Secrecy in Interference Channel with Source Cooperation: A Deterministic View

P. Mohapatra
Dept. of ECE, Indian Institute of Science
Bangalore

$13^{\text {th }}$ October 2012

Motivation

- Open nature of wireless medium: users can eavesdrop other user message
- Different users have subscribed to different contents
- e.g.: cellular network
- Users can cooperate
- How cooperation and interference affect the secrecy capacity?

Interference channel with source cooperation

Problem statement

- To investigate the effects of user cooperation on secrecy of interference channel (IC)
- In general, solving such problem is hard!
- e.g.: Capacity of 2-user Gaussian IC (GIC) still remains an elusive problem
- Analogous model: deterministic model
- Translate the ideas from deterministic model to Gaussian model
- More optimistic to go for approximate capacity (secure DOF/GDOF) characterization

System model

- Symmetric GIC
- Cooperative links: lossless but of finite capacity
- Global CSI at every nodes
- Transmitters completely trust each other

Notion of secrecy

- Perfect secrecy

$$
I\left(W_{i} ; Y_{j}\right)=0, \quad i \neq j
$$

- Strong secrecy

$$
\lim _{n \rightarrow \infty} I\left(W_{i} ; Y_{j}^{n}\right)=0, \quad i \neq j
$$

- Weak secrecy

$$
\lim _{n \rightarrow \infty} \frac{1}{n} I\left(W_{i} ; Y_{j}^{n}\right)=0, \quad i \neq j
$$

- Symmetric secrecy capacity: largest secrecy rate that can be achieved by any coding scheme

Recap on deterministic model

- Introduced by Avestimehr, Diggavi and David Tse for relay network ${ }^{1}$
- We will consider it for

1. Point-to-Point AWGN channel
2. Two-user Interference channel
[^0]
Modeling of Point-to-Point Link

Real scalar Gaussian model:

$$
y=h x+z, \quad z \sim N(0,1)
$$

Assumptions:

- Avg. power constraint at the Transmitter: $E\left[|x|^{2}\right] \leq 1$
- The transmit power and noise power are normalized to 1

Channel gain is related to SNR as: $|h|=\sqrt{\text { SNR }}$
The capacity of this channel is:

$$
C_{\mathrm{AWGN}}=\frac{1}{2} \log (1+S N R)
$$

- Assume h, x and z : positive real numbers
- x has peak power constraint of 1

The received signal in binary form is

$$
\begin{aligned}
& y=h x+z=\sqrt{S N R} x+z \\
&=2^{\frac{1}{2} \log S N R} \sum_{i=1}^{\infty} x(i) 2^{-i}+\sum_{i=-\infty}^{\infty} z(i) 2^{-i} \\
&=2^{\frac{1}{2} \log S N R} \sum_{i=1}^{\infty} x(i) 2^{-i}+\sum_{i=1}^{\infty} z(i) 2^{-i} \\
& \approx \underbrace{2^{n} \sum_{i=1}^{n} x(i) 2^{-i}}_{\text {n-most significant bits }}+\underbrace{\sum_{i=1}^{\infty}[x(i+n)+z(i)] 2^{-i}}_{\text {Mixed with noise }}, \\
& \text { where } n=\left[\frac{1}{2} \log S N R\right]^{+}
\end{aligned}
$$

- Transmitting signal: a sequence of bits at different signal levels
- Highest signal level = MSB and Lowest signal level = LSB
- Noise: modeled by truncation

IC: Deterministic model

- System model

$$
\begin{aligned}
& \mathbf{y}_{1}=\mathbf{D}^{q-m} \mathbf{x}_{1} \oplus \mathbf{D}^{q-n} \mathbf{x}_{2} \\
& \mathbf{y}_{2}=\mathbf{D}^{q-m} \mathbf{x}_{2} \oplus \mathbf{D}^{q-n} \mathbf{x}_{1}
\end{aligned}
$$

where
\mathbf{x}_{i} : binary input vector of length $q=\max (m, n)$

$$
D=\left[\begin{array}{lllll}
0 & 0 & \cdots & 0 & 0 \\
1 & 0 & \cdots & 0 & 0 \\
& \vdots & \vdots & \vdots & \\
0 & 0 & \cdots & 1 & 0
\end{array}\right]
$$

IC with source cooperation: Deterministic model

Figure: Symmetric GIC with source cooperation

Figure: Deterministic Equivalence

- $m=\left(\left\lfloor\log \left|h_{d}\right|^{2}\right\rfloor\right)^{+}$
- $n=\left(\left\lfloor\log \left|h_{c}\right|^{2}\right\rfloor\right)^{+}$
- $C=\left\lfloor C^{G}\right\rfloor$

Class of channel: weak/moderate interference case $(m>n)$

- Type of links
- Type V
- Type VI
- Type VII
- Type VIII
- Class of channel
- Class A: Type V, VI and VII
- Class B: Type V and VII
- Class C: Type V, VII and VIII

Class B

Figure: Deterministic IC: $m=4$, and $n=2$

- For class B: $m=2 n$
- Number of Type V links: $T_{5}=n$
- Number of Type VII links: $T_{7}=n$

Achievable scheme for Class B

Figure: Deterministic IC: $m=4, n=2$ and $C=0$

Figure: Deterministic IC: $m=4, n=2$ and $C=1$

Figure: Deterministic IC: $m=4, n=2$ and $C=2$

Achievable scheme: Class B

- When $C \leq n$
- Transmit in Type VII links from 1 to $\min (n, C)$ as :

$$
a_{m-n+i} \oplus b_{i}
$$

- If $n-\min (n, C)>0$, then transmit in the remaining Type VII links

$$
b_{\min (n, C)+i}, \quad i=1 \text { to } n-\min (n, C)
$$

- If $\min (n, C)>0$, then transmit in the Type V links

$$
b_{m-n+i}, \quad i=1 \text { to } \min (n, C)
$$

- Secrecy capacity

$$
C_{S}=n+\min (m-n, C)
$$

- If $C>n$, then discard the excess $C-n$ bits!

Class A

Figure: DIC: $m=3$, and $n=1$

- For class B: $m>2 n$
- Number of Type V links: $T_{5}=m$
- Number of Type VII links: $T_{7}=m$
- Number of Type VI links: $T_{6}=m-2 n$
- Use the same achievable scheme as described for the Class B channel
- Transmit the data bits as it is on the Type VI links
- Secrecy capacity

$$
\begin{aligned}
C_{S} & =n+\min (m-n, C)+T_{6} \\
& =m-n+\min (m-n, C)
\end{aligned}
$$

Class C

Figure: Deterministic IC: $m=5$, and $n=4$

- For Class C: $m<2 n$
- Number of Type VIII links: $T_{8}=2 n-m$
- Number of Type V links: $T_{5}=m-n$
- Number of Type VI links: $T_{7}=m-n$

$T_{8}>T_{5}+T_{7}$ and $m<2 n$

- Type V and VII links do not interfere with each other
- At least $T_{5}+T_{7}$ bits can be transmitted
- How many bits can be transmitted on the Type VIII links?
- Number of levels available for transmission on Type VIII links

$$
r=T_{8}-\left(T_{5}+T_{7}\right)
$$

- Transmitted bits get shifted by an amount of $m-n$ at the unintended $R x$

Transmission on Type VIII links

- No. of bits that can be sent consecutively on Type VIII links: $B=m-n$
- No. of such consecutive levels: $B^{\prime}=\left\lfloor\frac{r}{B}\right\rfloor$
- No. of consecutive levels that can be used for transmission

$$
S= \begin{cases}\frac{B^{\prime}}{2} & \text { if } B^{\prime} \text { is even } \\ \frac{B^{\prime}+1}{2} & \text { if } B^{\prime} \text { is odd }\end{cases}
$$

- Total number of bits sent on the consecutive level: $S B$
- No. of consecutive levels no bits transmitted: $S^{\prime}=\left\lfloor\frac{r-S B}{B}\right\rfloor$
- No. of nonconsecutive levels: $u=r \% B$
- If $S^{\prime}=S$ and $u \neq 0$, then these remaining u levels can be used for signal transmission
- If $S^{\prime} \neq S$ and $u \neq 0$, then these remaining u levels can not be used for transmission

Achievable scheme: Class C

Figure: Deterministic IC: $m=5, n=4$ and $C=0$

Interference as strong as signal $(m=n)$

- $y_{1}=y_{2}=x_{1} \oplus x_{2}$
- $C_{S}=0$

High interference case: $m<n$

- Different type of links
- Type I
- Type II
- Type III
- Type IV
- Type of channel
- Class 1
- Class 2
- Class 3

Class 3 channel

- For Class 3: $n<2 m$
- Number of Type VIII links: $T_{4}=2 m-n$
- Number of Type V links: $T_{5}=n-m$
- Number of Type VI links: $T_{7}=n-m$

Achievable scheme: Class 3

Figure: DIC: $m=2, n=3$ and $C=0$

Figure: DIC: $m=2, n=3$ and $C=1$

Figure: DIC: $m=2, n=3$ and $C=2$ (First round)

Figure: DIC: $m=2, n=3$ and $C=2$ (Second round)

Figure: Deterministic IC: $m=2, n=3$ and $C=3$

Some observations

- When $C=n$, it is possible to achieve $\max (m, n)$
- For Class A and B (weak/moderate intf. regime): scheme is optimal
- For Class C: not optimal always
- For Class 3 (high intf. regime): scheme is optimal when $C \geq 1$
- For Class 1 and 2: When $C=0, C_{S}=0$

Future work

- Outer bounds: DIC with source cooperation
- Use the insights obtained from DIC to derive inner/outer bounds for the GIC
- Is secrecy in DIC equivalent to secrecy in GIC?
- Is it possible to achieve the maximum possible rate (without secrecy constraint) as in DIC?
- $C_{\mathrm{DIC}} \subseteq C_{\mathrm{DIC}}^{S}$?
- What if, the users can not be trusted?

[^0]: ${ }^{1}$ Wireless Network Information Flow: A Deterministic Approach, Trans. IT, April, 2011

