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Motivation

m Given a PHY - Layer infrastructure, what QoS Gurantees
can be provided?

m Water-filling is better than total channel inversion from
information-theoratic point of view?

m Whether the former is also better than the latter in terms of
QoS gurantees?

m Essentially, want to model the wireless channel/ PHY-layer
service process in terms of connection level QoS metric
eg.

m delay,
m delay-violation probability,
m packet loss probability etc.



QoS guarantees in wired networks: constant

capacity
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Figure : Traffic and service characterization.



Extension to wireless networks

m Need accurate model of the time-varying capacities of
wireless channels.

m Providing a strict lower bound will most likely result in
extremely conservative guarantees.

m Hence, statistical service characterization (SC) i.e.,

sup Pr{S(t) < W(t)} < e (1)
t

m But, W(t) = [AS(t — 0©)] T

m Statistical SC requires a relation between {)\$, 0, ¢} and
fading channel.

m for AWGN : {rawgn,0,0}



Effective Bandwidth

m It models the stochastic bhaviour of source traffic
m For an arrival process {A(t),t > 0}, effective bandwidth is

a2 My s 2)

)

u

Where, A(u) is, asymptotic log-moment generating
function, defined as

A(u) £ lim EIogE [e“A(t)} (3)
t—oo t

and, A(t) : amount of source data over the time interval
[0,1)



Effective Bandwidth (contd.)

m For a queue of infinite size, served by a channel of
constant service rate r

supPr{Q(t) > B} ~e (B as B — (4)

where, f(x) « g(x) means that limy_, . % —1.
m While for smaller B,

SUpPr{Q(t) > B} ~~(r)e (™ as B 500 (5)
where,
v(r) = Pr{Q(t) > 0}, Prob. of nonempty buffer, and

QoS exponent, 6g, is the solution of a(fg) =r



Effective Bandwidth (contd.)

m The pair {~(r),0g(r)}, model the source.

m For a source modeled by the pair {~(r),6(r)}, and delay
bound Dpax

Slﬂp Pr{D(t) > Dmax} ~ ’y(r)efg(r)Dmax’ (6)

D(t) : delay experienced by a packet arriving at time t, and

m For a delay-bound violation probability at most ¢, the
constant capacity should be r, such that,

e = (r)e?(")Pmax
m In terms of traffic envelope I'(t) = min{A\Pt, \®t + o)1,

A®) — 1 and ¢®) = rDmax.



Effective bandwidth
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Effective capacity

m For a channel with instantaneous capacity r(t), the
effective capacity is
~A°(-6)

Ec() = —5— V 620 (7)

where, A€(—6) = lim_, £ log E [e*‘gé(‘)}, is Gartner- Ellis
limit, and

t
S(t) = / r(7)dr : service provided by channel
0

m For an infinite buffer, supplied by a source of constant data
rate u,

SUp PI’{D(t) Z Dmax} ~ ’Y(C)(,U/)e_a(c)(u)Dmax (8)
t



Effective capacity

7 (1) = Pr{Q(t) > 0}, probability of nonempty buffer at random t
0 (1) = pEZ (1), QoS exponent
m A link modeled by {+°(u),6°(u)}, can support a source
with rate p, s.t.
e = 7(®) (1) =0 ()Dmax

where, ¢ is the maximum tolerable delay-violation
probability.
m Interms of SC W(t) = N\ (t — o)),
] )\gc) is the channel sustainable rate and,

| U(c) = Dmax



Effective capacity Vs QoS exponent
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Figure : Relation between SC and delay-bound violation.



Effective capacity
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Figure : Effective capacity function Ec(u).



QoS performance of generalized porcesses
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Calculation of delay-bound violation prob.

Calculate effective bandwidth and effective capacity Ec ()
using the statistical properties of arrival and service
processes.

Determine rate and QoS-exponent pair (u, 0*) s.t.
a(8) = Ec(6) = u
Approximate the buffer non empty prob. as,

_HA
f)/__
Hc

or estimate it.
Calculate the delay violation probability as,

Pr{D(t) > Dmax} = ,ye—GMDmax



EC of FSMC-based wireless-channel service

process

m Let sequence {R(t),t =1,2,3,...} denote the attainable
service rates of the discrete service process.

m R(t) takes value in a discrete set R = {1, o, ..., ik }-

m Gartner-Ellis limit of the time-cumulated service process
S(t) £ 32I_, R(i) defined as

.1
re0)2 i o (1670

m Assume that Ac () is a convex function and differentiable
function for all real 6.



EC of FSMC-based wireless-channel service
process

Theorem

Let {uk,k =1,2,3,...} be the number of bit transmitted in
state k of the FSMC-based service process and define

() £ diag{e "0 e=#20 . e} then the effective
capacity of the FSMC-based service process is determined by

Ec(6) = 7 109 (p{P()})

, Where,
P : transition probability matrix

p{.} : spectral radius of the matrix



EC of FSMC proof

Letv;(0,t) £ E{e SOIR(1) = 1} and v(b,t) £ {v1(6,1),...,
vk (0,1)}, respectively. Hence,

vi(o,t) = {e"*S0 \R(l) piE{e CORMIR(L) =}

_ el Z E{e ?COSWIR(2) = 1, R(1) = 14}
=1

Pr{R(2) = 1j|R(1) = i }

K
= e MY "E{e MCOSMIR(2) = yj}py
j=1

K
= e M"Y "E{e "CITR(1) = y}py
j*l

= e “'GZW 1)p;



EC of FSMC proof (contd.)

In matrix form,
v(0,1)T = (®(0)P)1d(9)1T (9)
where, 1 : K — dimensional row-vector of 1 =[1,...,1]. Now,
E{e’S0} = zv(6,1)T = n(®(0)P) 1 (0)1T = w(Pd(9))'1T

Since P®(#) is a primitive nonnegative matrix, hence,
Jim (W(P¢(9))‘1T) = (p{P®(0)})' my ()x(6)1T
—00

where, y(6) and x(#) are, respectively the column and row
eigenvectors of the matrix P®(6), corresponding to p{P®(0)}
and satisfying y(6)x(#) = 1. Hence,

1

lim _ 1
t—0 6t -

log E {e?S(M1} .

Ec(f) = log (p{P®(6)})



Properties of effective capacity

Theorem

Following claims hold for the effective-capacity function E¢ ()
of the FSMC-based service process:

dEc(9)
<
49 = 0, ,v6>0
SUPEc(0) = lim Ec(0) = iz
6>0 6—0

elg]; Ec(f) = 9“_)"20 Ec () = pmin

where, i and pmin is average and minimum no. of bits
transmitted per attempt.

The above results essentially indicate the delay-throughput
tradeoff.



Proof: EC properties

Let f(9) = —Ac(—6). Due to concavity of f(#) we have
f7(6) < 0. Then,

£ (8) = (f(ee)) _of (H)HZ—f(H)

As f(0) = 0. Hence,
(6'(6) — £(6))lp=0= 0
. Moreover, for all § > 0,
(6f' () — £(8)) = 01" (A) < O

Hence, E'C(e) < 0 for all § < 0. Therefore the Ec(0) is a
monotonically decreasing function of 4.



Proof: claim 2 (EC properties)

Let £ p{P®(6)}. Hence,
A(0)x(8) = x(0)Pd(0)

Since, A¢(0) is differentiable, P®(0) is also differentiable.
Hence, using the Taylor series expansion at § = 0

AO) = Xo + A0 +0(0)
X(0) = Xo + X160 + 0(0)

Since, 1.w = wP, at # = 0, we obtain \g = 1 and Xg = .
Hence,

A(O)x(8) = AoXo+ (AoX1+A1X0)0 +0(8) = 7+ (X1 + Ar7)6 +0(6)

Let U = diag{p1, po, - . . , ik }- Hence,

X(0)P®(0) = (m+x10)P(1—0U)+0(8) = wP+(x1P—wPU)8+0(6)
=m + (x,P — wU)0 + 0o(h)



Proof: claim 2 and 3(EC properties)

On comparing above two equations,
X1+ M =X1P—-7wU

Solving above equation for A,

K
A1 = *Zﬂkﬂk = —[
k=1

Using basic definition of EC,
1 1
im Ec(#) =~ lim 10g A(6) = ~ A1 lim 5109 (1 + Xi(0) + 0(0))
As E¢(0) is a monotonically decreasing function hence the
proof follows. Claim 3: Letj = arg min; ;- ui, hence

li —n: _GMmin.
QmeA(G) pjie



Scaling property of EC

Theorem

If Ec,(9) is the EC function of the service process Ra(t), then
the EC of the service process Ry(t) = xRp(t), denoted by
Ecb(e), is

Ec,(9) = xEc.(x0),
where x € R.

Proof : By definition,
a0 = oo fe- )
— —lim X log (E {e‘xezitzl Ra(i)})

T oo Ot
— .y lim —log (E {e—(xe)zi‘:ma(i)}) — \Ec,(x0)

t—oo (X@)t



Effect of channel correlation

Theorem

For all of the FSMC-based wireless-channel service processes
with the same marginal pdf,

(1).The uncorrelated channel process achieves the maximum EC

(2).The fully correlated channel process leads to minimum EC



References

J. Tang and Xi Zhang, "Cross-Layer Modeling for Quality of
Service Guarantees over Wireless Links” IEEE
TRANSACTIONS ON WIRELESS
COMMUNICATIONS,Vol. 6, No. 12, December 2007

J. Tang and Xi Zhang, "QoS Driven Power and Rate
Adaptation over Wireless Links” IEEE TRANSACTIONS
ON WIRELESS COMMUNICATIONS,Vol. 6, No. 8, August
2007

D. Wu and R. Negi, "Effective Capacity: A Wireless Link
Model for Support of Quality of Service” IEEE
TRANSACTIONS ON WIRELESS
COMMUNICATIONS,Vol. 2, No. 4, July 2003

C. -S. Chang, "Stability, Queue Length, and Delay of
Deterministic and Stochastic Queueing Networks” IEEE
TRANSACTIONS ON AUTOMATIC CONTROL,Vol. 39,
No. 5, May 1994



