Static Networks

ALG. to Find Average

Dynamic Network

Conclusions

Distributed Averaging in Dynamic Networks

Bharath B. N.

Signal Processing for Communications Lab ECE Dept., Indian Institute of Science Bangalore-560012

September 22, 2012

Static Networks	ALG. to Find Average	Dynamic Network	Conclusions

Outline

- Static Networks
 - Algorithm to find Average
 - Algorithm to find the Minimum of values
- Oynamic Networks
 - "Dynamic Aware" Algorithm to find the Minimum of values
 - "Dynamic Aware" Algorithm to find Average
- Conclusions

Static Networks	ALG. to Find Average	Dynamic Network	Conclusions
000			
Introduction to the Model			

- Communication network is modeled as G := (V, E), |V| = n
- Error free links with infinite capacity
- Connected, i.e., for all $u, v \in V$, $d(u, v) < \infty$
- Each node observes a fixed value, i.e., X_v , $v \in V$
- Time is discrete *t* = 1, 2, . . .
- Communication is instantaneous (See the white board)

Static Networks	ALG. to Find Average	Dynamic Network	Conclusions
000			
Goal			

- Find $f(X_1, X_2, \ldots, X_n)$ at each node
- Examples
 - Average: $f(X_1, X_2, ..., X_n) := \frac{1}{n} \sum_{i=1}^n X_i$
 - Maximum: $f(X_1, X_2, ..., X_n) := \max\{X_1, X_2, ..., X_n\}$
 - Minimum: $f(X_1, X_2, ..., X_n) := \min\{X_1, X_2, ..., X_n\}$
 - Majority: $f(X_1, X_2, ..., X_n) :=$ Majority $\{X_1, X_2, ..., X_n\}$, $X_i \in \{0, 1\}$

Static Networks	ALG. to Find Average	Dynamic Network	Conclusions
Problem Formulation			

- Find an ALG. that enables $v \in V$ to compute $\hat{f}(X_1, X_2, ..., X_n)$ as an estimate of $f(X_1, X_2, ..., X_n)$
- ALG should have the following properties:
 - Distributed
 - Should not scale with |V| = n
 - (Accurate) For small $\epsilon > 0$, $\left| \hat{f}(X_1, X_2, \dots, X_n) - f(X_1, X_2, \dots, X_n) \right| < \epsilon$, for all $v \in V$
 - Low complexity
- What is the best ALG. in terms of the rate of convergence?

Static Networks	ALG. to Find Average	Dynamic Network	Cor

onclusions

• Observation: X_v , $v \in V$

• Find
$$f(X_1, X_2, ..., X_n) := \frac{1}{n} \sum_{i=1}^n X_i$$

ALG. for finding the average

•
$$\hat{X}_{v}(t+1) := \sum_{u \in V} A_{uv} \hat{X}_{u}(t)$$
, for all $v \in V$, and $t = 1, 2, ...$

• In matrix form,
$$\hat{X}(t+1) := A\hat{X}(t)$$

- Goal: Find the matrix A that results in a "good" estimate of the average
- Observation: Distributed ALG. is possible if A_{uv} = 0 for all (u, v) ∉ E

Static Networks	ALG. to Find Average ●○○○○○	Dynamic Network	Conclusions
Graph G Conformant Irreducible stochastic Matrix A			

• Consider the matrix with the following properties:

Properties of the matrix A

- $A_{uv} = 0$ for all $(u, v) \notin E$
- $\sum_{u \in V} A_{uv} = 1$ for all $v \in V$

•
$$\sum_{v \in V} A_{uv} = 1$$
 for all $u \in V$

- The matrix A is symmetric
- Directed graph G(A) = (V, E(A)) is connected where a directed edge (u, v) ∈ E(A) iff A_{uv} > 0
- Fancy name: Doubly stochastic, graph *G* conformant and irreducible matrix

Static	Networks

Dynamic Network

Main Result

Theorem

Consider the update rule

 $\hat{X}(t+1) := A\hat{X}(t),$

where A is a doubly stochastic, graph G conformant and irreducible matrix. The above eventually reaches the true average, i.e., $\hat{X}(t) \rightarrow X_{avg}$ 1 as $t \rightarrow \infty$, where $X_{avg} := \frac{1}{n} \sum_{v \in V} X_v$

Proof: First, we make the following observations:

•
$$X(0) := [X_1, X_2, ..., X_n]$$

- A is a symmetric matrix
- 1 is an eigenvalue of A, i.e., $A_n^1 = \frac{1}{n} 1$
- A has eigenvalues $1 = \lambda_1 \le \lambda_2 \le \ldots \le \lambda_n \le -1$

Static Networks

ALG. to Find Average

Dynamic Network

Conclusions

Main Result: Proof Cont.

Note that $\hat{X}(t+1) := A\hat{X}(t) \Rightarrow \hat{X}(t+1) = A^{t+1}X(0)$

- Let v_1, v_2, \ldots, v_n be the eigenvectors of A
- Need to prove $\hat{X}(t+1) = A^{t+1}\hat{X}(0) \rightarrow X_{\mathrm{avg}}\mathbf{1}$
- $X(0) = \sum_{i=1}^{n} \langle X(0), v_i \rangle v_i$ implies

$$A^{t+1} \sum_{i=1}^{n} \langle X(0), v_i \rangle v_i = \sum_{i=1}^{n} \langle X(0), v_i \rangle \lambda_i A^t v_i$$

=
$$\sum_{i=1}^{n} \langle X(0), v_i \rangle \lambda_i^2 A^{t-1} v_i$$

*
*
=
$$\sum_{i=1}^{n} \langle X(0), v_i \rangle \lambda_i^{t+1} v_i$$

Static Networks	ALG. to Find Average	Dynamic Network	Conclusions
	000000		
Main Result: Proof Cont			

• As
$$t \to \infty$$

$$\sum_{i=1}^{n} \langle X(0), v_i \rangle \, \lambda_i^{t+1} v_i \to \langle X(0), v_1 \rangle \, v_1 \tag{1}$$

since $\lambda_i < 1$ for i > 1• But $v_1 = \frac{1}{n} \mathbf{1}$, and $\langle X(\mathbf{0}), v_1 \rangle = X_{\text{avg}} \Box$

Static Networks	ALG. to Find Average ○○○○●○	Dynamic Network	Conclusions
An Aside!			

- How fast does the ALG. converge to the average?
- Depends on how fast $A^t(u, :)$ goes to **1** for all $u \in V$

Mixing Time

• The following quantifies the speed of convergence at time *t*:

$$\tau_{\epsilon}(u) = \inf\left\{n \ge t : \frac{1}{2} \sum_{v \in V} |A(u, v)^n - 1| < \epsilon\right\}$$
(2)

Bound τ_ϵ(t) to get an estimate of "the speed of convergence" (Not now!)

Static Networks	ALG. to Find Average	Dynamic Network	Conclusions
	000000		
Another Example: Min computation			

 How do we compute the minimum of all the values in a network in a distributed way?

ALG. to find the minimum

ALGORITHM updates the value at each node as

$$\hat{X}_{v}(t) = \min\{X_{v}(t), \min_{u \in N(v)} \hat{X}_{u}(t-1)\},$$
(3)

where the neighbor is defined as $N(v) := \{u \in V : (u, v) \in E\}.$

 Requires at least D := max_{u,v∈V} d(u, v) units of time to compute the minimum in a network

Static	Networks

Oynamic Network ●○○○○○○○○○

System Model

Different types of dynamics

- Dynamically varying topology
 - The link changes dynamically
 - The nodes change dynamically (sleep and awake)
- The observations change (focus of this talk)

In this talk

• The observations change according to the following rule:

- Communication network is modeled as G := (V, E), |V| = n with Error free links and connected, i.e., for all $u, v \in V$, $d(u, v) < \infty$
- Each node observes: $X_{\nu}(t)$, $\nu \in V$, and t = 1, 2, ...
- Note that the observation is changing!

Static	Networks

Dynamic Network

Bounded Change Model

Bounded Additive Change (BAC)

Given a fixed $\delta > 0$, and for any $v \in V$, $|X_v(t+1) - X_v(t)| \le \delta$ for any $t \ge 0$

Bounded Multiplicative Change (BMC)

Given a fixed $\delta > 0$, and for any $v \in V$, $e^{-\delta} \le \frac{X_v(t+1)}{X_v(t)} \le e^{\delta}$ for any $t \ge 0$

Static Networks	ALG. to Find Average	Dynamic Network	Conclusions
Computing the Min. Under BMC			

• The following update rule fails

$$\hat{X}_{\nu}(t) = \min\left\{X_{\nu}(t), \min_{u \in N(\nu)} \hat{X}_{u}(t-1)\right\}, \quad (4)$$

when $\hat{X}_{v}(t) = 0$ for some $t \ge 0$!

• Remedy: Forget the past

$$\hat{X}_{\nu}(t) = \min\left\{X_{\nu}(t), \min_{u \in N(\nu)} \hat{X}_{u}(t-1)e^{\delta}\right\},$$
(5)

The goal is to show that the above update rule is "good"

Dynamic Network

Main Result

Theorem

Consider the update rule

$$\hat{X}_{v}(t) = \min\left\{X_{v}(t), \min_{u\in N(v)}\hat{X}_{u}(t-1)e^{\delta}\right\},$$

then, for any $t \ge D$,

$$\left(\min_{u\in V} X_u(t)
ight) \leq \hat{X}_v(t) \leq e^{2D\delta} \left(\min_{u\in V} X_u(t)
ight)$$

Dynamic Network

Proof

Simplification

$$\hat{X}_{v}(t) = \min \left\{ X_{v}(t), \min_{u \in N(v)} \hat{X}_{u}(t-1)e^{\delta} \right\}$$

$$= \min \left\{ X_{v}(t), \min_{u \in N(v)} X_{u}(t-1)e^{\delta}, \min_{w \in N_{2}(v)} \hat{X}_{w}(t-2)e^{2\delta} \right\}$$

$$\star$$

$$\star$$

$$= \min \left\{ \min_{k=0}^{m} \min_{u \in N_{k}(v)} \{ X_{u}(t-k)e^{k\delta} \},$$

$$\min_{w \in N_{m+1}(v)} \hat{X}_{w}(t-m-1)e^{(m+1)\delta} \right\} \text{ believe me!}$$

Dynamic Network

Proof Cont.

Simplification

• As $m \to \infty$, we have

$$\hat{X}_{v}(t) = \min_{k \ge 0} \min_{u \in N_{k}(v)} \{X_{u}(t-k)e^{k\delta}\}$$
$$= \min_{u \in V} \min_{k \ge d(u,v)} \{X_{u}(t-k)e^{k\delta}\}$$

$$= \min_{u \in V} \left\{ X_u(t - d(u, v)) e^{d(u, v)\delta} \right\}$$

since $\hat{X}_{v}(s) := \infty$ for all $v \in V$, and s < 0

• BMC results in $X_u(t) \le X_u(t - d(u, v))e^{d(u,v)\delta}$, which implies

$$\left(\min_{u\in V} X_u(t)\right) \leq \hat{X}_v(t)$$

Dynamic Network

Proof Cont.

Simplification

• Now, we prove $\hat{X}_{V}(t) \leq e^{2D\delta} \left(\min_{u \in V} X_{u}(t) \right)$

$$\begin{split} \hat{X}_{v}(t) &= \min_{u \in V} \left\{ X_{u}(t - d(u, v)) e^{d(u, v)\delta} \right\} \\ &\leq \min_{u \in V} \left\{ X_{u}(t) e^{2d(u, v)\delta} \right\} \text{ for } t \geq d(u, v) \\ &\leq e^{2D\delta} \min_{u \in V} X_{u}(t) \quad \Box \end{split}$$

Static Networks	ALG. to Find Average	Dynamic Network	Conclusions
		00000000000	
Why Minimum?			

- It turns out that the average can be computed using the minimum
- $Y_i \sim \exp\{X_i\}$, independent rv's, then

$$\mathsf{Y} := \min\{\mathsf{Y}_1, \mathsf{Y}_2, \dots, \mathsf{Y}_n\} \sim \exp\left\{\sum_{j=1}^n X_j\right\}$$

• This gives us the clue to find the average

Dynamic Network

Conclusions

ALG. for BMC

ALG. for computing the average under BMC

Given $p \in (0, 1)$ and $\epsilon \in (0, 0.35)$, let $m = \lceil \frac{3 \ln(2/p)}{\epsilon^2} \rceil$. For each $v \in V$ and $t \ge 0$, define $Y_{v,i}$ with $1 \le i \le m$ as follows:

- for t = 0, generate Y_{v,i}(0) ∼ exp {X_v(0)} independent of all other values
- for $t \geq 1$,

$$Y_{\nu,i}(t+1) := \frac{X_{\nu}(t)}{X_{\nu}(t+1)} Y_{\nu,i}(t)$$

Update rule:

$$\hat{\mathsf{Y}}_{\mathbf{v},i}(t) := \min\left\{ \mathsf{Y}_{\mathbf{v},i}(t), \min_{u \in \mathcal{N}(\mathbf{v})} \, \hat{\mathsf{Y}}_{u,i}(t) \mathbf{e}^{m\delta}
ight\},$$

and the estimate at node *v* is given by $\hat{X}_{v}(t) = \frac{e^{m(D+1)\delta}}{\hat{Y}_{v}(t)}$, where $\hat{Y}_{v}(t) := \frac{1}{m} \sum_{i=1}^{m} \hat{Y}_{v,i}(t)$

Dynamic Network

Main Result

Theorem

For the algorithm described above, we have

$$(1-\epsilon)e^{-m(D+1)\delta} \leq rac{\hat{X}_{v}(t)}{\sum_{v \in V} X_{v}(t)} \leq (1+\epsilon)e^{m(D+1)\delta}$$

for all $t \ge mD$

- Proof of the sufficient conditions under BMC
- Lower bounds (Necessary conditions) under BMC
- Some analysis for the BAC
- Example networks

Static	Networks	

Dynamic Network

Summary

- "Dynamic aware" distributed ALG. for estimating the average of values which is nearly optimal
- The results captured tradeoff between the dynamic range and the accuracy

Criticism

- Communication links are assumed to be perfect
- Bounded variations
- Links are assumed to be fixed
- Node dynamics are not accounted for

Static Networks	ALG. to Find Average	Dynamic Network	Conclusions
Poforonooo			

S. Rajagopalan and D. Shah. "Distributed Averaging in Dynamic Networks", IEEE Journal of Selected Topics in Signal Processing, 2011.