link $d_T \longrightarrow d_R$ infeasible if $P_{d_T}^{d_R} > P_{d_T}^{max}$.

• We have the feasible links and the transmit powers required for reliable communication on those links

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Illustration

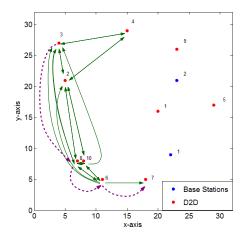


Figure: Feasible D2D links

3.5

・ロト ・回ト ・ヨト ・

We have the feasible D2D links.

What's next ?

<ロ> (四) (四) (注) (三) (三)

The Problem

- Consider a device d_S which has some data for some other device d_D in the above system
- Data should reach the destination ASAP

D2D Routing schemes :

- Fixed Rate
- Fixed Power

Fixed Rate Scheme

- $\bullet\,$ The D2D SNR constraint γ determines the rate of all the D2D links
- Effective rate on the link $d_S \longrightarrow d_D$

$$R_{\rm eff} = rac{\log(1+\gamma)}{
m Number of hops} \ {
m bps/Hz}$$

- As γ varies, the structure of the directed graph G may also change.
- The shortest path $d_S \longrightarrow d_D$ may change

- Since the 'number of hops' term figures in the expression of R_{eff} , it is not true that as γ increases, R_{eff} should always increase.
- This motivates the problem:

Find the (γ_{opt}) using which the devices d_S and d_D can communicate incurring the minimum delay.

Fixed Power Scheme

- All D2D transmissions occur at the same power P_D
- Feasible D2D links using the algorithm
- Feasible D2D links achieve different rates depending upon the SINR at the receiver
- Shortest path is not the throughput maximizing path
- It can be shown that the maximum rate achieved by any path is the scaled harmonic mean of the rates of the links
- Throughput maximizing path is the path with the maximum scaled harmonic mean

(日) (同) (日) (日)

- As P_D increases
 - Rate of each feasible link increases
 - More D2D links might become infeasible
- This motivates the problem:

Find (P_D^{opt}) using which the devices d_S and d_D can communicate achieving the maximum net throughput.

- Solution
 - Numerical Search
 - Analytical methods to find the optimum operating points

Fixed Rate Scheme

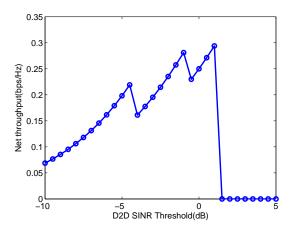


Figure: Fixed rate scheme: Illustration of the numerical search approach for finding the maximum achievable throughput.

(< (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) < (0) <

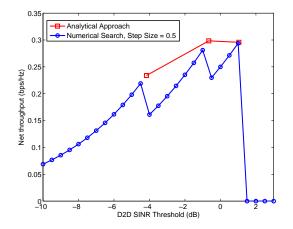


Figure: Fixed rate scheme: Numerical search approach vs Analytical approach

・ロト ・回ト ・ヨト

Fixed Power Scheme

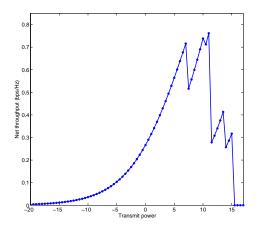


Figure: Fixed power scheme: Illustration of the numerical search approach.

-

・ロト ・日下・ ・ ヨト・

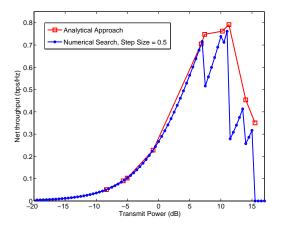


Figure: Fixed power scheme: Numerical search vs Analytical approach.

・ロト ・回ト ・ヨト ・

Algorithm for Fixed Rate Scheme I

- Step 1 Find the power $(P_{d_s}^{\max})$ at which the source d_s is allowed to transmit. Find the corresponding SINR $(\gamma_{d_s}^{d_D})$ at d_D . Call this SINR γ_1 .
- Step 2 Consider the path $d_S \longrightarrow d_i \longrightarrow d_D$. The maximum SINR at which some two-hop path will exist:

$$\gamma_2 = \max_{i \neq D, S} \left(\min(\gamma_{d_S}^{d_i}, \gamma_{d_i}^{d_D}) \right)$$

A peak exists here only if γ_2 is greater than γ_1 .

Step 3 Repeat Step 2 for all possible three hop paths, and determine

$$\gamma_{3} = \max_{i \neq D, S, j \neq D, S, i} \left(\min(\gamma_{d_{S}}^{d_{i}}, \gamma_{d_{i}}^{d_{j}}, \gamma_{d_{j}}^{d_{D}}) \right)$$

A peak exists here if γ_3 is greater than the previous γ (i.e., γ_2 , or γ_1 if γ_2 does not exist).

(a)

Algorithm for Fixed Rate Scheme II

Step 4 Repeat with increasing number of hops, a point γ_f is found such that when $\gamma > \gamma_f$, d_S and d_D are no longer connected in the graph $G_{\gamma}(V, E)$.

Note: The existence of γ_f is guaranteed by the fact that the $G_{\gamma_j}(V, E)$ always has fewer links than $G_{\gamma_k}(V, E)$ for all j and k s.t. j > k.

Step 5 Set
$$\gamma_{\text{opt}} = \arg \max_{1 \le i \le M, \gamma_i \text{ exists }} R_{\text{eff}}(\gamma_i)$$

Fixed Rate Scheme

- $\bullet\,$ The relationship between the rates on various links and $R_{\rm eff}$ is not as simple as in the previous case
- Difficult to directly determine the P_D values where the peaks occur.

Observations:

- As P_D is increased, $R_{\rm eff}$ increases until one of the D2D transmitters becomes infeasible.
- If the best path connecting d_S and d_D at that value of P_D involves that D2D user, R_{eff} drops, as an alternate path with lower R_{eff} has to be used.

$$P_D^{opt} = \arg \max_{\substack{P_{d_T}^{max}}} R_{eff}(P_{d_T}^{max})$$

<ロ> (日) (日) (日) (日) (日)

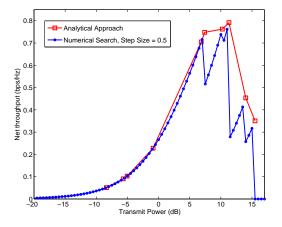


Figure: Fixed power scheme: Numerical search vs Analytical approach.

・ロト ・回ト ・ヨト ・

Uplink inband D2D

- Uplink frequencies used for D2D communication
- Interference :
 - Cellular transmitters to the D2D receiver
 - D2D transmitter to the BS.
- Feasible D2D links:
 - Modified version of the algorithm presented earlier
 - Approach not conservative

Fixed Rate Scheme

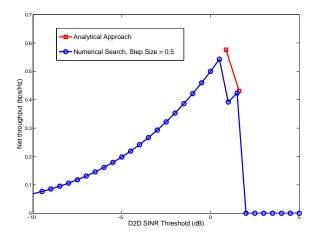


Figure: Fixed power scheme; Illustration of the numerical search approach and the analytical approach in the *uplink inband* D2D model.

V. Bhardwaj and C.R. Murthy (SPC Lab)

D2D Routing Schemes

January 31, 2015 24 / 26

Fixed Power Scheme

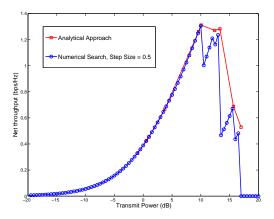


Figure: Fixed power scheme: Illustration of the numerical search approach and the analytical approach in the *uplink inband* D2D model.

・ロト ・日下・ ・ ヨト・

THANKS!!!