Exponentiated Gradient Updates for Joint Sparsity Pattern Recovery from Multiple Measurement Vectors

Saurabh Khanna

Electrical Communication Engineering Dept. Indian Institute of Science, Bangalore

$12^{\text {th }}$ August, 2017

Outline

- Joint sparse support recovery problem
- Covariance matching framework for support recovery
- Matrix Exponentiated Gradient (MEG) Updates
- Two covariance matching algorithms based on MEG updates using
- Log-Det Bregman divergence
- Von-Neumann Bregman diverergence
- Numerical experiments
- Conclusions

Joint Sparse Support Recovery

- Measurement model: Y = AX + W

- Columns of \mathbf{X} are jointly sparse (same nonzero support).
- $k=$ no. of nonzero rows in \mathbf{X}

- Columns of \mathbf{Y} are called MMVs
- No inter/intra vector correlations in \mathbf{X}

Joint Sparse Support Recovery

- Measurement model: $\mathbf{Y}=\mathbf{A X}+\mathbf{W}$

- Columns of \mathbf{X} are jointly sparse (same nonzero support).
- $k=$ no. of nonzero rows in \mathbf{X}

- Columns of \mathbf{Y} are called MMVs
- No inter/intra vector correlations in \mathbf{X}
- Joint Sparse Support Recovery (JSSR) problem
- Recover support(\mathbf{X}) from $\left\{\mathbf{Y}, \mathbf{A}, \sigma^{2}\right\}$

Joint Sparse Support Recovery

- Measurement model: $\mathbf{Y}=\mathbf{A X}+\mathbf{W}$

- Columns of \mathbf{X} are jointly sparse (same nonzero support).
- $k=$ no. of nonzero rows in \mathbf{X}

- Columns of \mathbf{Y} are called MMVs
- No inter/intra vector correlations in \mathbf{X}
- Joint Sparse Support Recovery (JSSR) problem
- Recover support(\mathbf{X}) from $\left\{\mathbf{Y}, \mathbf{A}, \sigma^{2}\right\}$
- Computational complexity of support recovery should scale reasonably with m, n, k and L

Covariance Matching Framework for Support Recovery
 - MMV model: $\mathbf{Y}=\mathbf{A X}+\mathbf{W}$

Covariance Matching Framework for Support Recovery
 - MMV model: $\mathbf{Y}=\mathbf{A X}+\mathbf{W}$

- $\mathbf{x}_{j} \sim \mathcal{N}(0, \operatorname{diag}(\gamma))$

Covariance Matching Framework for Support Recovery

- MMV model: $\mathbf{Y}=\mathbf{A X}+\mathbf{W}$
- $\mathbf{x}_{j} \sim \mathcal{N}(0, \operatorname{diag}(\gamma))$
- $\mathbf{y}_{j} \sim \mathcal{N}\left(0, \sigma^{2} \mathbf{I}_{m}+\mathbf{A \Gamma} \mathbf{A}^{T}\right)$

Covariance Matching Framework for Support Recovery

- MMV model: $\mathbf{Y}=\mathbf{A X}+\mathbf{W}$
- Covariance matrices:
- $\mathbf{x}_{j} \sim \mathcal{N}(0, \operatorname{diag}(\gamma))$
- $\mathbf{y}_{j} \sim \mathcal{N}\left(0, \sigma^{2} \mathbf{I}_{m}+\mathbf{A \Gamma} \mathbf{A}^{T}\right)$

Covariance Matching Framework for Support Recovery

- MMV model: $\mathbf{Y}=\mathbf{A X}+\mathbf{W}$
- $\mathbf{x}_{j} \sim \mathcal{N}(0, \operatorname{diag}(\gamma))$
- $\mathbf{y}_{j} \sim \mathcal{N}\left(0, \sigma^{2} \mathbf{I}_{m}+\mathbf{A \Gamma} \mathbf{A}^{T}\right)$
- Covariance matrices:
- Empirical $\mathbf{R}_{\mathbf{Y}}=\frac{1}{L} \mathbf{Y Y}^{\top}$

Covariance Matching Framework for Support Recovery

- MMV model: $\mathbf{Y}=\mathbf{A X}+\mathbf{W}$
- $\mathbf{x}_{j} \sim \mathcal{N}(0, \operatorname{diag}(\gamma))$
- $\mathbf{y}_{j} \sim \mathcal{N}\left(0, \sigma^{2} \mathbf{I}_{m}+\mathbf{A} \mathbf{A}^{T}\right)$
- Covariance matrices:
- Empirical $\mathbf{R}_{\mathbf{Y}}=\frac{1}{L} \mathbf{Y Y}^{T}$
- Parameterized $\boldsymbol{\Sigma}_{\gamma}=\sigma^{2} \mathbf{I}_{m}+\mathbf{A} \mathbf{A A}^{T}$

Covariance Matching Framework for Support Recovery

- MMV model: $\mathbf{Y}=\mathbf{A X}+\mathbf{W}$
- $\mathbf{x}_{j} \sim \mathcal{N}(0, \operatorname{diag}(\gamma))$
- $\mathbf{y}_{j} \sim \mathcal{N}\left(0, \sigma^{2} \mathbf{I}_{m}+\mathbf{A} \mathbf{A}^{T}\right)$
- Covariance matrices:
- Empirical $\mathbf{R Y}_{\mathbf{Y}}=\frac{1}{L} \mathbf{Y Y}^{\top}$
- Parameterized $\boldsymbol{\Sigma}_{\gamma}=\sigma^{2} \mathbf{I}_{m}+\mathbf{A} \mathbf{I A}^{T}$
- Covariance Matching Principle:

$$
\hat{\gamma}=\underset{\gamma \in \mathbb{R}_{+}^{n}}{\arg \min } \operatorname{distance}(\underbrace{\mathbf{R}_{\mathbf{Y}}}_{\begin{array}{c}
\text { empirical } \\
\text { MMV covariance }
\end{array}}, \underbrace{\sigma^{2} \mathbf{I}+\mathbf{A \Gamma A}^{T}}_{\begin{array}{c}
\text { parameterized } \\
M M V ~ c o v a r i a n c e ~
\end{array}})
$$

Covariance Matching Framework for Support Recovery

- MMV model: $\mathbf{Y}=\mathbf{A X}+\mathbf{W}$
- $\mathbf{x}_{j} \sim \mathcal{N}(0, \operatorname{diag}(\gamma))$
- $\mathbf{y}_{j} \sim \mathcal{N}\left(0, \sigma^{2} \mathbf{I}_{m}+\mathbf{A} \mathbf{A}^{T}\right)$
- Covariance matrices:
- Empirical $\mathbf{R Y}_{\mathbf{Y}}=\frac{1}{L} \mathbf{Y Y}^{T}$
- Parameterized $\boldsymbol{\Sigma}_{\gamma}=\sigma^{2} \mathbf{I}_{m}+\mathbf{A} \mathbf{I A}^{T}$
- Covariance Matching Principle:

$$
\hat{\gamma}=\underset{\gamma \in \mathbb{R}_{+}^{n}}{\arg \min } \operatorname{distance}(\underbrace{\mathbf{R}_{\mathbf{Y}}}_{\begin{array}{c}
\text { empirical } \\
M M V \text { covariance }
\end{array}}, \underbrace{\sigma^{2} \mathbf{I}+\mathbf{A \Gamma} \mathbf{A}^{T}}_{\begin{array}{c}
\text { parameterized } \\
M M V \text { covariance }
\end{array}})
$$

- Distance $=$ Log-Det Bregman divergence, we get MSBL

$$
\hat{\gamma}=\underset{\gamma \in \mathbb{R}_{+}^{n}}{\arg \min } \mathcal{D}_{-\log \operatorname{det}}^{\text {Bregman }}\left(\mathbf{R}_{\mathbf{Y}}, \sigma^{2} \mathbf{I}+\mathbf{A} \boldsymbol{\Gamma} \mathbf{A}^{T}\right)
$$

Covariance Matching Framework for Support Recovery

- MMV model: $\mathbf{Y}=\mathbf{A X}+\mathbf{W}$
- $\mathbf{x}_{j} \sim \mathcal{N}(0, \operatorname{diag}(\gamma))$
- $\mathbf{y}_{j} \sim \mathcal{N}\left(0, \sigma^{2} \mathbf{I}_{m}+\mathbf{A} \mathbf{A}^{T}\right)$
- Covariance matrices:
- Empirical $\mathbf{R}_{\mathbf{Y}}=\frac{1}{L} \mathbf{Y Y}^{\top}$
- Parameterized $\boldsymbol{\Sigma}_{\gamma}=\sigma^{2} \mathbf{I}_{m}+\mathbf{A} \mathbf{I A}^{T}$
- Covariance Matching Principle:

$$
\hat{\gamma}=\underset{\gamma \in \mathbb{R}_{+}^{n}}{\arg \min } \operatorname{distance}(\underbrace{\mathbf{R}_{\mathbf{Y}}}_{\begin{array}{c}
\text { empirical } \\
\text { MMV covariance }
\end{array}}, \underbrace{\sigma^{2} \mathbf{I}+\mathbf{A \Gamma A}^{T}}_{\begin{array}{c}
\text { parameterized } \\
M M V \text { covariance }
\end{array}})
$$

- Distance $=$ Log-Det Bregman divergence, we get MSBL

$$
\hat{\gamma}=\underset{\gamma \in \mathbb{R}_{+}^{n}}{\arg \min } \mathcal{D}_{-\log \operatorname{det}}^{\text {Bregman }}\left(\mathbf{R}_{\mathbf{Y}}, \sigma^{2} \mathbf{I}+\mathbf{A} \boldsymbol{\Gamma} \mathbf{A}^{T}\right)
$$

- Distance $=$ Frobenius matrix norm, we get Co-LASSO

$$
\hat{\gamma}=\underset{\gamma \in \mathbb{R}_{+}^{n}}{\arg \min }\|\gamma\|_{1} \quad \text { subj. to. } \quad \mathbf{R}_{\mathbf{Y}}=\sigma^{2} \mathbf{I}+\mathbf{A \Gamma}^{T}
$$

Matrix Exponentiated Gradient (MEG) updates

- MEG updates were introduced by Kivinen and Warmuth in 1997.
- Seminal paper: Exponentiated gradient vs gradient descent for linear predictors
- In most learning algorithms we need to learn a parameter vector from data
- Often, the parameter vector is structured
- sparsity
- non-negative
- this work considers parameters to be a symmetric positive definite matrix
- Parameters are found my minimizing some kind of loss function $L($.)
- Prior approach: project to feasible parameter set after every gradient descent update
- Goal is to design updates which preserve symmetry and positive definiteness

Matrix Exponentiated Gradient (MEG) updates

- Canonical problem:
- Find a symmetric positive definite matrix that satisfies a number of linear inequality constraints

Matrix Exponentiated Gradient (MEG) updates

- Canonical problem:
- Find a symmetric positive definite matrix that satisfies a number of linear inequality constraints
- like covariance matching constraints!
- Matrix basics:

Matrix Exponentiated Gradient (MEG) updates

- Canonical problem:
- Find a symmetric positive definite matrix that satisfies a number of linear inequality constraints
- like covariance matching constraints!
- Matrix basics:
- Let \mathbf{A} admits eigenvalue decomposition $\mathbf{A}=\mathbf{U} \wedge \mathbf{U}^{T}$

Matrix Exponentiated Gradient (MEG) updates

- Canonical problem:
- Find a symmetric positive definite matrix that satisfies a number of linear inequality constraints
- like covariance matching constraints!
- Matrix basics:
- Let \mathbf{A} admits eigenvalue decomposition $\mathbf{A}=\mathbf{U} \wedge \mathbf{U}^{T}$
- $\log (\mathbf{A})=\mathbf{U}(\log (\Lambda)) \mathbf{U}^{T}$

Matrix Exponentiated Gradient (MEG) updates

- Canonical problem:
- Find a symmetric positive definite matrix that satisfies a number of linear inequality constraints
- like covariance matching constraints!
- Matrix basics:
- Let \mathbf{A} admits eigenvalue decomposition $\mathbf{A}=\mathbf{U} \wedge \mathbf{U}^{T}$
- $\log (\mathbf{A})=\mathbf{U}(\log (\Lambda)) \mathbf{U}^{T}$
- $\exp (\mathbf{A})=\mathbf{U}(\exp (\Lambda)) \mathbf{U}^{\top}$

Bregman divergences

- Let F be a real-valued strictly convex differentiable function on a subset of matrices in $\mathbb{R}^{n \times n}$
- $f(\mathbf{W})=\nabla F(\mathbf{W})$
- Bregman divergence between two matrix parameters $\overline{\mathbf{W}}$ and \mathbf{W} is defined as

$$
\mathcal{D}_{F}(\overline{\mathbf{W}}, \mathbf{W})=F(\overline{\mathbf{W}})-\underbrace{F(\mathbf{W})-\operatorname{tr}\left(f(\mathbf{W})^{T}(\overline{\mathbf{W}}-\mathbf{W})\right)}_{\text {first order approx. of } F(\overline{\mathbf{W}}) \text { around } \mathbf{W}}
$$

- Due to strict convexity of F, we have $\mathcal{D}_{F}(\overline{\mathbf{W}}, \mathbf{W}) \geq 0$
- $F(\mathbf{W})=-\log |\mathbf{W}|$ gives Log-Det Bregman matrix divergence

$$
\mathcal{D}_{- \text {log det }}^{\text {Bregman }}(\overline{\mathbf{W}}, \mathbf{W})=\log \frac{|\mathbf{W}|}{|\overline{\mathbf{W}}|}+\operatorname{tr}\left(\mathbf{W}^{-1} \overline{\mathbf{W}}\right)-n
$$

- $F(\mathbf{W})=\operatorname{tr}(\mathbf{W} \log \mathbf{W}-\mathbf{W})$ gives Von-Neumann matrix divergence $\mathcal{D}_{\text {von-Neumann }}^{\text {Bregman }}(\overline{\mathbf{W}}, \mathbf{W})=\operatorname{tr}(\overline{\mathbf{W}} \log \overline{\mathbf{W}}-\overline{\mathbf{W}} \log \mathbf{W}-\overline{\mathbf{W}}+\mathbf{W})$

MEG updates

- Let $L_{t}(\mathbf{W})$ be a (time-varying) convex loss function
- Say, we aim to solve the following problem:

$$
\mathbf{W}_{t+1}=\arg \min _{\mathbf{W}} \mathcal{D}_{F}\left(\mathbf{W}, \mathbf{W}_{t}\right)+\eta L_{t}(\mathbf{W})
$$

- want to stay close to old parameter \mathbf{W}_{t}
- at the same time, achieve a small loss
\star Learning rate η implements tradeoff between these two conflicting goals
- Due to convexity of the objective, \mathbf{W}_{t+1} can be found via zero gradient optimality condition as

$$
\mathbf{W}_{t+1}=f^{-1}\left(f\left(\mathbf{W}_{t}\right)-\eta \nabla_{\mathbf{w}} L_{t}\left(\mathbf{W}_{t+1}\right)\right)
$$

- Unfortunately \mathbf{W}_{t+1} not available in closed form
- An approximation suggested by Kivinen and Warmuth fixes this issue!

$$
\nabla_{\mathrm{w}} L_{t}\left(\mathbf{W}_{t+1}\right) \approx \nabla_{\mathrm{W}} L_{t}\left(\mathbf{W}_{t}\right)
$$

- Final form of the MEG update:

$$
\mathbf{W}_{t+1}=f^{-1}\left(f\left(\mathbf{W}_{t}\right)-\eta \nabla_{\mathbf{W}} L_{t}\left(\mathbf{W}_{t}\right)\right)
$$

Two types of MEG updates

- Log-det divergence based MEG updates:
- $F(\mathbf{W})=-\log \operatorname{det} \mathbf{W}$
- $f(\mathbf{W})=-\mathbf{W}^{-1}$ and $f^{-1}(\mathbf{Q})=\mathbf{Q}$

$$
\mathbf{W}_{t+1}=-\left(-\left(\mathbf{W}_{t}\right)^{-1}-\eta \nabla_{\mathbf{w}} L_{t}\left(\mathbf{W}_{t}\right)\right)^{-1}
$$

- Von-Neumann divergence based MEG updates:
- $F(\mathbf{W})=\mathbf{W} \log \mathbf{W}-\mathbf{W}$
- $f(\mathbf{W})=\log \mathbf{W}$ and $f^{-1}(\mathbf{Q})=\exp \mathbf{Q}$

$$
\mathbf{W}_{t+1}=\exp \left(\log \mathbf{W}_{t}-\eta\left(\nabla_{\mathbf{W}} L_{t}\left(\mathbf{W}_{t}\right)\right)\right)
$$

Covariance matching MEG updates for support recov

- Find a sparse, nonnegative $\boldsymbol{\Gamma}$ which satisfies $\mathbf{R}_{\mathbf{Y}}=\sigma^{2} \mathbf{I}_{m}+\mathbf{A \Gamma} \mathbf{A}^{T}$
- Parameter space: set of all positive definite diagonal matrices
- Our loss function $L(\boldsymbol{\Gamma}):\left\|\mathbf{R}_{\mathbf{Y}}-\left(\sigma^{2} \mathbf{I}+\mathbf{A \Gamma}^{T}\right)\right\| \|_{F}^{2}$
- $\nabla_{\Gamma} L(\boldsymbol{\Gamma})(i, i)=2 \mathbf{a}_{i}^{T}\left(\mathbf{A} \mathbf{A}^{T}-\left(\mathbf{R}_{\mathbf{Y}}-\sigma^{2} \mathbf{I}\right)\right) \mathbf{a}_{i}$
- Log-Det divergence based MEG update:

$$
\gamma_{t+1}(i)=\left(\frac{1}{\frac{1}{\gamma_{t}(i)}+2 \eta \mathbf{a}_{i}^{T}\left(\mathbf{A \Gamma} \mathbf{A}^{T}-\left(\mathbf{R}_{\mathbf{Y}}-\sigma^{2} \mathbf{I}\right)\right) \mathbf{a}_{i}}\right), \quad 1 \leq i \leq n
$$

- Von-Neumann divergence based MEG update:

$$
\gamma_{t+1}(i)=\gamma_{t}(i) \cdot e^{-2 \eta \mathbf{a}_{i}^{\top}\left(\mathbf{A} \mathbf{A}^{\top}-\left(\mathbf{R}_{\mathbf{Y}}-\sigma^{2} \mathbf{I}\right)\right) \mathbf{a}_{i}}, \quad 1 \leq i \leq n
$$

Numerical experiments

Thank You.....Questions?

