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Problem Statement

Consider a WSN consisting of L sensor nodes (s0, s1 . . . sL).

Sensor node sj wants to estimate signal vector xj ∈ Rn.
xj are sparse.

xj share common support (joint sparsity model-2 1)
For j 6= k , non zero entries of xj & xk are uncorrelated.

Sensor node sj , j ∈ (1, 2 . . . L) takes m noisy linear measurements of signal
vector of interest xj .

yj = Φj xj + wj

Φj ∈ Rm×n

wj ∼ N(0, σ2
j I)

Sensor node sj , j ∈ (1, 2 . . . L) takes m noisy linear measurements of signal
vector of interest xj .

Goal: Estimate joint sparse signal vectors x1, x2 . . . xL from y1, y2 . . . yL.

1
Distributed Compressed Sensing, Duarte, Sarvotham, Baron, Wakin & Baranuik, 2005



Centralized and distributed schemes in WSNs

Each sensor node sj transmits its local measurement vector yj and
measurement matrix Φj to fusion center (FC).
FC runs joint sparse signal recovery algorithm to estimate x1, x2 . . . xL.
FC transmits recovered sparse vector xj to sensor node sj .

Advantages:
Sensor node design is simplified, computationally intensive recovery algorithm offloaded to FC
Number of messages exchanged is low.

Disadvantages:
If FC breaks down, WSN collapses.
Less sensing range.



Centralized and distributed schemes in WSNs

Each sensor node sj can perform computations needed for recovering xj from
local measurement yj and then some more..

Question: Can the WSN converge to centralized solution while ensuring:
processing at each sensor node is kept as simple as possible.
sensor nodes exchange messages with only single-hop neighbours.
no exchange of y1, y2 . . . yL and local estimates x̂1, x̂2, . . . x̂L.



Centralized algorithm

Goal:
Estimate joint sparse vectors x1, x2 . . . xL from measurements across the
network y1, y2 . . . yL.

Measurement model:
Y = ΦX + W

Y = [y1, y2 . . . yL], X = [x1, x2 . . . xL], W = [w1,w2 . . .wL]

We assume x1, x2 . . . xL are i.i.d and N(0, Γ−1), where Γ = diag(γ),γ ∈ Rn
+.

If γ(i) =∞, then x1(i) = x1(i) · · · = xL(i) = 0.

For fixed Γ, then LMMSE estimate of x̂j ∼ N(µj ,Σj ).

Σj = (Γ +
ΦT Φ

σ2
j

)−1

µj = σ−2
j Σj Φ

T yj

If we find γ, we can find x1, x2 . . . xL.



Centralized algorithm

We find ML estimate of γ.

γ∗ = argmax
γ

p(Y/γ)

p(Y/γ) =

∫
x1,x2...xL

p(y1, y2 . . . yL, x1, x2 . . . xL/γ)

=

∫
x1,x2...xL

L∏
j=1

p(yj , xj/γ)

=
L∏

j=1

∫
xj

p(yj/xj ) · p(xj/γ)

=
L∏

j=1

N(yj ; 0 , (σ2
j I + Φj Γ

−1ΦT
j ))

No closed form expression for γ∗ exists.

How do we find γ∗ ?
METHOD 1: Find γ∗ using fixed point iterations (iterative re-estimation)
METHOD 2: Use EM algorithm to maximize p(Y/γ) by treating
x1, x2 . . . xL as hidden variables.



Centralized algorithm

EM formulation for ML estimation of γ

Observed variables: y1, y2 . . . yL
Hidden variables: x1, x2 . . . xL
Complete data: {Y, X}
To be estimated: γ

E-Step:
Q(γ,γ(k)) = E[X/Y ,γ(k)] log p(Y ,X/γ)

M-Step:
γ(k+1) = argmax

γ
Q(γ,γ(k))



Centralized algorithm
Simplification of E-step cost function Q(γ,γ(k))

Q(γ,γ(k)) = E
[X/Y ,γ(k)]

log p(Y , X/γ)

= E
[X/Y ,γ(k)]

[log p(Y/X) + log p(X/γ)]

= E
[X/Y ,γ(k)]

[log p(X/γ)] (first term independent of γ)

= E
[X/Y ,γ(k)]

L∑
j=1

log p(xj/γ)

=
L∑

j=1

E
xj/yj ,γ

(k)]
log p(xj/γ)

=
L∑

j=1

E
[xj/yj ,γ

(k)]
[
−n

2
log 2π −

1

2
log |Γ−1| −

1

2
xT

j Γxj ]

=
L

2
log |Γ| −

1

2

L∑
j=1

E
[xj/yj ,γ

(k)]
xT

j Γxj

=
L

2

n∑
i=1

log γ(i)−
1

2

L∑
j=1

n∑
i=1

γ(i)(E
[xj (i)/yj (i),γ(k)]

x2
j )

=
L

2

n∑
i=1

log γ(i)−
1

2

n∑
i=1

L∑
j=1

γ(i)(Σ
(k)
j (i, i) + µ

(k)
j (i)2)



Centralized algorithm

M-step
γ(k+1) = argmax

γ
Q(γ,γ(k))

γ(k+1)(i) =
L∑L

j=1 Σ
(k)
j (i, i) + µ

(k)
j (i)2

∀ i = 1 to n



Centralized algorithm

EM-iteration in centralized algorithm

E-Step:

Σ
(k)
j = (Γ(k) +

ΦT
j Φj

σ2
j

)−1

µ
(k)
j = σ−2

j Σ
(k)
j ΦT

j yj

M-Step:

γ(k+1)(i) =
L∑L

j=1 Σ
(k)
j (i, i) + µ

(k)
j (i)2

∀ i = 1 to n

Upon convergence, it is observed that most of γ(i)→∞, leading to sparse
LMMSE estimates x̂1, x̂1 . . . x̂L.



Centralized algorithm
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Centralized algorithm
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Distributed scheme

Rewrite the objective function Q(γ,γ(k)) in M-step.

γ(k+1) = argmax
γ

Q(γ,γ(k))

= argmax
γ

1
2

L∑
j=1

n∑
i=1

logγ(i)− γ(i)(Σ
(k)
j (i, i) + µ

(k)
j (i)2)

Q(γ,γ(k)) is separable in y1, y2 . . . yL !

Q(γ,γ(k)) can be split as

Q(γ,γ(k)) =
L∑

j=1

fj (γ, yj )

fj (γ, yj ) =
n∑

i=1

logγ(i)− γ(i)(Σ
(k)
j (i, i) + µ

(k)
j (i)2)



Distributed scheme

We re-write the optimization problem in M-step as

min
γ

L∑
j=1

n∑
i=1

− logγj (i) + γj (i)(Σ
(k)
j (i, i) + µ

(k)
j (i)2)

such that γj = γb ∀ b ∈ Bj , j ∈ J

γb are auxilliary parameters used to establish consensus among
γ0,γ1 . . .γL.
γb is maintained by a bridge node sb .
Bj denotes the set of bridge nodes connected to sj .
B =

⋃
j∈J

Bj is the set of all bridge nodes in WSN.

Nb is the set of sensor node sj connected to bridge node sb .



Distributed scheme

Selection of bridge nodes in WSN

Rule-1: Each node in the network must be connected to atleast one bridge node
in B, i.e., Bj 6= φ.

Rule-2: If two nodes sj1 and sj2 are single hop connected neighbours, then
Bj1
⋂

Bj2 6= φ.

For a connected WSN, if conditions (1) and (2) hold then
γj = γb ∀ b ∈ Bj , j ∈ J implies that all γj are equal.



Alternating directions method of multipliers

ADMM problem form (with f , g convex)

minimize f (x) + g(z)

subject to Ax + Bz = c

Augmented Lagrangian

Lρ(x, z,λ) = f (x) + g(z) + λT (Ax + Bz− c) +
ρ

2
||Ax + Bz− c||22

ADMM iterations

xk+1 = argmin
x

Lρ(x, zk ,λk ) (x-minimization)

zk+1 = argmin
z

Lρ(xk+1, z,λk ) (z-minimization)

λk+1 = λk + ρ(Ax + Bz− c) (dual update)



ADMM for distributed scheme

Augmented Lagrangian Lρ(γj∈J ,γb∈B ,λj∈J ).

L∑
j=1

n∑
i=1

− logγj (i) + γj (i)(Σ
(k)
j (i, i) + (µ

(k)
j (i))2)

+
L∑

j=1

∑
b∈Bj

(λb
j )T (γj − γb)

+
ρ

2

L∑
j=1

∑
b∈Bj

||γj − γb||22

ADMM iterations

(γj∈J )k+1 = argmin
γj∈J

Lρ(γj∈J ,γ
k
b∈B ,λ

k
j∈J )

(γb∈B)k+1 = argmin
γb∈B

Lρ(γk+1
j∈J ,γb∈B ,λ

k
j∈J )

(λb
j )k+1 = (λb

j )k + ρ(γk+1
j − γk+1

b )



ADMM for distributed scheme

ADMM iterations

(λb
j )k+1 = (λb

j )k + ρ(γk
j − γk

b ) ∀j ∈ J, b ∈ Bj (1)

(γj )
k+1 = argmin

γj∈J

Lρ(γj∈J ,γ
k
b∈B ,λ

k+1
j∈J ) ∀ j ∈ J (2)

(γb)k+1 =

∑
j∈Nb

(ργk+1
j + (λb

j )k+1)∑
j∈Nb

ρ
∀b ∈ B (3)



EM iterations in WSN

Initialization

λb
j and γb seeded with zero

γj seeded with random values.

Each iteration of EM algorithm comprises of:

COMM ROUND1: Each bridge node b ∈ B transmits its γb to all nodes in Nb .
Each node j ∈ J updates its set of lagrangian variables according to

(λb
j )k+1 = (λb

j )k + ρ(γk
j − γ

k
b ) ∀ b ∈ Bj

COMM ROUND2: Each node j ∈ J transmits λb
j to all bridge nodes in Bj

Each node j ∈ J updates its estimate of hyperparameters γj according to

γ
k+1
j (i) =

√
P2 + 4ρ|Bj | − P

2ρ|Bj |
where P = Σk (i, i)+µ

k (i)2+
∑

b∈Bj

(λb
j

k+1(i)−ργk
b (i))

COMM ROUND3: each node j ∈ J transmits its γj to all bridge nodes in Bj .
Each node b ∈ B updates its estimate of bridge parameter γb according to

(γb)k+1 =

∑
j∈Nb

(ργk+1
j + (λb

j )k+1)∑
j∈Nb

ρ



Distributed scheme
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Distributed scheme

10 15 20 25 30 35 40 45
−40

−35

−30

−25

−20

−15

−10

−5

0

5
(ntrials = 50, n = 100, m = 20, 6 percent sparsity, #nodes = 6)

SNR (in dB)

a
v
g
. 
m

e
a
s
 s

q
u
a
re

d
 e

rr
o
r 

(i
n
 d

B
)

 

 

No cooperation

Centralized

Distributed

Figure: Average MSE vs SNR for undersampled case



Distributed scheme
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Convergence rate analysis for ADMM

Suppose a sequence xk converges to L.

xk is said to be Q-linearly convergent to L, if there exists µ ∈ (0, 1) such that

lim
k→∞

|xk+1 − L|
|xk − L|

= µ

xk is said to be R-linearly convergent to L, if there exists Q-linearly convergent
sequence yk which converges to zero such that

lim
k→∞

|xk − L| ≤ yk



Main convergence result

For the convex minimization problem (f is convex),

minimize f (x)

subject to E1x + E2z = 0

let x∗ and z∗ denote the unique optimal values which minimize the primal
problem. Also let λ∗ denote the unique maximizer of dual problem with dual
variable λ. If we perform the following iterations:

xk+1 = argmin
x

Lρ(x, zk ,λk )

zk+1 = argmin
z

Lρ(xk+1, z,λk )

λk+1 = λk + ρ(E1x + E2z)

then, we have Q-linear convergence of uk = [E2zK λk ]T to u∗ = [E2z∗ λ∗]T

and R-linear convergence of xk to x∗.

||uk+1 − u∗||2G ≤
1

1 + δ
||uk − u∗||2G

||xk+1 − x∗||2 ≤
1

2mf
||uk − u∗||2G



Main convergence result

Where mf is such that

〈∇f (x1)−∇f (x2), x1 − x2〉 ≥ mf ||x1 − x2||22 ∀ x1, x2

||.||G is a vector norm defined as

||w||2G = wT
[
ρI 0
0 I

]
w

δ > 0 and is given by

δ = min{
2mf

µρσ2
max (E1) +

νM2
f

(ν−1)σ2
min(E1)

,
σ2

min(E1)

ρνσ2
max (E1)

,
(µ− 1)ρ

µ
}

where µ and ν are auxilliary variables greater than one.

Mf is Lipshitz constant of ∇f .



Optimizing the convergence rate

For fast convergence, we select ρ which maximizes δ,

δ = min{
2mf

µρσ2
max (E1) +

νM2
f

(ν−1)σ2
min(E1)

,
σ2

min(E1)

ρνσ2
max (E1)

,
(µ− 1)ρ

µ
}

β1 β2 β3

For fixed ρ, δ is maximized when β1 = β2 = β3

Let β1 = β2 = β3 hold when µ = µ∗ and ν = ν∗.

Define νo =
ρν∗σ2

max (E1)

σ2
min(E1)

, then νo must satisfy:

(2mf ρ)ν2
o−(2mf +2mf ρ

2K +ρ2Kσ2
min+

ρ M2
f

σ2
min

)νo+(2mf ρK +ρ3K 2σ2
min+

M2
f

σ2
min

) = 0

K =
σ2

min(E1)

σ2
max (E1)

=
Max connections per node
Min connections per node

Since νo = 1
δ

, we want the larger root of this quadratic equation to be as small.



Optimizing the convergence rate

Root analysis of quadratic equation in ρ

(2mf ρ)ν2
o−(2mf +2mf ρ

2K +ρ2Kσ2
min+

ρ M2
f

σ2
min

)νo+(2mf ρK +ρ3K 2σ2
min+

M2
f

σ2
min

) = 0

Both roots are positive.

In order to minimize larger root (maximize δ), we select ρ which minimizes the
sum of roots.

ρoptimal =

√
2mf

2mf K + Kσ2
min(E1)



Optimizing the convergence rate
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Optimizing the convergence rate
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Future work

Check the robustness of algorithm under following cases:
Messages exchanged between sensor nodes is quantized
Different types of connected graphs
Non-zero entries of x1, x2 . . . xL are distributed according to multi-mode pdfs and other
non-Gaussian pdfs.
Large variations in SNR at each sensor node
Bias in noise variance estimates

Possible extensions:
Exploit inter vector correlation in JSM-2 model
Reduction in messages exchanged between sensor nodes
Tracking time varying sparse vectors (under JSM-2 paradigm)
Study convergence rate for noisy and fading channel/links.



Thank You !!!


