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Problem Statement

@ Consider a WSN consisting of L sensor nodes (sg, S1 - .. S;).

@ Sensor node s; wants to estimate signal vector x; € R".
(] X; are sparse.
] X; share common support (joint sparsity model-2 1)
@ Forj # k, non zero entries of X; & Xy are uncorrelated.
@ Sensor node s;,j € (1,2... L) takes m noisy linear measurements of signal
vector of interest X;.
y/ = ¢ij + W/'

° q)j IS ]Ran
® w; ~ N0, o7l

@ Sensor node s;,j € (1,2... L) takes m noisy linear measurements of signal
vector of interest x;.

@ Goal: Estimate joint sparse signal vectors X1, Xz ... X, fromyq,yo...y;.

1 Distributed Compressed Sensing, Duarte, Sarvotham, Baron, Wakin & Baranuik, 2005



Centralized and distributed schemes in WSNs
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Centralized scheme

@ Each sensor node s; transmits its local measurement vector y; and
measurement matrix ®; to fusion center (FC).

@ FC runs joint sparse signal recovery algorithm to estimate X1, X2 ... X.
@ FC transmits recovered sparse vector x; to sensor node s;.
@ Advantages:

@ Sensor node design is simplified, computationally intensive recovery algorithm offloaded to FC
@ Number of messages exchanged is low.

@ Disadvantages:

@ If FC breaks down, WSN collapses.
@ Less sensing range.



Centralized and distributed schemes in WSNs
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Distributed scheme

@ Each sensor node s; can perform computations needed for recovering x; from
local measurement y; and then some more..

@ Question: Can the WSN converge to centralized solution while ensuring:

@ processing at each sensor node is kept as simple as possible.
@ sensor nodes exchange messages with only single-hop neighbours.
@ noexchange of yy,y> ...y, and local estimates X1, Xa, . . . X;.



Centralized algorithm

@ Goal:
Estimate joint sparse vectors X1, X» . . . X; from measurements across the
network y1,Y2...Y;.

@ Measurement model:
Y=0X+W

@ Y=y, Vo Y[, X=[x1, %2 x [, W= [wy,wa...w]
@ We assume Xy, Xz ...X, arei.i.dand N(0,F—"), where I = diag(~),~ € RT.
If v(i) = oo, then x4 (i) = x4 (i) --- = x.(i) = 0.
@ For fixed I', then LMMSE estimate of X; ~ N(p;, X)).

oTo
Y = (r+7.2 y~!

J
po= oy txely

@ If we find ~, we can find x4, X ... X;.



Centralized algorithm

@ We find ML estimate of ~.

~* = argmax p(Y/~)
Yy

p(Y/v) = / p(Y1,Y2-- Yo, X1,X2. .. X1/Y)
X{,Xp...X|
L
= / [ [ty xi/7)
X1 Xg . XL g

L
=TI/ pty/%)-pixi/)
j=1"%

L
= JINj;: o0, (P1+ om0
j=1

@ No closed form expression for v* exists.

@ How do we find v* ?
@ METHOD 1: Find ~* using fixed point iterations (iterative re-estimation)
@ METHOD 2: Use EM algorithm to maximize p(Y/~) by treating
X1, X2 ... X, as hidden variables.



Centralized algorithm

@ EM formulation for ML estimation of ~

Observed variables: y1,yo ...y,
Hidden variables: x1, X5 . . . X;.
Complete data: {Y, X}

To be estimated: ~

@ E-Step:
Qv 79) = Epyy iy 109 p(Y, X /)

@ M-Step:
A = argmax Q(v,~™*))
vy



Centralized algorithm

@ Simplification of E-step cost function Q(~,~*))

v = By ) 09R(Ys X /)
= Ep )yt 109 P(Y/X) +10g p(X /)]
= E[X/ Y,‘y(k>][|09 pP(X/~)] (first term independent of ~)

L
= By >~ log p(x;/~)
j=1

L
) Ex/_/yjy,y(k)] log p(x;/~)
j=1
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Centralized algorithm

@ M-step
~EH) = argmax Q(y,~™)
vy

. L
~EEN () = Vi=1ton
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Centralized algorithm

@ EM-iteration in centralized algorithm

@ E-Step:
To.
z(k) — (r(k) + ¢f ¢/ —1
) o-j2
kK _—2s(MgT
Heo= o
@ M-Step:
(k+1) () — L P
¥ ()= Vi=1ton

S =06 ) + (i)

@ Upon convergence, it is observed that most of (i) — oo, leading to sparse
LMMSE estimates Xy, X1 ...X,.



Centralized algorithm

(ntrials = 25, n = 100, m = 40, 6 percent sparsity, #nodes = 6)
T T T

—A— No cooperation ||
—O— Centralized

-20

avg. meas squared error (in dB)

_45 . . . . . . . H
10 15 20 25 30 35 40 45 50
SNR (in dB)

Figure: Average MSE vs SNR



Centralized algorithm

(ntrials = 50, n = 100, m = 20, 6 percent sparsity, #nodes = 6)
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Figure: Average MSE vs SNR for highly undersampled case



Distributed scheme

@ Reuwrite the objective function Q(v, v(¥) in M-step.

~EED = argmax Q(v, ™)
Y

argmax 12 S log (i) — v(NEW (i) + (i)

j=1 i=1

@ Q(v,v®)is separable inys,ys...y; !

@ Q(v,v®) can be split as

L
Ay, ~ ") =36 yy)

j=1
f(v,y) = Zlogw)f (NEP 30 + 1))



Distributed scheme

@ We re-write the optimization problem in M-step as

L n
3 B , K),: K)/:
min 37> —log (i) + 3= (1. 1) + 1 ()?)
j=1 i=1
suchthatvj=~, YbeB;, jeJ

@ ~,, are auxilliary parameters used to establish consensus among
Yo, Y1 - YL-
~p is maintained by a bridge node sj,.
B; denotes the set of bridge nodes connected to s;.
B = | B; is the set of all bridge nodes in WSN.
jed
@ N, is the set of sensor node s; connected to bridge node sp.

(]




Distributed scheme

@ Selection of bridge nodes in WSN

Rule-1: Each node in the network must be connected to atleast one bridge node
inB,i.e, B # ¢.

Rule-2: If two nodes s;, and s;, are single hop connected neighbours, then

B, N B, # ¢-

@ For a connected WSN, if conditions (1) and (2) hold then
Yvj=7 VbeB, jedJimpliesthatall~; are equal.




Alternating directions method of multipliers

@ ADMM problem form (with f, g convex)

minimize  f(X) + g(z)
subjectto Ax-+Bz=c

@ Augmented Lagrangian
Lp(%,2,A) = f(X) + 9(2) + A\T(Ax + Bz —¢) + §||Ax +Bz—c|2

@ ADMM iterations

X1 = argmin L,(x,z¥, AK) (x-minimization)
X

2 = argmin L,(x¥1,z, AK) (z-minimization)
z

A = Ak 4 p(Ax+ Bz —c) (dual update)



ADMM for distributed scheme

@ Augmented Lagrangian L, (vjcy, YbeB: AjeJ)-

L n
S —log (i) + % (NEX (i) + () (1))

j=1i=1
L

DD CHHCTEED

j=1 beB;

L
+ ST Tl -l

j=1 beB;

N

@ ADMM iterations

- K yk
(vjes) " = argmin Ly (vjes, Yoep Mes)
Yjed

k+1

(vbeB) ™" = argmin L (7,6, s YoeBs Afey)

YbeB
(ALYRHT = (AEYF 4 (T — )



ADMM for distributed scheme

@ ADMM iterations

A = D+ (v —b) vied, beB (1)
(W' = argmin Lo(vjes, vhep NES) vjied @)
Yjed
e, (P + D))
()t = ! vbe B 3)

Z/er P




EM iterations in WSN

@ |Initialization

] A/‘? and ~p, seeded with zero
@ ~; seeded with random values.

@ Each iteration of EM algorithm comprises of:

@ COMM ROUND1: Each bridge node b € B transmits its ~,, to all nodes in Nj.
@ Eachnodej € J updates its set of lagrangian variables according to

AN = DY+ o — ) vbeB

COMM ROUND2: Each node j € J transmits Aj[-’ to all bridge nodes in B,
Each node j € J updates its estimate of hyperparameters ; according to

/P2 4p|B| — P
K, j ki AP
¥ ) = —E where P = ¥X(i, i)+ X ()2+ > (N () —pp HO)
1 beB;
l

[}

COMM ROUND3: each node j € J transmits its ~; to all bridge nodes in B;.
Each node b € B updates its estimate of bridge parameter -, according to

k+1 byk+1
Zjeny (P A ()T

ZJ'ENb P

(vo) ! =



Distributed scheme

(ntrials = 25, n = 100, m = 40, 6 percent sparsity, #nodes = 6)
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Distributed scheme

(ntrials = 50, n = 100, m = 20, 6 percent sparsity, #nodes = 6)
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Figure: Average MSE vs SNR for undersampled case



Distributed scheme

avg. MSE vs no. of iterations
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Figure: Comparison of convergence rate at SNR = 20 dB




Convergence rate analysis for ADMM

@ Suppose a sequence xi converges to L.
@ x is said to be Q-linearly convergent to L, if there exists . € (0, 1) such that
Xkt — L]

lim ————— =
k— o0 ‘Xk — L‘ ’

@ X is said to be R-linearly convergent to L, if there exists Q-linearly convergent
sequence yx which converges to zero such that

lim |xx — L| < yk
k— o0




Main convergence result

@ For the convex minimization problem (f is convex),

minimize f(x)
subject to Eix+Exz=0
let x* and z* denote the unique optimal values which minimize the primal

problem. Also let A* denote the unique maximizer of dual problem with dual
variable . If we perform the following iterations:

X1 = argmin L,(x,2¥, \F)
X

2K = argmin L,(x¥1,z, A%)
z

AT = Nk + p(E1X + EQZ)

then, we have Q-linear convergence of uk = [EozX  AK]T to u* = [Epz*  A*]T
and R-linear convergence of x* to x*.

1
1446

k+1 2 k 2
[T —u¥|lg < [lu® —u™|lg

1
k+1 2 k 2
DT x| < g



Main convergence result

@ Where my is such that
(V(X1) — V(X2), X1 — X2) > my||X1 — Xo|3 V X1, X2

@ ||.||g is a vector norm defined as

2 _ T (el O
i =w’ [ §]w

@ ¢ > 0andis given by

2my omin(E1)  (n— e,
M2 ) 2 )
1P nax (Eq) + ﬁ promax(Er) a

Z min

0 = min{

where p and v are auxilliary variables greater than one.
@ M; is Lipshitz constant of V.



Optimizing the convergence rate

@ For fast convergence, we select p which maximizes 4,

PR — 2my o%n(E1) (u—1)p}
- 2 ) E )
11poax (Eq) + W Proimax(E1) K
B B2 B3

@ For fixed p, § is maximized when 81 = 82 = 33
Let 81 = B2 = B3 hold when p = p* and v = v*.

@ Define vp = %&X(f‘), then v, must satisfy:
min 1

M2 M
(2mgp)v? (2mf+2mfp2K+p2KUmm+p DYvot+(2mepK+p3 K20 %m—i——) =0

min min

o2 (E1) _ Max connections per node
02.2x(Eq) Min connections per node

@ Since v, = % we want the larger root of this quadratic equation to be as small.



Optimizing the convergence rate

@ Root analysis of quadratic equation in p

p Mz
(2mep)v? (2mf—|—2mfp2K+p2KUmm+Tf)yo+(2m/pK+p3K2 %m—i——) =0

min min

@ Both roots are positive.

@ In order to minimize larger root (maximize &), we select p which minimizes the
sum of roots.

2ms
Poptimal =

2m,K + Ko

mln(

Ey)




Optimizing the convergence rate
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Figure: Optimal p selection with respect to no. of iterations




Optimizing the convergence rate
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@ Check the robustness of algorithm under following cases:

Messages exchanged between sensor nodes is quantized

Different types of connected graphs

Non-zero entries of x4, X5 . . . X, are distributed according to multi-mode pdfs and other
non-Gaussian pdfs.

Large variations in SNR at each sensor node

Bias in noise variance estimates

@ Possible extensions:

Exploit inter vector correlation in JSM-2 model
Reduction in messages exchanged between sensor nodes

@ Tracking time varying sparse vectors (under JSM-2 paradigm)
Study convergence rate for noisy and fading channel/links.
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