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Introduction

Introduction

@ A Wireless Sensor Network (WSN) is a collection of sensors (nodes)
to perform a specialized task.
@ Applications

o Defense: Battlefield surveillance and intrusion detection

o Health: Patient monitoring

o Industry: Machine health monitoring and quality control

o Other: Traffic control, Environment and habitat monitoring
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Introduction

Characteristics of WSN

Inexpensive and small nodes

Self powered (Battery or Harvested Energy)

Limited processing power at nodes

A powerful master controller called Fusion Center (FC)
Possibility of node failure

Large scale deployment

Mobility of nodes (Time varying channel characteristics)



Introduction

Problem Set up

Fusion Center

Figure: Wireless Sensor Network

@ N sensors having correlated information

e Simultaneous transmission from all sensors to Fusion Center (FC)

@ Nodes intend to transmit in such a way that signals combine
coherently at the receiver (Transmit Beamforming)



System Model

Distributed Co-Phasing

@ Reciprocal channel between sensors and FC, gx = e/
@ Two phases of transmission
o Pilot : From FC to all nodes

rln] = geVEp +milnl,n=1,..., Np
Np: No of pilot transmission; Ep: Power of pilot symbols
All nodes estimate their respective channel phase angles 0y from
pilot symbols
e Data : From all nodes simultaneously to FC.
All nodes pre rotate their transmission by O« so that transmitted
signals combine coherently at the FC

N
r[n] = Zxk[n]efjekgk +v[n,n=1,...,Np
k=1
Np: No of data transmission; Es: Power of data symbols
@ Channel from all sensors to FC remain constant for Np + Np symbol

duration.
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System Model

Contributions From This Work

@ This system is studied for BPSK signaling in a previous work. BPSK
signaling does not require CSI at FC (Threshold is always ‘0,
independent of the channel)

o We use Mutual Information (MI) between sensors and FC to show
that performance improves with a higher order constellation

@ Higher order constellation requires CSI at the FC

@ We propose two blind methods to estimate CSI at the FC and
analyze their performance

o We study the channel corruption problem and propose a solution for
the same



MI Analysis

Mutual Information

Assuming perfectly correlated transmission, data transmission from
sensors to FC may be written as

r[n] = x[n]Hpcp + v[n]

where Hpcp = Ele ayel? is the effective DCP channel
We compute the MI with and without CSI at FC as,
o With CSI

p(r/Hpbce, xi)
{pr,/ r/HDcp,x,)/og(r/I;lEiP)dr}.

e Without CSI

p(r/x)
Zp X; / r/x,)/og () dr.

where p(r/x;) = E{p(r/x;, Hocp)}



MI Analysis

MI for Different Constellations
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Figure: Comparison of Mutual Information for Ideal DCP with no CSI and
perfect CSI for non constant modulus constellations; N=5



DCP for General Signal Constellations hod
Algorithm Based Method

DCP for General Signal Constellations

o Higher order constellations require CSI at FC.

@ ML estimate of the effective channel, Hpcp is

ND I rlk]— HXk\

} : =X2
HDCP ML = arg max MND ND
2
xeX

@ Hard to compute in closed form



DCP for General Signal Constellations Power Method
K-Means Algorithm Based Method

Power Method

We propose an estimate of |Hpcp| defined as,

1
N 1
Ay 2ono 711> = No |

Es

|I:IDCP| =

@ Motivated by the power of the received signal
o It can be shown that E{ |Hpcp|?} = |Hpcp|?



DCP for General Signal Constellations R Aethod
s Algorithm Based Method

K-means Algorithm for Blind Detection

ML estimate of the effective DCP channel is,

ND [r[kl— HXk\

} : =
HDCP ML = arg max MND ND
2
xeX

o ML estimate of Hpcp should minimize the squared distance of the
received data points to a scaled version of the transmitted
constellation.

@ The K means algorithm is an iterative method that partitions a set
of vectors in to K groups such that their squared distance to K
centroids are minimized



DCP for General Signal Constellations 0 thod
Algorithm Based Method

K-means Algorithm

o Randomly select M points as the centroids p

@ Nearest Neighbor condition: Assign each point in the data set to its
nearest (in squared euclidean distance) centroid ().

Ri(i) = {x; : [ — p(i)]* < Dy — (D)2, V 1 # i}

e Centroid condition: Once all the groups are identified, find the
centroid of each group to update the vector p. This is pgy1

M;
N D jm1%
(i) = M
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DCP for General Signal Constellations N od
K-Means Algorithm Based Method

Example of K-means Algorithm

Iteration 1

Iteration 2

Iteration 3

Quadrature

Quadrature

o
In-Phase

Iteration 4

o
In-Phase

Iteration 5

o
In-Phase

Iteration 6

Quadrature

Quadrature

o
In-Phase

Figure: K-means algorithm operating on a 4-QAM constellation

o
In-Phase

o
In-Phase




DCP for General Signal Constellations od
Igorithm Based Method

Modified K-means Algorithm

@ The centroids p are a scaled version of the transmitted constellation

@ Centroid update step in K-means algorithm reduces to finding an
optimum scaling factor 8 that minimizes the following cost function

M My
8 = argmmJ ZZIﬂsk—nk

k=1 |=1
e gzw
& > ke1 Milsi|?

M: Number of points in the transmitted constellation

M,:: Number of points in the k" group
si: Elements of the transmitted constellation.
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Performance Analysis

Performance Analysis

@ Two causes of decoding error

o Noise and fading
o Channel Corruption: When angle of the effective channel(Hpcp) is

more than half the rotational symmetry of the transmitted
constellation, it leads to a phase ambiguity at the FC causing

catastrophic decoding errors.

@ Assumptions
K-means algorithm based method converges to a Hpcp such that,

° u:IDCP| = |Hbcp|.
@ ¢y is the minimum possible.
@ The expression for probability of error may be written as,

Pe: Pcc+(1*Pcc)Pe,CSIR
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Performance Analysis

Probability of Error for M-PAM signaling

@ P, with perfect CSIR

2(M -1 E.
Pe csir,pAM = %EHDCP {Q < NSO|HDCP|>}

@ We approximate |Hpcp| as a Nakagami-m random variable with
same first and second moments.

$,(1) T(m %) 1 1
P = ——2 R (m=m+1l, ——
,CSIR,PAM 2/ T( 1) 2k 3 7

m

_ E{|Hpcr|*}
var{|HDcp|2}

where 7 = E{R?}, ¢,(1) = (1 + )" and F; is the Gauss
hypergeometric function

E
and Q = WS]E{|HDCP|2}
0
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Performance Analysis

Probability of Error for M-PAM signaling contd...

@ Probability of channel corruption

v
Pec.pam = {on > 5} = P{Hrpcp < 0}

°(z)

where HR = E{HRyDcp} and op = Std{HRyDcp}

@ ur and og are obtained as

2E5 7TQk 'Yka

fr— N E— —_—
KR No 4 (1 + %)
2Es 14 27,9 TEs Q%
og = N—> {" } + N(N — . 7
R o ¥ 20 a0 TNV Yoy s prk) ~HR



Performance Analysis

Probability of Error for M-QAM signaling

@ P, with perfect CSIR
Probability of error for M-QAM is obtained by decomposing it to
two M-PAM constellations.

2
Pe,csir,@am = 2Pe csir,pam — P2 csir, pam

@ Probability of channel corruption

Vi
Pec,oam = P{on > Z}
= P{Hrpcp <0} + P{|H; pcp| > Hr,pcp|Hr,pcp > 0}
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Performance Analysis

Derivation of Moments of |Hpcp|

@ Second moment of |Hpcp|

2

2
N N
E{|HDCP|2} = E Zak cos@ek + Zak sin Gek]
k=1 k=1

= NE{a2 cos® O} + N(N — 1) [E{ctx cos b}
+NE{a? sin? O }

@ Joint moments of «y, cos 8., and sin g can be obtained from the
pdf of O [?]



Performance Analysis

Derivation of Moments of |Hpcp| contd...

e Fourth moment of |Hpcp|

E{|Hpcp|*}

E{Hé,DCP}

E{Hé,DCP} + ]E{Hf,DCP} + 2E{H,‘2?,DCPHI2,DCP}

N 4
E { lz Q) COS By }
k=1

NE {a? cos* 0 } + 3N(N — 1) [E { cos? i }]
+N(N —1)(N — 2)(N — 3) [E {ax cos O }]*

H6N(N — 1)(N — 2)E {0 cos? ey } [E {ovk cos i}
+4N(N — 1)E {7} cos 02, } E {ok cos O }




Robust Signaling

Constellations Immune to Channel Corruption

@ Channel corruption is due to the rotational symmetry of the
transmitted constellation
@ Can use asymmetric constellations to avoid channel corruption
@ Asymmetric constellations have lower separation between points
compared to a symmetric constellation (Ex: BPSK and OOK)
o Separation between points give immunity to noise and fading
o Asymmetry gives immunity to channel corruption
@ There is a trade-off between symmetric and asymmetric
constellations over DCP

N
N
o



Robust Signaling

Constellations Immune to Channel Corruption: Case Study

@ We compare two simple signaling schemes,

e BPSK: symmetric (CSI not required)
e OOK : Asymmetric (Require CSI at FC)

@ Probability of error for BPSK and OOK may be written as

Pegpsk = Pec.pam + (1 — Pec,pam) Pe,csir,2Pam
Pe.ook = Pecsir2pam

@ Plotting P, gpsk against Pe ook reveals which constellation
performs better.



Simulation Results

Comparison of Power Method and K-means Algorithm
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Simulation Results

Performance of 4-PAM
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Figure: Pe vs SNR for 4-PAM using k means at different pilot SNR




Simulation Results

Effect of Np on the Performance of K-means
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Figure: P. vs SNR for 4-PAM using k means for different values of Np



Simulation Results

Performance of 16-QAM

N=2, Theory

®  N=2, simulation

N=4, Theory

¢ N=4, simulation
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Simulation Results

Comparison of BPSK and OOK
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Figure: Performance of symmetric BPSK and OOK with varying Pilot SNR and
number of sensors, DataSNR = 0dB



Simulation Results

Channel Corruption for PAM
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Figure: Probability of channel corruption with varying Pilot SNR and number
of sensors for 4-PAM



Simulation Results

Comparison of Conventional and Modified K-means
Algorithm
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Figure: Comparison of mean number of iterations for modified K-means
algorithm and conventional K-means algorithm



Conclusion

Conclusion

MI analysis shows a higher order constellation performs better

Proposed two blind channel estimation methods to use general
signal constellations over DCP
Analyzed the performance of the proposed schemes and derived
expressions for
o Probability of channel corruption for M-PAM and M-QAM signaling
o Probability of error for M-PAM and M-QAM signaling

Studied the problem of channel corruption and proposed solutions

Validated the results through simulation




Conclusion
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Derivation of E{a} cos® 0}

E{a} cos® Oex }

E{cos40e/ vk }

1
3 [E {a} E{cos 40/} + 4o, E{cos 20ex [k} + 30y }]
E{cos [40ck|/ck }

/ COS49ek f(|t96k\/ak)d9€k
6=0

2 2 20
T — 2 . T—0 _— YpQ sin
e P s sin 20 e o —
/ cos 46 + TPk / ———dx
9=0 Q Q x=0 sin® x

2 s T—X 2 2
o 1 . _ yporgsin® 0
Tp% — cos4fsin20e” ~ sn?x  dOdx
™ x=0 SIN“X Jo—o

2 ™ sin? x 2
o 1 _ pagt
Yo / — / (8t — 8t + 1) e~ =~ dtdx
™ x=0 SIN“X Ji—0o

6 — 4 + 1 — e_'yi’ai 5 2 e_’YPO‘i

2.4 2 4
r)/pak W/pak ’Ypak '}/pak 34/32




Derivation of E{a} cos® 0} contd...

402 202
E{a} cos40e} = E {62 % +aof — %e*%ai _ akevpai}
b P p Tp
For Rayleigh fading channel,
1
E{e v} = —
{e } Lo, (u) 1+ 0,
0 Qy
E Uk - —7£ e —
{’}/ke } au ’Yk(u) (1 4 qu)2
6 4Qy 6 1 2 Qx
= FE{a} cos4l} = 80‘,‘—1-*———— - —
o } ’Yfz’ 7p %21 T+7%%  7p (T+92%)2
Q Q
E{a} cos20e} = E{a}E{cos20ex/ax}} =80} — k4 k

T (L 7p8%)?

Q2 5 + 4’)/ Qk
E{a} cos* O} = 4 _ 20k DT Hpatk
= E{a} cos* O } 8o T ey e
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