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Introduction

A Wireless Sensor Network (WSN) is a collection of sensors (nodes)
to perform a specialized task.

Applications

Defense: Battlefield surveillance and intrusion detection
Health: Patient monitoring
Industry: Machine health monitoring and quality control
Other: Traffic control, Environment and habitat monitoring
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Characteristics of WSN

Inexpensive and small nodes

Self powered (Battery or Harvested Energy)

Limited processing power at nodes

A powerful master controller called Fusion Center (FC)

Possibility of node failure

Large scale deployment

Mobility of nodes (Time varying channel characteristics)
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Problem Set up
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Figure: Wireless Sensor Network

N sensors having correlated information
Simultaneous transmission from all sensors to Fusion Center (FC)
Nodes intend to transmit in such a way that signals combine
coherently at the receiver (Transmit Beamforming)
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Distributed Co-Phasing

Reciprocal channel between sensors and FC, gk = αke
jθk

Two phases of transmission
Pilot : From FC to all nodes

rk [n] = gk
√

EP + ηk [n], n = 1, . . . ,NP

NP : No of pilot transmission; EP : Power of pilot symbols
All nodes estimate their respective channel phase angles θ̂k from
pilot symbols
Data : From all nodes simultaneously to FC.
All nodes pre rotate their transmission by θ̂k so that transmitted
signals combine coherently at the FC

r [n] =
N∑

k=1

xk [n]e−j θ̂k gk + ν[n], n = 1, . . . ,ND

ND : No of data transmission; ES : Power of data symbols

Channel from all sensors to FC remain constant for NP + ND symbol
duration.
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Contributions From This Work

This system is studied for BPSK signaling in a previous work. BPSK
signaling does not require CSI at FC (Threshold is always ‘0‘,
independent of the channel)

We use Mutual Information (MI) between sensors and FC to show
that performance improves with a higher order constellation

Higher order constellation requires CSI at the FC

We propose two blind methods to estimate CSI at the FC and
analyze their performance

We study the channel corruption problem and propose a solution for
the same
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Mutual Information

Assuming perfectly correlated transmission, data transmission from
sensors to FC may be written as

r [n] = x [n]HDCP + ν[n]

where HDCP =
∑N

k=1 αke
jθek is the effective DCP channel

We compute the MI with and without CSI at FC as,

With CSI

I (x : r) = E

{∑
i

p(xi )

∫
r∈<

p(r/HDCP, xi )log
p(r/HDCP, xi )

p(r/HDCP)
dr

}
.

Without CSI

I (x : r) =
∑
i

p(xi )

∫
r∈<

p(r/xi )log
p(r/xi )

p(r)
dr .

where p(r/xi ) = E {p(r/xi ,HDCP)}
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MI for Different Constellations
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Figure: Comparison of Mutual Information for Ideal DCP with no CSI and
perfect CSI for non constant modulus constellations; N=5
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Power Method
K -Means Algorithm Based Method

DCP for General Signal Constellations

Higher order constellations require CSI at FC.

ML estimate of the effective channel, HDCP is

ĤDCP,ML = arg max
H∈C

1

MND

1

(πσ2)
ND

2

∑
x∈X

e−
∑ND

k=1

|r [k]−Hxk |
2

σ2

Hard to compute in closed form
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Power Method
K -Means Algorithm Based Method

Power Method

We propose an estimate of |HDCP| defined as,

|ĤDCP| =

[
1
ND

∑ND

n=1 |r [n]|2 − N0

ES

] 1
2

Motivated by the power of the received signal

It can be shown that E{ |ĤDCP|2} = |HDCP|2
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Power Method
K -Means Algorithm Based Method

K -means Algorithm for Blind Detection

ML estimate of the effective DCP channel is,

ĤDCP,ML = arg max
H∈C

1

MND

1

(πσ2)
ND

2

∑
x∈X

e−
∑ND

k=1

|r [k]−Hxk |
2

σ2

ML estimate of ĤDCP should minimize the squared distance of the
received data points to a scaled version of the transmitted
constellation.

The K means algorithm is an iterative method that partitions a set
of vectors in to K groups such that their squared distance to K
centroids are minimized
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Power Method
K -Means Algorithm Based Method

K -means Algorithm

Randomly select M points as the centroids µ

Nearest Neighbor condition: Assign each point in the data set to its
nearest (in squared euclidean distance) centroid (µ).

Rk(i) = {xj : [xj − µ(i)]2 ≤ [xl − µ(i)]2,∀ l 6= i}

Centroid condition: Once all the groups are identified, find the
centroid of each group to update the vector µ. This is µk+1

µ(i) =

∑Mi

j=1 xj

Mi
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Power Method
K -Means Algorithm Based Method

Example of K -means Algorithm
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Figure: K -means algorithm operating on a 4-QAM constellation
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Power Method
K -Means Algorithm Based Method

Modified K -means Algorithm

The centroids µ are a scaled version of the transmitted constellation

Centroid update step in K -means algorithm reduces to finding an
optimum scaling factor β that minimizes the following cost function

β̂ = arg min
β

J(β) ,
M∑
k=1

Mk∑
l=1

|βsk − rlk |2

∂J

∂β
= 0⇒ β̂ =

∑M
k=1 s

∗
k

∑Mk

l=1 rlk∑M
k=1 Mk |sk |2

M: Number of points in the transmitted constellation
Mk : Number of points in the k th group
sk : Elements of the transmitted constellation.
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Performance Analysis

Two causes of decoding error

Noise and fading
Channel Corruption: When angle of the effective channel(HDCP) is
more than half the rotational symmetry of the transmitted
constellation, it leads to a phase ambiguity at the FC causing
catastrophic decoding errors.

Assumptions
K -means algorithm based method converges to a ĤDCP such that,

|ĤDCP| = |HDCP|.
φ̂H is the minimum possible.

The expression for probability of error may be written as,

Pe = Pcc + (1− Pcc)Pe,CSIR
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Probability of Error for M-PAM signaling

Pe with perfect CSIR

Pe,CSIR,PAM =
2(M − 1)

M
EHDCP

{
Q

(√
ES

N0
|HDCP|

)}
We approximate |HDCP| as a Nakagami-m random variable with
same first and second moments.

Pe,CSIR,PAM =
φγ(1)

2
√
π

Γ(m + 1
2 )

Γ(m + 1)
2F1

(
m,

1

2
;m + 1;

1

1 + γ̄
m

)

m =
E{|HDCP|2}
var{|HDCP|2}

and Ω =
ES

N0
E{|HDCP|2}

where γ̄ = E{R2}, φγ(1) =
(
1 + γ̄

m

)−m
and 2F1 is the Gauss

hypergeometric function
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Probability of Error for M-PAM signaling contd...

Probability of channel corruption

Pcc,PAM = {φH >
π

2
} = P{HR,DCP < 0}

= Q

(
µR

σR

)
where µR = E{HR,DCP} and σR = std{HR,DCP}
µR and σR are obtained as

µR = N

√
2ES

N0

√
πΩk

4

γpΩk

(1 + γpΩk)

σ2
R = N

2ES

N0
Ωk

[
1 + 2γpΩk

2(1 + γpΩk)

]
+ N(N − 1)

πES

2N0

γpΩ2
k

(1 + γpΩk)
− µ2

R
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Probability of Error for M-QAM signaling

Pe with perfect CSIR
Probability of error for M-QAM is obtained by decomposing it to
two M-PAM constellations.

Pe,CSIR,QAM = 2Pe,CSIR,PAM − P2
e,CSIR,PAM

Probability of channel corruption

Pcc,QAM = P{φH >
π

4
}

= P{HR,DCP < 0}+ P{|HI ,DCP| > HR,DCP|HR,DCP > 0}
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Derivation of Moments of |HDCP|

Second moment of |HDCP|

E{|HDCP|2} = E


[

N∑
k=1

αk cos θek

]2

+

[
N∑

k=1

αk sin θek

]2


= NE{α2
k cos2 θek}+ N(N − 1) [E{αk cos θek}]2

+NE{α2
k sin2 θek}

Joint moments of αk , cos θek and sin θek can be obtained from the
pdf of θek [?]

20 / 32



Introduction
System Model

MI Analysis
DCP for General Signal Constellations

Performance Analysis
Robust Signaling

Simulation Results
Conclusion

Derivation of Moments of |HDCP| contd...

Fourth moment of |HDCP|

E{|HDCP|4} = E{H4
R,DCP}+ E{H4

I ,DCP}+ 2E{H2
R,DCPH

2
I ,DCP}

E{H4
R,DCP} = E


[

N∑
k=1

αk cos θek

]4


= NE
{
α4
k cos4 θek

}
+ 3N(N − 1)

[
E
{
α2
k cos2 θek

}]2
+N(N − 1)(N − 2)(N − 3) [E {αk cos θek}]4

+6N(N − 1)(N − 2)E
{
α2
k cos2 θek

}
[E {αk cos θek}]2

+4N(N − 1)E
{
α3
k cos θ3

ek

}
E {αk cos θek}
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Constellations Immune to Channel Corruption

Channel corruption is due to the rotational symmetry of the
transmitted constellation

Can use asymmetric constellations to avoid channel corruption

Asymmetric constellations have lower separation between points
compared to a symmetric constellation (Ex: BPSK and OOK)

Separation between points give immunity to noise and fading
Asymmetry gives immunity to channel corruption

There is a trade-off between symmetric and asymmetric
constellations over DCP
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Constellations Immune to Channel Corruption: Case Study

We compare two simple signaling schemes,

BPSK: symmetric (CSI not required)
OOK : Asymmetric (Require CSI at FC)

Probability of error for BPSK and OOK may be written as

Pe,BPSK = Pcc,PAM + (1− Pcc,PAM)Pe,CSIR,2PAM

Pe,OOK = Pe,CSIR,2PAM

Plotting Pe,BPSK against Pe,OOK reveals which constellation
performs better.
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Comparison of Power Method and K -means Algorithm
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Performance of 4-PAM
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Effect of ND on the Performance of K -means
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Figure: Pe vs SNR for 4-PAM using k means for different values of ND
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Performance of 16-QAM
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Figure: Pe vs SNR for 16-QAM using K -means; Pilot SNR=0dB
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Comparison of BPSK and OOK
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Channel Corruption for PAM
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of sensors for 4-PAM
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Comparison of Conventional and Modified K -means
Algorithm
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Figure: Comparison of mean number of iterations for modified K -means
algorithm and conventional K -means algorithm
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Conclusion

MI analysis shows a higher order constellation performs better

Proposed two blind channel estimation methods to use general
signal constellations over DCP

Analyzed the performance of the proposed schemes and derived
expressions for

Probability of channel corruption for M-PAM and M-QAM signaling
Probability of error for M-PAM and M-QAM signaling

Studied the problem of channel corruption and proposed solutions

Validated the results through simulation
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Derivation of E{α4
k cos4 θek}

E{α4
k cos4 θek} =

1

8

[
E
{
α4
k E{cos 4θek/αk}+ 4α4

k E{cos 2θek/αk}+ 3α4
k

}]
E{cos 4θek/αk} = E{cos |4θek |/αk}

=

∫ π

θ=0

cos 4θek f (|θek |/αk)dθek

=

∫ π

θ=0

cos 4θ

[
e−γpα

2
k

π
+
γpα

2
k sin 2θ

π

∫ π−θ

x=0

e−
γpα

2
k sin2 θ

sin2 x

sin2 x
dx

]
dθ

=
γpα

2
k

π

∫ π

x=0

1

sin2x

∫ π−x

θ=0

cos 4θ sin 2θe−
γpα

2
k sin2 θ

sin2 x dθdx

=
γpα

2
k

π

∫ π

x=0

1

sin2x

∫ sin2 x

t=0

(
8t2 − 8t + 1

)
e−

γpα
2
k t

sin2 x dtdx

=
6

γ2
pα

4
k

− 4

γpα2
k

+ 1− 6

γ2
pα

4
k

e−γpα
2
k − 2

γpα2
k

e−γpα
2
k

34 / 32



Derivation of E{α4
k cos4 θek} contd...

E{α4
k cos 4θek} = E

{
6

γ2
p

− 4α2
k

γp
+ α4

k −
6

γ2
p

e−γpα
2
k − 2α2

k

γp
e−γpα

2
k

}
For Rayleigh fading channel,

E{e−uγk} = Lγk (u) =
1

1 + uΩk

E{γke−uγk} = − ∂

∂u
Lγk (u) =

Ωk

(1 + uΩk)2

⇒ E{α4
k cos 4θek} = 8σ4

r +
6

γ2
p

− 4Ωk

γp
− 6

γ2
p

1

1 + γpΩk
− 2

γp

Ωk

(1 + γpΩk)2

E{α4
k cos 2θek} = E

{
α4
kE{cos 2θek/αk}

}
= 8σ4

r −
Ωk

γp
+

Ωk

γp(1 + γpΩk)2

⇒ E{α4
k cos4 θek} = 8σ4

r −
Ω2

k

4

5 + 4γpΩk

(1 + γpΩk)2 35 / 32
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