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Sparse Representation

=

yk A xk

m× 1 m×N

N × 1

kxkk0 < m < N

I A: Dictionary
I xk : Sparse representation
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Choice of Dictionary

1. Predefined dictionary - non-adaptive
I Fourier, Discrete Cosine Transform, Wavelet

2. Learned dictionary - better-adapted to signal
I often leads to more compact representation†

† M. Elad, “Sparse and Redundant Representations”, Springer, 2010
J. Mairal, et.al., ”Task-driven dictionary learning,", IEEE Trans. Patt. Anal. Mach. Intell., 2012
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Dictionary Learning

=

Y A X

I Matrix factorization problem: Learn both A and sparse X
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System Model

I A set of K training signals

yk = Axk + wk , k = 1,2, . . . ,K

I Measurement noise w k ∼ N (0, σ2I)

I Ambiguity in amplitude: all columns of A has unit norm
I Assumption: Knowledge of N
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Sparse Bayesian Learning Framework∗

Fictitious prior on xk

xk ∼ N (0,Γk )

yk |xk ∼ N (Axk , σ
2I)

Γk = Diag {γk} ∈ RN×N
+

Estimation method: Type II ML estimation
1. Learn parameters γk and A that maximizes − log p(yK ;Λ)

2. Estimate X using the estimates of parameters

∗D. P. Wipf and B. D. Rao, "An empirical Bayesian strategy for solving the simultaneous sparse approximation problem," TSP 2007
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Parameter Learning

I Expectation-maximization algorithm with xk as hidden data

Expectation-Maximization Algorithm

E-step: Q
(
Λ,Λ(r−1)

)
= ExK |yK ;Λ(r−1)

{
log p

(
yK ,xK ;Λ

)}
M-step: Λ(r) = arg max

Λ∈�
Q
(
Λ,Λ(r−1)

)
.

I Tuple of unknown parameters: Λ = {A,γk k = 1,2, . . .K}
I Feasible set: � =

{
A ∈ Rm×N : AT

i Ai = 1,∀i
}
× RKN
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EM Algorithm

E-step:Update the statistics of xk

I Statistics: mean and covariance
I Closed form expressions in terms of parameters

↓↑
M-step: Update the parameters

I Separable in variables: A and γk

I Closed form expression for γk update
I Non-convex optimization problem corresponding to A update
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Dictionary Update

I Non-convex optimization problem

arg min
A:AT

i Ai

− Tr
{

MY TA
}
+

1
2

Tr
{

AΣAT
}
,

I M and Σ: functions of statistics of xk

I Closed form solution if Σ is a diagonal matrix

I Solved using alternating minimization procedure
I Update one column of A at a time
I Closed form updates
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Overall Algorithm

E-step: UpdateΣ(k),µk

for k = 1, . . . ,K

Φ=
(
σ2I + A(r)Γ

(r)
k A(r)

)−1

Σ(k)=Γ
(r)
k

(
I−A(r)TΦA(r)TΓ

(r)
k

)
µk =σ

−2Σ(k)A(r)Tyk

M-step: Update A and γk

for k = 1, . . . ,K
γ
(r)
k = Diag

{
µkµ

T
k +Σ(k)

}
Σ =

K∑
k=1

µkµ
T
k +Σ(k)

AM: Update A
for i = 1,2, . . . ,N

v =
(
Y MT

)
i
−

i−1∑
j=1

Σ[i , j]Â
(r ,u)
j −

N∑
j=i+1

Σ[i , j]Â
(r ,u−1)
j

Â
(r ,u)
i =

{
1
‖v‖v if v 6= 0

Â
(r ,u−1)
i otherwise.
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AM procedure Converges to Nash equilibrium

Proposition

The sequence of function values
{

g
(

Â
(u))}

u∈N
generated by the AM

procedure converges, and every subsequential limit Â of the

sequence
{

Â
(u)}

u∈N
is a Nash equilibrium point, namely,

g
(

Â1, . . . , Âi−1, Âi , Âi+1, . . . , ÂN

)
≤ g

(
Â1, . . . , Âi−1,a, Âi+1, . . . , ÂN

)
,

for any vector a with unit norm and for i = 1,2, . . . ,N.
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AM procedure Converges to Stationary Point

Theorem

For any initialization of the AM procedure Â
(0)

such that
g
(

Â
(0))

<∞, the sequence
{

g
(

Â
(u))}

u∈N
generated by the AM

procedure converges to a stationary point of the optimization
problem. Moreover, the stationary point is not a local maxima.

Proof.
Using Łojasiewicz gradient inequality

I Initialization need not be a feasible point
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AM procedure: Sublinear Rate of Convergence

Theorem

For any initialization of the AM procedure Â
(0)

such that
g
(

Â
(0))

<∞, there exists C > 0 such that the sequence{
g
(

Â
(u))}

u∈N
generated by the AM procedure satisfies

∥∥∥Â
(u)
− Â

∥∥∥ ≤ C/u.

Proof.
Using Łojasiewicz exponent

I Independent of system dimensions
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Summary

I Proposed a joint dictionary learning and sparse signal recovery
algorithm

I Formulated using SBL framework
I Implemented using EM algorithm with AM procedure
I Convergence properties of AM procedure is studied
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