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Spatial Field Estimation

e Estimation of a scalar field by employing WSNs, specifically,
spatial distribution of power in a given frequency band

e Nodes measure the field at their location and can transmit to
a central node, where field can be estimated

e Nodes are characterized by energy and bandwidth constraints,
hence local communication is preferred

e Local message passing algorithms for distributed inference in
WSNs where each node or set of anchor nodes learn the
global spatial field

e Our Interest: To learn the local field well



Supervised Learning

e Given input features, RV X € X and corresponding outcome
measurements, RV Y € ), we need to learn the function
f : X — Y that minimizes a loss function

If loss function is MSE, Conditional mean estimator is the
solution. But, we are required to know the joint PDF Pxy

o Non-parametric least squares approach is considered

e One approach: Regularized Kernel methods



Regularized Kernel Methods

e Hy - RKHS induced by a positive definite kernel
K(,b):XxX—=>R

e Optimization problem

fEH

g [1 S (7)) + Aufu?ﬂk] o

* Representer Theorem: Let g, € 1, be the minimizer of (1).
Then there exists ¢, € R" s.t.

gn = Z cn,iK (., i) (2)



Model for Distributed Learning

Sn={1,...,n} - set of n nodes (n training examples), m - learning
agents, S, C S, - set of nodes interacting with j¥ learning agent




Altering the optimization problem

fng?i?k [% ;(f(Xi) —yi) + >\||f||3{k] (3)

e Above problem requires training examples at a central node
e Introduce a decision rule f; € H for each agent j =1... m

n

min | > (zi—yi)> + > _|Ifill3, | s-t. (4)

i=1 j=1
zi=fj(x;)Vie Sp,j=1...m
ficeHe,j=1...m

o If % 2_Aj = A, then g{, = gp, Where g, is solution to (3) and
(ng,]{v ..., &) is solution to (4)



Further Relaxation

o Previous problem: Centralized Regression and Global
agreement

e This motivates distributed regression and local agreement

min |y (zi —yi)> + > lIfll3, | st ()
i—1 =1

zi=f()VieS,j=1...m
GEHk,jZI...m



Relaxed problem

o Let H =R" x Hy be the Hilbert space with norm
@), fis s )P = 1213 + 27 NI,

e Interpretation: (5)is orthogonal projection of (y,0,...,0) € H
on to the set C = J-mzl C; C H with
C={(z.f,....fn) fi(x) =2 VieShtecrR

e Successive Orthogonal Projection Algorithm can be used



Successive Orthogonal Projection

e Simple algorithm to compute orthogonal projection of a point
to the intersection of convex sets, using a sequence of
projections on to the sets

e Slides of Stephen Boyd



Projection on to C;

e Projecting a point v = (z,f1,...,fn) on to C; results in
Pc(v) = (2", f{", ..., f;) where
f=f  Vk#]
G = arg mip S2(7(x) — 5+ AIF - £,
i€S)
zl =z Vi¢ S
zi = (x;) Vie St



Some Results

o As T—>oo,g,j;’T:g,j;

e if graph is connected then g,’, converges to global estimate g,
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