

Error Exponent Analysis for Bayesian Energy Detection under Fading

Sanjeev G. SPC Lab., Dept. of ECE, IISc.

03 September 2011.

◆□▶ ◆□▶ ◆ 三▶ ◆ 三 ・ つへぐ

Outline

- Motivation and System Model.
- Error Exponents with a confidence level.
- Detection at the Sensor level.
- Detection at the Fusion Center.
 - Lower bounds on the error exponents.
 - Actual error exponents.
- Application : Narrowband vs. Wideband Sensing.
- Numerical and Simulation results.

System Model

- ► *N* sensors with *M* observations each.
- At the individual sensors under low SNR, $V_y \triangleq \frac{1}{M} \sum_{i=1}^{M} |y_i|^2 - 1$, and

$$\begin{split} \mathcal{H}_0 &: \quad V_y \sim \mathcal{N}\left(0, \frac{1}{M}\right), \\ \mathcal{H}_1 &: \quad V_y \sim \mathcal{N}\left(|h|^2 P, \frac{1}{M}\right). \end{split}$$

- Interest : Wideband (WB) primary signals with a strong pilot.
- NB signals undergo Rayleigh fading, WB signals undergo Lognormal fading [Shellhammer et al. 2006]

Primary Signals of Interest - An Example

The Bayesian ED Problem

• Bayesian problem \Rightarrow minimize p_e . LRT is optimal.

•
$$LR(V_y) = \frac{\frac{1}{\sqrt{2\pi/M}} \int_{|h|^2} \exp\left(-\frac{M(V_y - |h|^2 P)^2}{2}\right) f_{|h|^2}(|h|^2) d|h|^2}{\frac{1}{\sqrt{2\pi/M}} \exp\left(-\frac{MV_y^2}{2}\right)}.$$

Closed form analysis of p_e becomes difficult.

Error Exponents

Error exponent gives the exponential rate of decay on *p_e*.
 Mathematically,

$$\epsilon_e \triangleq -\lim_{M \to \infty} \frac{\log p_e}{M}$$
 and $\epsilon_E^{(N)} \triangleq -\lim_{M \to \infty} \frac{\log P_E}{M}$

- Turns out that the error exponents under both WB and NB sensing are zero. Therefore, in terms of the error exponents, WB and NB sensing problems are equivalent.
- Discount the low channel gains?

Error Exponent With A Confidence Level (EECL)

Definition

Let S_q denote a set of channel instantiations such that $P(h \in S_q) = q$. The highest error exponent achievable over all possible choices of S_q is the error exponent with confidence q.

 This novel concept is used to answer the question of WB vs. NB SS.

EECL at the Sensor Level

Theorem

For the above SS problem, a positive error exponent of $(|h_0|^2 P)^2/8$ is achievable with a confidence level q, where $|h_0|^2$ satisfies $\mathcal{P}(|h|^2 > |h_0|^2) = q$.

- ► Note that the above is valid for a general fading model. Also, note that *EECL* = 0, with *q* = 1.
- It follows that,
 - For Rayleigh fading case, an EECL of ^{(α₀P)²}/₈ is achievable with confidence exp(−α₀).
 - ► For lognormal shadowing case, an EECL of $\frac{(\ell_0 P)^2}{8}$ is achievable with confidence $1 Q\left(\frac{\log(\ell_0 / P)}{\sigma_c}\right)$.

Outline of the Proof

• Let $\alpha = |h|^2$. It is straightforward to show that

$$p_e = \pi_0 Q(x\sqrt{M}) + \pi_1 \int_{-\infty}^{x} \int_{\alpha_0}^{\infty} f_N\left(v - \alpha P, \frac{1}{\sqrt{M}}\right) \frac{f_{\alpha}(\alpha)}{q} d\alpha dv.$$

Further simplification yields

$$\frac{q\pi_0}{\pi_1} = \int_{\alpha_0}^{\infty} \exp\left(M\left(x\alpha P - \frac{\alpha^2 P^2}{2}\right)\right) f_\alpha(\alpha) d\alpha.$$

The rest of the proof involves showing that x → ^{α₀P}/₂ as M → ∞ and examining the exponent of p_f (obtained through direct analysis) which is ^{x²}/₂.

- ▶ Upper bound : Let $g(x, \alpha) \triangleq x \alpha P \frac{\alpha^2 P^2}{2}$. Observe that $g\left(\frac{\alpha_0 P}{2}, \alpha\right) < 0$, for $\alpha \ge \alpha_0$. For $x_M < \frac{\alpha_0 P}{2}$, $g(x_M, \alpha) < 0$, for $\alpha \ge \alpha_0$. Let $g_{\max} \triangleq \max_{\alpha \ge \alpha_0} g(x_M, \alpha)$. \Rightarrow The integral would then \rightarrow zero.
- ► Lower bound : Let $x_0 > \frac{\alpha_0 P}{2}$. Therefore, $g(x_0, \alpha) > 0$, when $\alpha < \frac{2x_0}{P}$. By assumption, $\alpha_0 \le \alpha$. \Rightarrow , $g(x_0, \alpha) > 0$, when $\alpha_0 \le \alpha < \frac{2x_0}{P}$. Therefore, for $x_M > x_0$, $g(x_M, \alpha) > 0$. There exists a $\delta > 0$, such that $g(x_M, \alpha) > 0$, for $\alpha_0 \le \alpha < \frac{2x_0}{P} \delta$. Let $g_{\min} \triangleq \min_{\alpha_0 \le \alpha < \frac{2x_0}{P} \delta} g(x_M, \alpha)$. \Rightarrow The integral would then $\rightarrow +\infty$.

EECL at the FC

- Question : Can EECL be improved with a decentralized detection scheme?
- OR rule is considered for analytical tractability. The FC should exploit even if one of the N sensors experiences a "good" channel state.

The analysis

 Obtain exponent on P_F (direct) and the same on P_M (multinomial expansion and analyzing term-by-term) i.e.,

•
$$\epsilon_F = \alpha_{\min}^2 P/8$$
 and $\epsilon_M = \sum_{j=1}^N \frac{1}{2} \left(\alpha_j P - \frac{\alpha_{\min} P}{2} \right)^2 \mathbb{I}_{\left\{ \frac{2\alpha_j}{\alpha_{\min}} > 1 \right\}}.$

► Equating both and bringing in the notion of confidence, $\mathcal{P}\left\{\sum_{j=1}^{N} \left(\alpha_{j} - \frac{\alpha_{\min}}{2}\right)^{2} \mathbb{I}_{\left\{\frac{2\alpha_{j}}{\alpha_{\min}} > 1\right\}} \leq \frac{\alpha_{\min}^{2}}{4}\right\} = 1 - q.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ のへの

LB on EECL using OR rule for Rayleigh fading

Theorem

When the channel between the primary and sensors is Rayleigh faded, given that the FC combines decisions from N sensors using the OR rule, the error exponent with confidence level q at the FC for the HT is lower bounded by $(\alpha_{min}P)^2/8$ with confidence q, where α_{min} satisfies

$$\alpha_{\min} = 2\left(\frac{1-q}{C_N}\right)^{\frac{1}{N}}, \quad C_N \triangleq \sum_{k=0}^N \binom{N}{k} \frac{\mathcal{V}_k}{2^k},$$

where $\mathcal{V}_k = \pi^{k/2} / \Gamma\left(1 + \frac{k}{2}\right)$ is the volume of a k dimensional unit sphere.

LB on EECL using OR rule for Lognormal fading

Theorem

When the channel between the primary and sensors is lognormal faded, given that the FC combines the decisions from N sensors using the OR rule, the error exponent with confidence level q at the FC for HT is lower bounded by $\frac{(\ell_{min}P)^2}{8}$ with confidence q, where ℓ_{min} satisfies

$$\sum_{k=0}^{N} \binom{N}{k} D_{A}^{k} D_{B}^{N-k} \frac{\mathcal{V}_{k}}{2^{k}} = 1 - q, \text{ with } \mathcal{V}_{k} = \pi^{k/2} / \Gamma \left(1 + \frac{k}{2} \right)$$
$$D_{A} \triangleq \frac{1}{2\sigma_{s}\sqrt{2\pi}} \exp \left(-\frac{\left(\log \left(\frac{\ell_{min}}{P} \right) \right)^{2}}{2\sigma_{s}^{2}} \right), D_{B} \triangleq Q \left(\frac{1}{\sigma_{s}} \log \left(\frac{2P}{\ell_{min}} \right) \right).$$

EECL at the FC - OR rule and Rayleigh

Theorem

When the channel between the primary transmitter and sensors is Rayleigh faded, given that the FC combines decisions from N sensors using the OR rule, the error exponent on the probability of error at the FC for the above SS problem is positive and is given by $\frac{(\alpha_{min}P)^2}{8}$ with confidence q, where α_{min} satisfies

$$\sum_{l=1}^{N} {\binom{N}{l}} \left[1 - \exp\left(-\frac{\alpha_{\min}}{2}\right)\right]^{N-l} \mathcal{P}\left\{\sum_{k=1}^{l} a_{k}^{2} \leq 1\right\} e^{-\frac{\alpha_{\min}}{2}l} + \left[1 - \exp\left(-\frac{\alpha_{\min}}{2}\right)\right]^{N} = 1 - q,$$

where, $a_k \sim \exp\left(\frac{\alpha_{\min}}{2}\right)$.

(a)

EECL at the FC - OR rule and Lognormal

Theorem

The same detector under lognormal fading achieves an error exponent of $\frac{(\ell_{min}P)^2}{8}$ with confidence q, where ℓ_{min} satisfies

$$\begin{split} \sum_{l=1}^{N} \binom{N}{l} \left[Q \left(-\frac{\mu_{s} + \log\left(\frac{2}{\ell_{min}}\right)}{\sigma_{s}} \right) \right]^{N-l} \mathcal{P} \left\{ \sum_{k=1}^{l} (t_{k} - 1)^{2} \leq 1 \right\} \\ &+ \left[Q \left(-\frac{\mu_{s} + \log\left(\frac{2}{\ell_{min}}\right)}{\sigma_{s}} \right) \right]^{N} = 1 - q, \end{split}$$
where, $t_{k} \sim \mathcal{LN} \left(\mu_{s} + \log\left(\frac{2}{\ell_{min}}\right), \sigma_{s} \right).$

И

Application : WB and NB SS

Figure: DTV Power Spectral Density

 Model/Intro
 EECL
 Main Results
 WB vs. NB SS
 Num/Sim Results
 Conclusions
 Reference

Quantifying in terms of error exponents with confidence

- Let \(\epsilon_{NB}\) and \(\epsilon_{WB}\) represent the error exponents by detectors under NB and WB SS, respectively.
- ► At the individual sensors, with the same confidence level *q*, NB sensing is "better" than WB sensing whenever, $\frac{(\alpha_0 P_{NB})^2}{8} > \frac{(l_0 P_{WB})^2}{8} \Rightarrow \left(\frac{P_{NB}}{P_{WB}}\right)^2 > \left(\frac{l_0}{\alpha_0}\right)^2.$

 Similarly, at the FC, NB sensing is better than WB sensing with the same confidence level whenever

$$rac{(2\pi)^2}{8} > rac{(\ell_{\min}P_{WB})^2}{8} \Rightarrow \left(rac{P_{NB}}{P_{WB}}
ight)^2 > \left(rac{\ell_{\min}}{\alpha_{\min}}
ight)^2$$

• □ ▶ • □ ▶ • □ ▶ • □ ▶

Figure: Error Exponents ϵ_e with confidence q at single sensor

List of α_{\min} and ℓ_{\min} for Different q and N

N	q=0.9		N	N	q=0.95		N	q=0.99	
	$\alpha_{\sf min}$	ℓ _{min}			$\alpha_{\sf min}$	ℓ _{min}		$\alpha_{\sf min}$	ℓ _{min}
2	0.3937	0.5268		2	0.2635	0.4111	2	0.1109	0.2578
3	0.6579	0.7497		3	0.4878	0.6078	3	0.2612	0.4119
4	0.8824	0.9442		4	0.6890	0.7799	4	0.4153	0.5502
5	1.07489	1.1200		5	0.8665	0.9358	5	0.5610	0.6771
6	1.2428	1.2875		6	1.02403	1.0819	6	0.6958	0.7949
7	1.3916	1.4500		7	1.1652	1.2235	7	0.8201	0.9062
8	1.5251	1.6062		8	1.2930	1.3602	8	0.9349	1.0144
9	1.6462	1.7655		9	1.4097	1.4971	9	1.0412	1.1209
10	1.7571	1.9230		10	1.5171	1.6308	10	1.1403	1.2257

▲□▶▲□▶▲三▶▲三▶ ● ○ ○ ○

Theoretical and Simulated Error Exponents (1/2)

P (dB)	q=0.9		P (dP)	q=0	.95		P (dP)	q=0.99	
	Th	Sims	F (UD)	Th	Sims	1	Г (UD)	Th	Sims
-3	34.69	35.912	0	32.888	34.189		5	11.364	14.495
-4	22.02	23.556	-0.5	26.6639	28.232		4	7.8913	9.3611
-5	12.488	13.633	-1	21.048	22.301		3	5.0505	7.3419
-7	5.5504	6.5754	-1.5	16.115	17.642		2	2.8409	4.3919
-10	1.3876	2.1998	-2.25	11.84	14.282		0	1.2626	2.3234

Table: ϵ_e for different *q*. All EECL values have to be multiplied by $\times 10^{-5}$.

<ロ> <団> <豆> <豆> <豆> <豆> <豆> <豆> <豆> <豆</p>

Theoretical and Simulated Error Exponents (2/2)

N	q=0.9, I	P=-10 dB		N	q=0.95, P=-10 dB			
	Th	Sims	1		Th	Sims		
2	1.9373	2.1102		2	0.86768	0.88057		
3	5.4111	6.1154		3	2.9749	3.5199		
4	9.7329	10.2832		4	5.9349	6.3426		

Table: $\epsilon_E^{(N)}$ for different *q*. All EECL values have to be multiplied by $\times 10^{-4}$.

Conclusions

- Proposed a novel concept called error exponent with a confidence level. Using this, it was shown that the ED achieves a zero error exponent under a general fading model.
- This generalized concept was extended to the decentralized setup and performance under the OR rule was studied in detail.
- The question of WB vs. NB sensing was successfully answered using this novel metric.

 Sanjeev G., Chandra R. Murthy and Vinod Sharma, Error Exponent Analysis of Energy-Based Bayesian Spectrum Sensing Under Fading Channels, Journal draft.

