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Introduction to DMT

The multiplexing gain and the diversity is defined as
follows:

gm , lim
P̄→∞

R(P̄)

log P̄
, (1)

where R(P̄) is the rate adapted as a function of P̄

d , − lim
P̄→∞

log Π

log P̄
(2)

where Π is the outage probability.
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System Model

The input Output relation is:

Y = HT x + W , (3)

where HT ∈ Cr×1, W ∼ CN(0, Ir ).
HT = λV denote the singular value decomposition (SVD),

where λ =
√∑r

i=1 |hi |2 is the singular value of the channel

and V ∈ Cr×1 is a unit vector, i.e., V HV = 1.
TDD→ HT = HT

R .
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Training

Y = λV T Sτ + W , (4)

Sτ =
√

P̄LV ∗, (5)

yT =
√

P̄Lλ+ w , (6)

λ̂ = λ+ n̄, (7)

where n̄ = w+w∗
√

2P̄L
is the symmetrized training noise.
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Power Control

P(λ̂) =

{
k × P(λ̂) λ̂ ≥ θ(P̄)

P̄ l λ̂ < θ(P̄)
(8)

P(λ̂) ,
exp( TR

T−L)− 1

λ̂2
, (9)

where θ(P̄) = 1
P̄n for some n and l > 0.∫ ∞

0
P(λ̂)fλ̂(λ̂; P̄)d λ̂ = P̄, (10)

where fλ̂(λ̂; P̄) is the probability density function of the
estimated channel gain λ̂.
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Power Constraint

E
(
P(λ̂)

)
= k

(
exp(

TR
T − L

)− 1
)

F (P̄)+P̄ l
∫ θ(P̄)

−∞
fλ̂(x ; P̄)dx︸ ︷︷ ︸
A

,

(11)
where,

F (P̄) ,
∫ ∞
θ(P̄)

1
x2 fλ̂(x ; P̄)dx . (12)

F (P̄) =

∫ 1

θ(P̄)

1
x2 fλ̂(x ; P̄)dx +

∫ ∞
1

1
x2 fλ̂(x ; P̄)dx , (13)
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Power Constraint

Theorem

E
(
P(λ̂)

)
≤ constant <∞ if

Case 1: 0 ≤ n ≤ r − 1
2 and ∀l ≥ 0 and

Proof: Idea is to find the distribution of fλ̂(x ; P̄) and find the
condition under which the integral converges.

B.N. Bharath, Indian Institute of Science, India Signal Processing for Communications Lab



Outage analysis

Let l = 2

Π , Pr
(

T − L
T

log(1 + γP(λ̂)) < R
)

(14)

where,

Π = Π1 Pr(λ̂ > θ(P̄)) + Π2 Pr(λ̂ ≤ θ(P̄)), (15)

Π1 = Pr
(

T − L
T

log(1 + P(λ̂)γ) < R
)
, (16)

and Π2 , Pr
(

T − L
T

log(1 + P̄2γ) < R
)
. (17)

Now,

Π2 = Pr

γ <
(

exp
(

RT
T−L

)
− 1
)

P̄2

 ≈ C1

P̄2r
. (18)

where C1 =
(exp( RT

T−L )−1)
r

r ! > 0.
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Outage analysis

Theorem

With P̄ sufficiently large and if R is such that outage probability
equal to zero is achievable in the presence of perfect CSIT and
CSIR, a system with imperfect CSIT and perfect CSIR will be in
outage if and only if

P(γ̂) < Popt (γ).

The equivalent condition here is,

Lemma
At high SNR, the outage probability, Π, of a system with power
control function (8) is given by,

Π = Pr(kγ < |n̄|2) Pr(λ̂ > θ(P̄)) + Π2 Pr(λ̂ ≤ θ(P̄)). (19)
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Continued...

Pr(kγ < |n̄|2) =

∫ ∞
0

f|n̄|(y)

∫ y2/k

0

1
(r − 1)!

x r−1e−xdx︸ ︷︷ ︸
B

dy .

(20)

Υ(r ,
y2

k
) =

e(−y2/k)

r !

∞∑
i=0

y2(r+i)

k r+ibi
(21)

bi = 1 bi =
i∏

j=0

(r + j), i > 0, (22)

β

σ

2√
2πβ

∫ ∞
0

y2(r+i)e
− y2

2β2 dy =
β

σ

1√
2πβ

∫ ∞
−∞

y2(r+i)e
− y2

2β2 dy ,

(23)
where β2 = kσ2

2σ2+k ∝
1
P̄

.
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Continued...

Integral in (23) is the 2(r + i)th moment of a Gaussian
random variable, resulting in β2(r+i)+1

σ . Now, substituting (21)
in (20) leads to:

Pr(kγ < |n̄|2) =
β

2σr !

∞∑
i=0

β2(r+i)

k r+ibi
∝ 1

P̄2r
. (24)

Combining the terms in (19), an upper bound on the
outage probability Π is thus given by,

Π ≤ 1
P̄2r

(
C2 Pr(γ̂ ≥ P̄−1) + C1 Pr(γ̂ < P̄−1)

)
+O(

1
P̄4r

)

(25)
⇒ log Π ≤ c1 − 2r log P̄, (26)

The diversity gain d is,

d , − lim
P̄→∞

log Π

log P̄
= 2r . (27)
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DMT

Theorem
Given r receive antennas and L training symbols being used
per coherence interval T to estimate CSIT in a SIMO system
with a perfect CSIR, we have the following equation for diversity
order as a function of multiplexing gain gm,

d(r) = r
(

2−
(

gmT
T − L

))
. (28)

Proof: See paper.
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Simulation Results
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Figure: Probability of Outage vs SNR
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Improved Power control

Using the following power control,

P(λ̂) ,
exp( TR

T−L)− 1

λ̂2r
, (29)

results in a diversity order of r = r(r + 1).
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Infinite diversity order using power controlled
training

Sτ = (r)V ∗
1
λ

√
P(λ) (30)

where
√

P(λ) =
√

P̄
λ . Also, E(Tr(SτSH

τ )) = P̄. The
corresponding estimate of the power control

√
P(λ) at the

transmitter is obtained as,

Pc ,

∣∣∣∣<{yT}√
r

∣∣∣∣ =

∣∣∣∣√P(λ) +
<(wT )√

r

∣∣∣∣ . (31)

E
{
|Pc|2

}
=

P̄
r(r − 1)

+
1
2r
. (32)

With proper power scaling C(P̄), we have

ỸR = σPcC(P̄)x + wR, (33)
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Outage

Pout , Pr
{

T − L
T

log2

(
1 + σ2P2

cC(P̄)2
)
< R

}
. (34)

Pout = Pr

{
σ2P2

c <
2

TL
T−L − 1
C(P̄)2

}
, (35)

= Pr

{
σ2
(√

P(σ) +
<{wT}√

r

)2

<
2

TL
T−L − 1
C(P̄)2

}
,(36)

≤ Pr


∣∣∣∣√P̄ +

<{wT}σ√
r

∣∣∣∣ <
√√√√2

TL
T−L − 1
C(P̄)2

 , (37)

≤ Pr
{
<{wT}σ < R̄0

}
, (38)
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Continuation of the messy calculation:

where R̄0 ,
√

r

(
−
√

P̄ +

√
2

TL
T−L−1
C(P̄)2

)

Pout ≤ Pr
{
<{wT}σ < R̄0

⋂
|<{wT}| > σ

⋂
<{wT} < 0

}
+ Pr

{
<{wT}σ < R̄0

⋂
<{wT} > σ

⋂
<{wT} ≥ 0

}
(39)

+ Pr
{
<{wT}σ < R̄0

⋂
<{wT} ≤ σ

⋂
<{wT} < 0

}
+ Pr

{
<{wT}σ < R̄0

⋂
<{wT} ≤ σ

⋂
<{wT} ≥ 0

}
,
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At Last!

Pout ≤ Pr
{
<{wT}2 > −R̄0

}
+ Pr

{
σ2 < R̄0

}
(40)

+ Pr
{
σ2 > −R̄0

}
+ Pr

{
<{wT}2 < R̄0

}
1R̄0>0,(41)

≤ 2Q(

√
−R̄0) + Pr

{
σ2 < R̄0

}
+ Pr

{
σ2 > −R̄0

}
(42)

+ Pr
{
<{wT} <

√
R̄0

}
1R̄0>0, (43)

Pr{σ2 > −R̄0} =

∫ ∞
−R̄0

x r−1e−xdx , (44)

= eR̄0

r−1∑
k=0

(−1)k R̄k
0

k !
, (45)
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Infinite Diversity

Thus, Pout
.

= e−P̄ . Now it is clear that the diversity order,

d(r) = − lim
P̄→∞

log Pout

log P̄
=∞.
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Simulation Results
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Figure: Probability of Outage vs SNR

B.N. Bharath, Indian Institute of Science, India Signal Processing for Communications Lab



Simulation Results
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Two-Way Training

Phase 1: Ĥ = H + H̃
Phase 2: Transmitted training signal

Sτ =
√

PRLRV̂ , (46)

where PR and LR are the receiver training power and the
training duration respectively, and,

V̂ =
Ĥ
||Ĥ||F

. (47)

Received signal YT =
√

PRLRλV H V̂ + wT

λ̂ ,
<{YT}√

PRLR
= λV H V̂ +

w̄T√
PRLR

(48)

where w̄T ∼ N(0, 1
2) is the real part of wT .
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Power Control

The singular value estimate at the transmitter is used for
power control, as follows:

P(λ̂) =

{
P(λ̂) λ̂ ≥ θ(P̄)

P̄ l λ̂ < θ(P̄),
(49)

where, unlike one way training,

P(λ̂) =
1
λ̂2
. (50)

The threshold θ(P̄) , 1/P̄n is chosen such that
EP(λ̂) <∞.
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Composite Channel Estimate

With the power control in (49), the receiver, after some
processing, gets the following signal,

Y (τ)
R = Ḡ +

W (τ)
R√

PsLs
, (51)

where Ḡ , H
√

P(λ̂)1{λ̂≥θ(P̄)} + H
√

P̄ l1{λ̂<θ(P̄)},

W (τ)
R ∼ CN (0, Ir×r ) and, Ps and Ls are the training power

and training duration, respectively.

Let G =
√

P(λ̂)H and define Q , E{ḠḠH}.

MMSE estimate: Ĝmmse, where Ḡ = Ĝmmse + G̃mmse,
where Ĝmmse is uncorrelated with G̃mmse.
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Composite Channel Estimate

Linear Minimum Mean Square Error Estimate (LMMSE) of
the effective channel which is given by,

Ĝ = EḠ + M
(

Y (τ)
R − EḠ

)
, (52)

where M , Q
(

Q + 1
PsLs

I
)−1

.

Yd = Ĝmmsekxs + G̃mmsekxs + W , (53)

where W ∼ CN (0, Ir×r ) is the noise at the receiver during
data transmission, and xs is the unit variance Gaussian
data signal which is scaled by k in order to satisfy the
average power constraint, P̄.
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Power Constraint

Power Constraint:

P̄ =
LT PT

T
+

LRPR

T
+

(
LSPS

T
+

(T − LT − LR − Ls)k2

T

)
E(P(λ̂)).

(54)
We will choose PT , PR and Ps to be proportional to P̄ and
study the outage behavior as P̄ goes to∞. Also, note that
k2 .

= 1/P̄.
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Main Result on Two-Way Training

Theorem
For a SIMO system with r receive antennas with three phases
of two-way training, the DMT is achievable,

d(r) = r
(

2− gm

α

)
, (55)

where α , T−Ls−LT−LR
T .
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Outage

Capacity Lower Bound:

CL ,
T − Ls − LT − LR

T︸ ︷︷ ︸
α

log2

(
1 +

β̂mmsek2

k2Eβ̃mmse + r

)
(56)

Outage Probability:

Π , Pr(CL < R) (57)

R̄ , k2Eβ̃mmse+r
k2 (e

R
α − 1).

G̃ = (I −M)(Ḡ − EḠ)− MW τ
T√

PsLs
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Main Result on Two-Way Training

It is clear that the mean square error using the MMSE
estimate is lesser than the mean square error using
suboptimal LMMSE, it follows that:

E(β̃mmse) ≤ E(‖G̃‖2F ) ≤ E‖Ḡ−EḠ‖2F‖I−M‖2F +
‖M‖2F
PsLs

. (58)

Note that

‖I −M‖2F = ‖I −QP̄(I + P̄Q)−1‖2F , (59)
= ‖(I + QP̄)−1‖2F , (60)

=
r∑

i=0

1
(λi P̄ + 1)2

, (61)

.
=

1
P̄2
, (62)

E‖G̃‖2F � 1/P̄ =⇒ R̄ .
= 1

P̄
as k2 .

= P̄.
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Continuing Messy Calculation

Outage Probability

Pr

(
β̂mmsek2

k2Eβ̃mmse + r
< (e

R
α − 1)

)
= Pr

{
‖Ĝ‖ <

√
R̄
}
,(63)

= Pr
{
‖G − G̃mmse‖F <

√
R̄
}
, (64)

≤ Pr
{
|‖G‖F − ‖G̃mmse‖F | <

√
R̄
}
, (65)

≤ Pr
{
‖G‖F < ‖G̃mmse‖F +

√
R̄
}
, (66)

≤ Pr
{
‖G‖F < ‖G̃mmse‖F +

√
R̄
⋂
‖G̃‖F ≤

√
R̄
}

+ Pr
{
‖G‖F < ‖G̃mmse‖F +

√
R̄
⋂
‖G̃‖F >

√
R̄
}
,(67)

≤ Pr
{
‖G‖2F < 4R̄

}
+ Pr

{
‖G‖2F < 4‖G̃mmse‖2F

}
. (68)
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Continuing Messy Calculation

Second term:

Pr
{
‖G‖2F < 4‖G̃mmse‖2F

}
= Pr

{
‖H‖2F
γ̂U

< 4‖G̃‖2mmse

}
,

.
= Pr

{
‖H‖2F
γ̂U

<
4‖ ¯̄G‖2

P̄

}
,

≤ Pr

γ <
4‖ ¯̄G‖2F |w̄T |2

P̄2

∣∣∣∣1− 2‖ ¯̄G‖F√
P̄

∣∣∣∣2
 ,

≈ 1
P̄2r

E

 4‖ ¯̄G‖2F |w̄T |2

P̄2

∣∣∣∣1− 2‖ ¯̄G‖F√
P̄

∣∣∣∣2
 ,
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Continuing Messy Calculation

Pr
{
‖G‖2F < 4‖G̃mmse‖2F

}
� 1

P̄2r

Upper Bound on the estimate of the singular value∣∣∣λ̂∣∣∣ =

∣∣∣∣λV H V̂ +
wT√
PRLR

∣∣∣∣ (69)

≤ λ
∣∣∣V H V̂

∣∣∣+

∣∣∣∣ wT√
PRLR

∣∣∣∣ (70)

≤ λ+

∣∣∣∣ wT√
PRLR

∣∣∣∣ , (71)
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Continuing Messy Calculation

Define γ̂U ,

(
λ+ | w̄T√

PRLR
|
)2

and W̄T , | w̄T√
PRLR
|. Prg(.)

and Prb(.) to means Pr(.
⋂
λ̂ > θ(P̄)) and Pr(.

⋂
λ̂ ≤ θ(P̄)).

First term:

Pr
g

{
‖G‖2F < 4R̄

}
= Pr

g

{
‖H‖2F
γ̂

< 4R̄

}
(72)

≤ Pr
g

{
‖H‖2F
γ̂U

< 4R̄

}
, (73)

= Pr
g

{
γ1/2 < 2

√
R̄(γ1/2 + W̄T )

}
,(74)

≤ Pr

{
γ1/2 < 2

√
R̄

1−
√

2R̄
W̄T

}
, (75)

≈ Pr
{
γ < 4R̄W̄ 2

T

}
. (76)
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Continuing Messy Calculation

Bad channel case λ̂ < θ(P̄):

Pr
b

{
‖G‖2F < 4R̄

}
= Pr

b

{
‖H‖2F <

4R̄
P̄2l

}
, (77)

≤ Pr
{
γ2 <

4R̄
P̄2l

}
(78)

.
=

1
P̄2rl+r

� (79)
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Conclusions

Exploiting CSIR in designing the reverse channel training
greatly improves the DMT performance.

B.N. Bharath, Indian Institute of Science, India Signal Processing for Communications Lab


