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Joint Sparse Support Recovery
Measurement model: Y = AX + W

︸ ︷︷ ︸
n

A

︸ ︷︷ ︸
L

Y︸
︷︷

︸

m

X W

︸ ︷︷ ︸
AWGN noise

(variance = σ2)

x1 x2 . . .xL

Columns of X are jointly sparse (same
nonzero support).

k = no. of nonzero rows in X
Columns of Y are called MMVs

No inter/intra vector correlations in X

Joint Sparse Support Recovery (JSSR) problem
I Recover support(X) from

{
Y,A, σ2

}
Computational complexity of support recovery should scale reasonably
with m,n, k and L
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Covariance Matching Framework for Support Recovery
MMV model: Y = AX + W

I xj ∼ N (0, diag(γ))

I yj ∼ N (0, σ2Im + AΓAT )

Covariance matrices:

I Empirical RY =
1
L

YYT

I Parameterized Σγ = σ2Im + AΓAT

Covariance Matching Principle:

γ̂ = arg min
γ∈Rn

+

distance
(

RY︸︷︷︸
empirical

MMV covariance

, σ2I + AΓAT︸ ︷︷ ︸
parameterized

MMV covariance

)

Distance = Log-Det Bregman divergence, we get MSBL

γ̂ = arg min
γ∈Rn

+

DBregman
− log det

(
RY, σ

2I + AΓAT
)

Distance = Frobenius matrix norm, we get Co-LASSO

γ̂ = arg min
γ∈Rn

+

||γ||1 subj. to. RY = σ2I + AΓAT
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Matrix Exponentiated Gradient (MEG) updates
MEG updates were introduced by Kivinen and Warmuth in 1997.

I Seminal paper: Exponentiated gradient vs gradient descent
for linear predictors

In most learning algorithms we need to learn a parameter vector from
data

Often, the parameter vector is structured
I sparsity
I non-negative
I this work considers parameters to be a symmetric positive definite matrix

Parameters are found my minimizing some kind of loss function L(.)

Prior approach: project to feasible parameter set after every gradient
descent update

Goal is to design updates which preserve symmetry and positive
definiteness
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Matrix Exponentiated Gradient (MEG) updates

Canonical problem:
I Find a symmetric positive definite matrix that satisfies a number of linear

inequality constraints

I .... like covariance matching constraints!

Matrix basics:
I Let A admits eigenvalue decomposition A = UΛUT

I log(A) = U(log(Λ))UT

I exp(A) = U(exp(Λ))UT
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Bregman divergences
Let F be a real-valued strictly convex differentiable function on a subset
of matrices in Rn×n

f (W) = ∇F (W)

Bregman divergence between two matrix parameters W̄ and W is defined
as

DF (W̄,W) = F (W̄)− F (W)− tr
(

f (W)T (W̄−W)
)

︸ ︷︷ ︸
first order approx. of F (W̄) around W

Due to strict convexity of F , we have DF (W̄,W) ≥ 0

F (W) = − log |W| gives Log-Det Bregman matrix divergence

DBregman
− log det

(
W̄,W

)
= log

|W|
|W̄|

+ tr
(
W−1W̄

)
− n

F (W) = tr (W log W−W) gives Von-Neumann matrix divergence

DBregman
von-Neumann

(
W̄,W

)
= tr

(
W̄ log W̄− W̄ log W− W̄ + W

)
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MEG updates
Let Lt (W) be a (time-varying) convex loss function

Say, we aim to solve the following problem:

Wt+1 = arg min
W
DF (W,Wt ) + ηLt (W)

I want to stay close to old parameter Wt
I at the same time, achieve a small loss

F Learning rate η implements tradeoff between these two conflicting goals

Due to convexity of the objective, Wt+1 can be found via zero gradient
optimality condition as

Wt+1 = f−1 (f (Wt )− η∇WLt (Wt+1))

I Unfortunately Wt+1 not available in closed form
I An approximation suggested by Kivinen and Warmuth fixes this issue!

∇WLt (Wt+1) ≈ ∇WLt (Wt )

Final form of the MEG update:

Wt+1 = f−1 (f (Wt )− η∇WLt (Wt ))
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Two types of MEG updates

Log-det divergence based MEG updates:
I F (W) = − log det W
I f (W) = −W−1 and f−1(Q) = Q

Wt+1 = −
(
−(Wt )

−1 − η∇WLt (Wt )
)−1

Von-Neumann divergence based MEG updates:
I F (W) = W log W−W
I f (W) = log W and f−1(Q) = expQ

Wt+1 = exp (log Wt − η (∇WLt (Wt )))
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Covariance matching MEG updates for support recov
Find a sparse, nonnegative Γ which satisfies RY = σ2Im + AΓAT

Parameter space: set of all positive definite diagonal matrices

Our loss function L(Γ):
∣∣∣∣∣∣∣∣∣RY − (σ2I + AΓAT )

∣∣∣∣∣∣∣∣∣2
F

∇ΓL(Γ)(i , i) = 2aT
i

(
AΓAT − (RY − σ2I)

)
ai

Log-Det divergence based MEG update:

γt+1(i) =

(
1

1
γt (i) + 2ηaT

i (AΓAT − (RY − σ2I)) ai

)
, 1 ≤ i ≤ n

Von-Neumann divergence based MEG update:

γt+1(i) = γt (i) · e−2ηaT
i (AΓAT−(RY−σ2I))ai , 1 ≤ i ≤ n
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Numerical experiments
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Thank You.....Questions?
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