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Motivation

Given a PHY - Layer infrastructure, what QoS Gurantees
can be provided?

Water-filling is better than total channel inversion from
information-theoratic point of view?

Whether the former is also better than the latter in terms of
QoS gurantees?
Essentially, want to model the wireless channel/ PHY-layer
service process in terms of connection level QoS metric
eg.

delay,
delay-violation probability,
packet loss probability etc.



QoS guarantees in wired networks: constant
capacity
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Figure : Traffic and service characterization.



Extension to wireless networks

Need accurate model of the time-varying capacities of
wireless channels.

Providing a strict lower bound will most likely result in
extremely conservative guarantees.

Hence, statistical service characterization (SC) i.e.,

sup
t

Pr{S̃(t) < Ψ(t)} ≤ ǫ (1)

But, Ψ(t) = [λc
s(t − σc)]+

Statistical SC requires a relation between {λc
s , σ

c , ǫ} and
fading channel.

for AWGN : {rawgn,0,0}



Effective Bandwidth

It models the stochastic bhaviour of source traffic

For an arrival process {A(t), t ≥ 0}, effective bandwidth is

α(u) ,
Λ(u)

u
, ∀ u ≥ 0 (2)

Where, Λ(u) is, asymptotic log-moment generating
function, defined as

Λ(u) , lim
t→∞

1
t

log E
[

euA(t)
]

(3)

and, A(t) : amount of source data over the time interval
[0, t)



Effective Bandwidth (contd.)

For a queue of infinite size, served by a channel of
constant service rate r

sup Pr{Q(t) ≥ B} ∽ e−θB(r)B as B → ∞ (4)

where, f (x) ∽ g(x) means that limx→∞
f (x)
g(x) = 1.

While for smaller B,

sup Pr{Q(t) ≥ B} ≈ γ(r)e−θB(r)B as B → ∞ (5)

where,

γ(r) = Pr{Q(t) ≥ 0}, Prob. of nonempty buffer, and

QoS exponent, θB, is the solution of α(θB) = r



Effective Bandwidth (contd.)

The pair {γ(r), θB(r)}, model the source.

For a source modeled by the pair {γ(r), θ(r)}, and delay
bound Dmax

sup
t

Pr{D(t) ≥ Dmax} ≈ γ(r)e−θ(r)Dmax , (6)

D(t) : delay experienced by a packet arriving at time t, and

For a delay-bound violation probability at most ǫ, the
constant capacity should be r , such that,

ǫ = γ(r)e−θ(r)Dmax

In terms of traffic envelope Γ(t) = min{λ(s)
p t , λ(s)

s t + σ(s)},

λ
(s)
s = r and σ(s) = rDmax.



Effective bandwidth

Figure : Effective bandwidth function α(u).



Effective capacity

For a channel with instantaneous capacity r(t), the
effective capacity is

EC(θ) =
−ΛC(−θ)

θ
, ∀ θ ≥ 0 (7)

where, ΛC(−θ) = limt→∞
1
t log E

[

e−θS̃(t)
]

, is Gartner- Ellis

limit, and

S̃(t) =
∫ t

0
r(τ)dτ : service provided by channel

For an infinite buffer, supplied by a source of constant data
rate µ,

sup
t

Pr{D(t) ≥ Dmax} ≈ γ(c)(µ)e−θ(c)(µ)Dmax (8)



Effective capacity

γ(c)(µ) = Pr{Q(t) ≥ 0},probability of nonempty buffer at random t

θ(c)(µ) = µE−1
C (µ),QoS exponent

A link modeled by {γc(µ), θc(µ)}, can support a source
with rate µ, s.t.

ǫ = γ(c)(µ)e−θ(c)(µ)Dmax

where, ǫ is the maximum tolerable delay-violation
probability.

In terms of SC Ψ(t) = [λ
(c)
s (t − σ(c))]+,

λ
(c)
s is the channel sustainable rate and,

σ(c) = Dmax



Effective capacity Vs QoS exponent

Figure : Relation between SC and delay-bound violation.



Effective capacity

E
C

(θ)

θ

Figure : Effective capacity function EC(u).



QoS performance of generalized porcesses

Figure : Relationship between effective capacity and effective
bandwidth as a function of QoS exponent θ



Calculation of delay-bound violation prob.

1 Calculate effective bandwidth and effective capacity EC(θ)
using the statistical properties of arrival and service
processes.

2 Determine rate and QoS-exponent pair (µ, θ∗) s.t.

α(θ) = EC(θ) = µ

3 Approximate the buffer non empty prob. as,

γ =
µA

µC

or estimate it.

4 Calculate the delay violation probability as,

Pr{D(t) > Dmax} = γe−θµDmax



EC of FSMC-based wireless-channel service
process

Let sequence {R(t), t = 1,2,3, . . .} denote the attainable
service rates of the discrete service process.

R(t) takes value in a discrete set R , {µ1, µ2, . . . , µK }.

Gartner-Ellis limit of the time-cumulated service process
S(t) ,

∑t
i=1 R(i) defined as

ΛC(θ) , lim
t→∞

1
t

log
(

E{eθS(t)}
)

Assume that ΛC(θ) is a convex function and differentiable
function for all real θ.



EC of FSMC-based wireless-channel service
process

Theorem

Let {µk , k = 1,2,3, . . .} be the number of bit transmitted in
state k of the FSMC-based service process and define
Φ(θ) , diag{e−µ1θ,e−µ2θ, . . . ,e−µK θ}, then the effective
capacity of the FSMC-based service process is determined by

EC(θ) = −
1
θ

log (ρ{PΦ(θ)})

, where,
P : transition probability matrix

ρ{.} : spectral radius of the matrix



EC of FSMC proof

Let vi(θ, t) , E{e−θS(t)|R(1) = µi} and v(θ, t) , {v1(θ, t), . . . ,
vK (θ, t)}, respectively. Hence,

vi(θ, t) = {e−θS(t)|R(1) = µi}E{e−θ(S(t)−R(1))|R(1) = µi}

= e−µiθ
K
∑

j=1

E{e−θ(S(t)−S(1))|R(2) = µj ,R(1) = µi}

Pr
{

R(2) = µj |R(1) = µi
}

= e−µiθ
K
∑

j=1

E{e−θ(S(t)−S(1))|R(2) = µj}pij

= e−µiθ
K
∑

j=1

E{e−θ(S(t−1))|R(1) = µj}pij

= e−µiθ
K
∑

j=1

vi(θ, t − 1)pij



EC of FSMC proof (contd.)

In matrix form,

v(θ, t)T = (Φ(θ)P)t−1
Φ(θ)1T (9)

where, 1 : K − dimensional row-vector of 1 = [1, . . . ,1]. Now,

E{eθS(t)} = πv(θ, t)T = π(Φ(θ)P)t−1
Φ(θ)1T = π(PΦ(θ))t1T

Since PΦ(θ) is a primitive nonnegative matrix, hence,

lim
t→∞

(

π(PΦ(θ))t1T
)

= (ρ{PΦ(θ)})t
πy(θ)x(θ)1T

where, y(θ) and x(θ) are, respectively the column and row
eigenvectors of the matrix PΦ(θ), corresponding to ρ{PΦ(θ)}
and satisfying y(θ)x(θ) = 1. Hence,

EC(θ) = − lim
t→θ

1
θt

log E{eθS(t)} = −
1
θ

log (ρ{PΦ(θ)})



Properties of effective capacity

Theorem

Following claims hold for the effective-capacity function EC(θ)
of the FSMC-based service process:

dEC(θ)

dθ
≤ 0, ,∀ θ > 0

sup
θ>0

EC(θ) = lim
θ→0

EC(θ) = µ̄

inf
θ>0

EC(θ) = lim
θ→∞

EC(θ) = µmin

where, µ̄ and µmin is average and minimum no. of bits
transmitted per attempt.

The above results essentially indicate the delay-throughput
tradeoff.



Proof: EC properties

1 Let f (θ) , −ΛC(−θ). Due to concavity of f (θ) we have
f ′′(θ) ≤ 0. Then,

E
′

C(θ) =

(

f (θ)
θ

)

=
θf

′

(θ)− f (θ)
θ2

As f (0) = 0. Hence,

(θf
′

(θ)− f (θ))|θ=0= 0

. Moreover, for all θ > 0,

(θf
′

(θ)− f (θ)) = θf ′′(θ) ≤ 0

Hence, E
′

C(θ) ≤ 0 for all θ < 0. Therefore the EC(θ) is a
monotonically decreasing function of θ.



Proof: claim 2 (EC properties)

Let , ρ{PΦ(θ)}. Hence,

λ(θ)x(θ) = x(θ)PΦ(θ)

Since, ΛC(θ) is differentiable, PΦ(θ) is also differentiable.
Hence, using the Taylor series expansion at θ = 0

λ(θ) = λ0 + λ1θ + o(θ)

x(θ) = x0 + x1θ + o(θ)

Since, 1.π = πP, at θ = 0, we obtain λ0 = 1 and x0 = π.

Hence,

λ(θ)x(θ) = λ0x0+(λ0x1+λ1x0)θ+o(θ) = π+(x1+λ1π)θ+o(θ)

Let U , diag{µ1, µ2, . . . , µK }. Hence,

x(θ)PΦ(θ) = (π+x1θ)P(I−θU)+o(θ) = πP+(x1P−πPU)θ+o(θ)

= π + (x1P − πU)θ + o(θ)



Proof: claim 2 and 3(EC properties)

On comparing above two equations,

x1 + λ1π = x1P − πU

Solving above equation for λ1,

λ1 = −

K
∑

k=1

πkµk = −µ̄

Using basic definition of EC,

lim
θ→0

EC(θ) = − lim
θ→0

1
θ

logλ(θ) = −λ1 lim
θ→0

1
λ1θ

log (1 + λ1(θ) + o(θ))

= −λ1 = µ̄

As EC(θ) is a monotonically decreasing function hence the
proof follows. Claim 3: Let j = arg min1≤i≤Kµi , hence

lim
θ→∞

λ(θ) = pjje
−θµmin .



Scaling property of EC

Theorem

If ECa(θ) is the EC function of the service process Ra(t), then
the EC of the service process Rb(t) = χRb(t), denoted by
ECb

(θ), is
ECb

(θ) = χECa(χθ),

where χ ∈ R.

Proof : By definition,

ECb
(θ) = − lim

t→∞

1
θt

log
(

E
{

e−θ
∑t

i=1 Rb(i)
})

= − lim
t→∞

1
θt

log
(

E
{

e−χθ
∑t

i=1 Ra(i)
})

= −χ lim
t→∞

1
(χθ)t

log
(

E
{

e−(χθ)
∑t

i=1 Ra(i)
})

= χECa(χθ)



Effect of channel correlation

Theorem

For all of the FSMC-based wireless-channel service processes
with the same marginal pdf,

(1).The uncorrelated channel process achieves the maximum EC

(2).The fully correlated channel process leads to minimum EC
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