Secrecy in the 2-User Symmetric Interference Channel with Transmitter Cooperation: Deterministic View

P. Mohapatra

9th March 2013

Outline

- Motivation
- Problem statement
- Achievable scheme
 - Weak interference regime
 - 2 Moderate interference regime
 - Very high interference regime (for a specific case)
- Summary
- Outer bound (if time permits)

Motivation

- Interference in wireless network
 - Limits the communication rate
 - Allows users to eavesdrop other user's signal
- Secrecy: important concern in wireless network
 - Cellular network
 - Support high throughput and secure its transmissions
- Is it possible to get both the benefits?
- Answer these questions using information theoretic approach

Problem statement

- Users are not completely isolated (e.g.: base stations)
- Users can cooperate
- Effectiveness of limited transmitter cooperation in a 2-user symmetric linear deterministic interference channel
 - Interference management
 - Secrecy

Why deterministic model

- Good approximation of Gaussian model at high SNR
- Give insights into achievable schemes and outer bounds
- Not feasible in deterministic model: may not be feasible in Gaussian case

Deterministic model

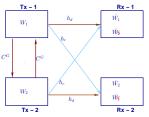


Figure: Symmetric GIC

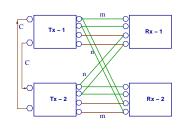


Figure: SLDIC

- $m \triangleq (\lfloor \log |h_d|^2 \rfloor)^+$, $n \triangleq (\lfloor \log |h_c|^2 \rfloor)^+$ and $C \triangleq \lfloor C^G \rfloor$
- $\alpha \triangleq \frac{n}{m}$
- a_i and b_i : data bits of transmitter 1 and 2
- d_i and e_i : random bits of transmitter 1 and 2
- ullet Data bits and random bits: Bern $\left(\frac{1}{2}\right)$

System model

Input-output equation

$$\mathbf{y}_1 = \mathbf{D}^{q-m} \mathbf{x}_1 \oplus \mathbf{D}^{q-n} \mathbf{x}_2; \ \mathbf{y}_2 = \mathbf{D}^{q-m} \mathbf{x}_2 \oplus \mathbf{D}^{q-n} \mathbf{x}_1$$

- \mathbf{x}_i and \mathbf{y}_i : binary vectors of length $q \triangleq \max\{m, n\}$
- **D**: $q \times q$ downshift matrix with elements

$$d_{j,k} = \left\{ egin{array}{ll} 1 & ext{if } 2 \leq j = k+1 \leq q \ 0 & ext{otherwise} \end{array}
ight.$$

- Encoding: $\mathbf{x}_i = f(W_i, W_i^r, v_{ij})$
- Decoding: solving the set of linear equation
- Receiver does not require the knowledge of the random bits

System model

- Cooperative links: lossless but of finite capacity
- Perfect secrecy

•
$$I(W_i; \mathbf{y}_j) = 0$$
, $(i \neq j) \Leftrightarrow H(W_i) = H(W_i/\mathbf{y}_j)$

• Transmitters completely trust each other

Weak interference regime $(0 \le \alpha \le \frac{2}{3})$

- Achievable scheme
 - Interference cancelation
 - Uncoded bit transmission

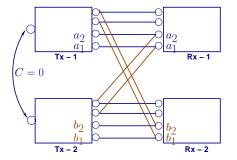


Figure: SLDIC with m = 4, n = 2 and C = 0: $R_S = 2$

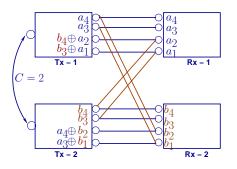


Figure: SLDIC with m=4 , n=2 and C=4: $R_{S}=4$

Encoding scheme

• Encoding for message of transmitter 1

$$\mathbf{x}_1 = \left[\begin{array}{c} \mathbf{0}_{(m-(r+\mathcal{C}))^+ \times 1} \\ \mathbf{a}_{(r+\mathcal{C}) \times 1} \end{array} \right] \oplus \left[\begin{array}{c} \mathbf{0}_{(m-\mathcal{C}) \times 1} \\ \mathbf{b}_{\mathcal{C} \times 1}^{\mathcal{C}} \end{array} \right]$$

where
$$\mathbf{a} \triangleq [a_{r+C}, a_{r+C-1}, \dots, a_1]^T$$
, $\mathbf{b}^c \triangleq [b_{r+C}, b_{r+C-1}, \dots, b_{r+1}]^T$ and $r \triangleq m - n$

Achievable rate

$$R_S = \underbrace{m-n}_{\text{uncoded transmission}} + \underbrace{\min\{n,C\}}_{\text{interference cancelation}}$$

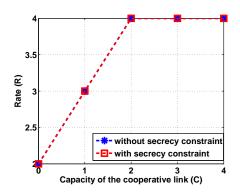


Figure: Achievable rate of the SLDIC with m = 4 and n = 2

• When $0 \le \alpha \le \frac{1}{2}$, one obtains secrecy for free

Moderate interference regime $(\frac{2}{3} < \alpha < 1)$

- Achievable scheme
 - Interference cancelation
 - Random bit transmission

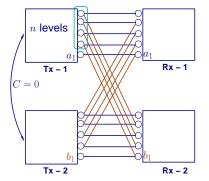


Figure: SLDIC with m = 5, n = 4 and C = 0

• Possible to transmit at least m-n bits securely

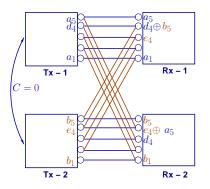


Figure: SLDIC with m=5 , n=4 and C=0: $R_S=2$

 Possible to transmit in the upper levels: random bits transmission

With cooperation

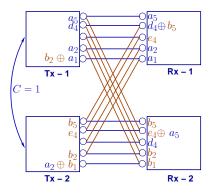
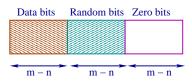


Figure: SLDIC with m=5 , n=4 and C=1: $R_S=3$

- Uses combination of interference cancelation and random bit transmission
- Need to determine the number of data bits that can be transmitted with the help of random bit transmission

Encoding scheme

Data transmission with the help of random bits transmission



- $B \triangleq \left\lfloor \frac{g}{3(m-n)} \right\rfloor$ and $t \triangleq g\%\{3(m-n)\}$, where $g \triangleq \{n (r_2 + C)\}^+$
- $q \triangleq \min \{(t r_2)^+, r_2\}$: number of data bits that can be securely sent on the remaining t levels

Encoding scheme

• Encoding of transmitter 1 message when q = 0

$$\mathbf{x}_{1} = \begin{bmatrix} \mathbf{0}_{(m-(r_{2}+C))^{+}\times 1} \\ \mathbf{a}_{(r_{2}+C)\times 1} \end{bmatrix} \oplus \begin{bmatrix} \mathbf{0}_{(m-C)\times 1} \\ \mathbf{b}_{C\times 1}^{c} \end{bmatrix} \oplus \begin{bmatrix} \mathbf{a}_{p\times 1}^{u} \\ \mathbf{0}_{p'\times 1} \end{bmatrix}$$

$$\mathbf{a}^{u} \triangleq \begin{bmatrix} \mathbf{u}_{1}, \mathbf{d}_{2}, \mathbf{z}_{3}, \dots, \mathbf{u}_{3B-2}, \mathbf{d}_{3B-1}, \mathbf{z}_{3B}, \end{bmatrix}^{T},$$

$$\mathbf{u}_{I} \triangleq \begin{bmatrix} a_{m-(I-1)r_{2}}, a_{m-(I-1)r_{2}-1}, \dots, a_{m-Ir_{2}+1} \end{bmatrix},$$

$$\mathbf{d}_{I} \triangleq \begin{bmatrix} d_{m-(I-1)r_{2}}, d_{m-(I-1)r_{2}-1}, \dots, d_{m-Ir_{2}+1} \end{bmatrix},$$

$$\mathbf{z}_{I} \text{ is a zero vector of size } 1 \times r_{2}, p \triangleq 3B(m-n)$$

Achievable rate

$$R_S = m - n + \underbrace{B(m-n) + q}_{\text{random bits transmission}} + \min\{n, C\}$$

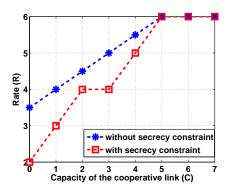


Figure: Achievable rate of the SLDIC with m = 6 and n = 5

• Gap may be due to the secrecy constraint

Very high interference regime ($\alpha \ge 2$)

- Scheme for $\alpha = 2$ and even valued m
- Achievable scheme
 - Relaying of the other user's data bits
 - Time sharing
 - Techniques used in the moderate interference regime
- Involves sharing of random bits/data bits or both

Achievable scheme

- When C = 0
 - Not possible to achieve perfect secrecy
 - We will look at the outer bound (if time permits)
- When $0 < C \le \frac{m}{2}$
 - Only random bit sharing
- When $\frac{m}{2} < C < \frac{3m}{2}$
 - Data bits and random bits sharing
- When $\frac{3m}{2} \le C \le n$
 - Data bits sharing

When $0 < C \le \frac{m}{2}$: m = 2, n = 4 and C = 1

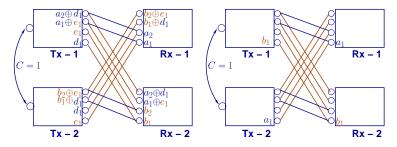
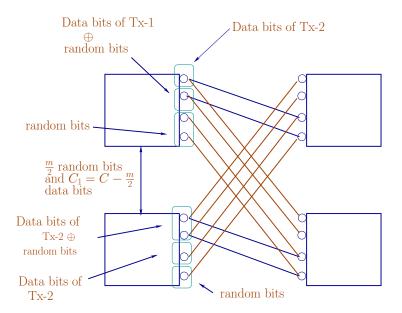


Figure: With random bits sharing

Figure: With data bits sharing

When $\frac{m}{2} < C < \frac{3m}{2}$: m = 2, n = 4 and C = 2



m = 2, n = 4 and C = 2

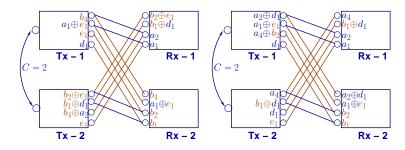


Figure: First time slot

Figure: Second time slot

• Achieves: $R_S = 2.5$

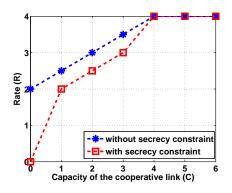


Figure: Achievable rate of the SLDIC with m = 2 and n = 4

• Possible to achieve non-zero secrecy rate with cooperation

Summary

- When $0 \le \alpha \le \frac{1}{2}$: secrecy comes for free
- When C = n and $\alpha \neq 1$: the proposed scheme achieves the maximum possible rate of $\max\{m, n\}$
- In all the interference regimes, the proposed scheme always achieves nonzero secrecy rate with cooperation, except for the lpha=1 case
- Very high interference regime $\alpha \geq 2$: sharing random bits, data bits or both found to be useful

Outer bound ($\alpha = 1$)

Based on: Fano's inequality and secrecy constraints

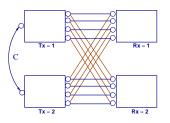
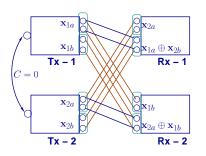


Figure: SLDIC with m = n = 4

- $ullet y_1 = y_2 = x_1 \oplus x_2$
- Bound on R₁

$$nR_1 \le I(W_1; \mathbf{y}_1^n) + n\epsilon_n$$

= $I(W_1; \mathbf{y}_2^n) + n\epsilon_n$
or $R_1 = 0$



$$\mathbf{y}_{1a} = \mathbf{x}_{2a}$$
 $\mathbf{y}_{1b} = \mathbf{x}_{1a} \oplus \mathbf{x}_{2b}$ $\mathbf{y}_{2a} = \mathbf{x}_{1a}$ $\mathbf{y}_{2b} = \mathbf{x}_{2a} \oplus \mathbf{x}_{1b}$

Outline of the proof

$$\begin{array}{ll} nR_1 & \leq I(W_1,\mathbf{y}_1^n) + n\epsilon \\ & = I(W_1,\mathbf{y}_1^n) - I(W_1,\mathbf{y}_2^n) + n\epsilon \\ & = I(W_1,\mathbf{y}_1^n,\mathbf{x}_2^n) - I(W_1,\mathbf{y}_2^n) + n\epsilon \\ & = I(W_1,\mathbf{y}_1^n,\mathbf{y}_{1b}^n|\mathbf{x}_2^n) - I(W_1,\mathbf{y}_{2a}^n,\mathbf{y}_{2b}^n) + n\epsilon \\ & = I(\mathbf{x}_{1a}^n) - H(\mathbf{x}_{1a}^n|W_1) - I(W_1;\mathbf{y}_{2a}^n) - I(W_1;\mathbf{y}_{2b}^n|\mathbf{y}_{2a}^n) + n\epsilon \\ & \leq I(W_1;\mathbf{x}_{1a}^n) - I(W_1;\mathbf{x}_{1a}^n) + n\epsilon \end{array}$$
 or $R_1 = 0$