# A communication efficient scheme for decentralized estimation of jointly sparse signals

Saurabh Khanna, Signal Processing for Communication, ECE, IISc

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

#### **Contents**

Decentralized joint sparse signal recovery

- Problem statement and prior work
- Proposed algorithm
  - Fusion based Sparse Bayesian Learning

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Simulation results

## Decentralized joint sparse signal recovery

- Network of L sensor nodes
- Single/Multi hop communication links between nodes
- Measurement model at j<sup>th</sup> node:





#### Goal:

- Decentralized estimation of x<sub>1</sub>, x<sub>2</sub>...x<sub>L</sub> at their respective nodes
- Exploit joint sparsity to reduce no. of local measurements
- Reduce the amount of internode communication
- Internode communication restricted to single hop\_neighborhood < >>>

## Why decentralized algorithm ?

- Robust to nodal failures, no concept of fusion center
- Energy efficient to implement (think wireless networks)
- Attains centralized solution despite of computations/communications restricted to local neighborhoods

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

## **Prior work**

#### Comparison of various decentralized algorithms

| Decentralized algorithm | Computational<br>complexity | Performance | Per node, per iteration communication cost |
|-------------------------|-----------------------------|-------------|--------------------------------------------|
| DOOND                   | ****                        | ++          | 0(-1)                                      |
| DCOMP                   | ^^^^                        | ^^          | O(nL)                                      |
|                         |                             |             |                                            |
| DCSP                    | ****                        | *           | $\mathcal{O}(kL)$                          |
|                         |                             |             |                                            |
| DRL-1                   | *                           | ***         | $\mathcal{O}(nL)$                          |
|                         |                             |             |                                            |
| CB-DSBL                 | **                          | ****        | $\mathcal{O}(nL)$                          |
|                         |                             |             |                                            |
| FB-DSBL                 | ***                         | ****        | $\mathcal{O}(kL\log n)$                    |

- Algorithms not included in the comparison:
  - 1. DCS-AMP (involves direct exchange of signal coefficients between nodes)
  - 2. Turbo BCS (-do-)
  - 3. Decentralized SA-BMP (restricted to ring topology)

#### **Quick recap of SBL**

- SBL stands for Sparse Bayesian Learning [Wipf and Rao, 2004]
- Problem: Recover unknown sparse vector x from its noisy, underdetermined, linear measurements y

$$\mathbf{y} = \mathbf{\Phi}\mathbf{x} + \mathbf{w}$$

- Impose a sparsity inducing signal prior,  $\mathbf{x} \sim \mathcal{N}(0, \Gamma)$
- $\Gamma = \text{diag}(\gamma_1, \gamma_2, \dots, \gamma_L)$  model the variance of entries of **x**
- If  $\Gamma$  is known, from LMMSE theory,  $\hat{\mathbf{x}}_{\mathsf{MAP}} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$

$$\begin{split} \boldsymbol{\Sigma} &= \boldsymbol{\Gamma} - \boldsymbol{\Gamma} \boldsymbol{\Phi}^{T} \left( \sigma^{2} \mathbf{I}_{m} + \boldsymbol{\Phi} \boldsymbol{\Gamma} \boldsymbol{\Phi}^{T} \right)^{-1} \boldsymbol{\Phi} \boldsymbol{\Gamma} \\ \boldsymbol{\mu} &= \sigma^{-2} \boldsymbol{\Sigma} \boldsymbol{\Phi}^{T} \mathbf{y} \end{split}$$

• ML estimate  $\gamma_{\mathsf{ML}} = \underset{\boldsymbol{\gamma} \in \mathbb{R}^n_+}{\arg \max} \log p(\mathbf{y}|\boldsymbol{\gamma})$  obtained via EM algorithm

$$\begin{array}{ll} \mathsf{E} \mbox{ step: } & \mathcal{Q}(\boldsymbol{\gamma}|\boldsymbol{\gamma}^k) = \mathbb{E}_{\mathbf{X}|\mathbf{y},\boldsymbol{\gamma}^k}[\log p(\mathbf{y},\mathbf{X}|\boldsymbol{\gamma})] \\ \mathsf{M} \mbox{ step: } & \boldsymbol{\gamma}^{k+1} = \arg \max_{\boldsymbol{\gamma}} \mathcal{Q}(\boldsymbol{\gamma}|\boldsymbol{\gamma}^k) \end{array}$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

## Hard and soft support estimates

At node j, we define:

- 1. Hard support estimate  $\mathbf{b}_j$ :  $\in \{0,1\}^n$ , binary vector representing current support estimate
- Soft support estimate g<sub>j</sub>:

$$\mathbf{g}_{j}(i) \triangleq \begin{cases} \gamma_{j}(i) & \text{if } \mathbf{b}_{j}(i) = 1 \\ 0 & \text{if } \mathbf{b}_{j}(i) = 0 \end{cases}, \quad 1 \le i \le n$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

**b**<sub>j</sub> = support( $\mathbf{g}_j$ )

#### **Proposed algorithm**

**FB-DSBL**: Fusion based Decentralized Sparse Bayesian Learning

At node j,

- **Step-1** Run SBL iteration to update local hyperparameters  $\gamma_i$
- **Step-2** Generate hard support estimate  $\mathbf{b}_i$  using current estimate of  $\gamma_i$
- Step-3 Generate soft support estimate g<sub>j</sub> and broadcast it to single hop neighbors in N<sub>j</sub>
- Step-4 Use soft support estimate g<sub>j</sub>', j' ∈ N<sub>j</sub>, received from neighboring nodes to update local γ<sub>j</sub>

(ロ) (同) (三) (三) (三) (○) (○)

Repeat steps 1 to 4, until convergence

#### **FB-DSBL**

 FB-DSBL: Fusion based Decentralized Sparse Bayesian Learning At node *j*,

- **Step-1** Run SBL iteration to update local hyperparameters  $\gamma_i$
- **Step-2** Generate hard support estimate  $\mathbf{b}_i$  using current estimate of  $\gamma_i$
- Step-3 Generate soft support estimate g<sub>j</sub> and broadcast it to single hop neighbors in N<sub>j</sub>
- Step-4 Use soft support estimate g<sub>j</sub>', j' ∈ N<sub>j</sub>, received from neighboring nodes to update local γ<sub>i</sub>

(ロ) (同) (三) (三) (三) (○) (○)

Repeat steps 1 to 4, until convergence

### Generation of hard support estimate b<sub>i</sub>

At *j*<sup>th</sup> node, for index *i*,  $(1 \le i \le n)$ , we define following two hypothesis

$$\mathcal{H}_0 : \mathbf{x}_j(i) = 0$$
  
 $\mathcal{H}_1 : \mathbf{x}_j(i) \neq 0$   
 $\mathcal{H}_0 : \boldsymbol{\gamma}_j(i) = 0$ 

or equivalently,

 $\mathcal{H}_1: \gamma_j(i) > 0$ 

where  $\gamma_i$  denotes the local variance parameters

At node *j*, for index  $i \in [n]$ , a log likelihood ratio test (LLRT) is setup as:

Decide  $\mathcal{H}_1$  if

$$\log rac{p(\mathbf{y}_j; \mathcal{H}_1)}{p(\mathbf{y}_j; \mathcal{H}_0)} \geq heta_{j,i}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

## Generation of hard support estimate b<sub>j</sub>

Per index LLRT: Decide 2/, if

$$\log \frac{\mathcal{N}(\mathbf{y}_{j}; \mathbf{0}, \sigma_{j}^{2}\mathbf{I}_{m} + \mathbf{\Phi}_{j}\mathbf{\Gamma}_{j}^{k}\mathbf{\Phi}_{j})}{\mathcal{N}(\mathbf{y}_{j}; \mathbf{0}, \sigma_{j}^{2}\mathbf{I}_{m} + \mathbf{\Phi}_{j}\tilde{\mathbf{\Gamma}}_{j,i}^{k}\mathbf{\Phi}_{j})} \geq \theta_{j,i}$$
  
where  $\mathbf{\Phi}_{j}\tilde{\mathbf{\Gamma}}_{j}\mathbf{\Phi}_{j}^{T} = \sum_{k \neq i} \gamma_{j}(k)\phi_{j,k}\phi_{j,k}^{T}$ 

After simplification, we get

$$\frac{\left(\Phi_{j,i}^{T}\left(\sigma_{j}^{2}\mathbf{I}_{m}+\Phi_{j}\tilde{\boldsymbol{\Gamma}}_{j,i}^{k}\Phi_{j}^{T}\right)^{-1}\mathbf{y}_{j}\right)^{2}}{\Phi_{j,i}^{T}\left(\sigma_{j}^{2}\mathbf{I}_{m}+\Phi_{j}\tilde{\boldsymbol{\Gamma}}_{j,i}^{k}\Phi_{j}^{T}\right)^{-1}\Phi_{j,i}} \geq g(\langle \boldsymbol{\gamma}_{j}^{k}(i) \rangle \cdot \left(\frac{1}{\boldsymbol{\gamma}_{j}^{k}(i)}+\Phi_{j,i}^{T}\left(\sigma_{j}^{2}\mathbf{I}_{m}+\Phi_{j}\tilde{\boldsymbol{\Gamma}}_{j,i}^{k}\Phi_{j}^{T}\right)^{-1}\Phi_{j,i}\right)$$

where 
$$g(\langle \gamma_j^k(i) \rangle) = \frac{2\theta_{j,i} + \log\left(1 + \Phi_{j,i}^T \left(\sigma_j^2 \mathbf{I}_m + \Phi_j \tilde{\Gamma}_{j,i}^k \Phi_j^T\right)^{-1} \Phi_{j,i}\right)}{\Phi_{j,i}^T \left(\sigma_j^2 \mathbf{I}_m + \Phi_j \tilde{\Gamma}_{j,i}^k \Phi_j^T\right)^{-1} \Phi_{j,i}}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

## Generation of hard support estimate b<sub>j</sub>

Per index LLRT:

Decide  $\mathcal{H}_1$  if

$$\frac{\left(\Phi_{j,i}^{T}\left(\sigma_{j}^{2}\mathbf{I}_{m}+\Phi_{j}\tilde{\mathbf{\Gamma}}_{j,i}^{k}\Phi_{j}^{T}\right)^{-1}\mathbf{y}_{j}\right)^{2}}{\Phi_{j,i}^{T}\left(\sigma_{j}^{2}\mathbf{I}_{m}+\Phi_{j}\tilde{\mathbf{\Gamma}}_{j,i}^{k}\Phi_{j}^{T}\right)^{-1}\Phi_{j,i}} \geq g(\langle \gamma_{j}^{k}(i)\rangle \cdot \left(\frac{1}{\gamma_{j}^{k}(i)}+\Phi_{j,i}^{T}\left(\sigma_{j}^{2}\mathbf{I}_{m}+\Phi_{j}\tilde{\mathbf{\Gamma}}_{j,i}^{k}\Phi_{j}^{T}\right)^{-1}\Phi_{j,i}\right)$$

where 
$$g(\langle \gamma_j^k(i) \rangle = \frac{2\theta_{j,i} + \log\left(1 + \Phi_{j,i}^T \left(\sigma_j^2 \mathbf{I}_m + \Phi_j \tilde{\Gamma}_{j,i}^k \Phi_j^T\right)^{-1} \Phi_{j,i}\right)}{\Phi_{j,i}^T \left(\sigma_j^2 \mathbf{I}_m + \Phi_j \tilde{\Gamma}_{j,i}^k \Phi_j^T\right)^{-1} \Phi_{j,i}}$$

Some observations:

▶ Under H<sub>0</sub>, the test metric is standard chi-squared distributed (DOF = 1)

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

- Denominator in LHS is a normalization factor
- Note that test metric in LHS does not depend on \u03c6<sub>i</sub>(i)
- $g(\langle \gamma_i^k(i) \rangle)$  is independent of  $\gamma_i^k(i)$
- Overall, the LLRT threshold is inversely proportional to \u03c6<sub>i</sub>(i)

#### Generation of hard support estimate b<sub>i</sub>

► Hard support estimate b<sub>i</sub> is generated by performing individual LLRTs for each index i ∈ [n]:

Decide  $\mathcal{H}_1$  if

$$T_{j,i}(\mathbf{y}_j) = \frac{(\phi_{j,i}^T(\sigma_j^2 \mathbf{I}_m + \Phi_j \tilde{\mathbf{\Gamma}}_j \Phi_j^T)^{-1} \mathbf{y}_j)^2}{\phi_{j,i}^T(\sigma_j^2 \mathbf{I}_m + \Phi_j \tilde{\mathbf{\Gamma}}_j \Phi_j^T)^{-1} \phi_{j,i}} \ge [\mathcal{Q}^{-1}(\alpha)]^2$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

•  $\alpha = \mathbb{P}(\mathbf{b}_j(i) = 1 | \mathcal{H}_0)$  for all j, i

#### **FB-DSBL**

FB-DSBL: Fusion based Decentralized Sparse Bayesian Learning At node *j*,

- Step-1 Run SBL iteration to update local hyperparameters γ<sub>i</sub>
- **Step-2** Generate hard support estimate  $\mathbf{b}_i$  using current estimate of  $\gamma_i$
- Step-3 Generate soft support estimate g<sub>j</sub> and broadcast it to single hop neighbors in N<sub>j</sub>
- Step-4 Use soft support estimate g<sub>j</sub>', j' ∈ N<sub>j</sub>, received from neighboring nodes to update local γ<sub>i</sub>

(ロ) (同) (三) (三) (三) (○) (○)

Repeat steps 1 to 4, until convergence

### Messages exchanged by nodes

#### Structure of message exchanged between the nodes



- Variable length code used to encode g<sub>i</sub>
- O(k log n) bits required on average to encode the location and magnitude of non zero entries of soft support estimate g<sub>i</sub>

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

#### Message size



SNR = 20 dB, n = 50, m/n = 0.25, L = 10 nodes, trials = 50, α = 10<sup>-4</sup>

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

#### **FB-DSBL**

FB-DSBL: Fusion based Decentralized Sparse Bayesian Learning At node *j*,

- Step-1 Run SBL iteration to update local hyperparameters γ<sub>i</sub>
- **Step-2** Generate hard support estimate  $\mathbf{b}_i$  using current estimate of  $\gamma_i$
- Step-3 Generate soft support estimate g<sub>j</sub> and broadcast it to single hop neighbors in N<sub>j</sub>
- Step-4 Use soft support estimate g<sub>j</sub>', j' ∈ N<sub>j</sub>, received from neighboring nodes to update local γ<sub>j</sub>

(ロ) (同) (三) (三) (三) (○) (○)

Repeat steps 1 to 4, until convergence

## Fusion of hard support estimates



 Fuse hard support estimates from neighboring nodes to generate extrinsic hard support b<sub>i</sub><sup>ext</sup>

. . . .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

$$\mathbf{b}_{j}^{\text{ext}}(i) \triangleq \begin{cases} 1 & \text{if } |\mathcal{A}_{j}^{i}| \geq \frac{|\mathcal{N}_{j}|}{2} \\ 0 & \text{otherwise} \end{cases}$$
where  $\mathcal{A}_{j}^{i} = \{j^{'} \in \mathcal{N}_{j} : \mathbf{b}_{j^{'}}(i) = 1\}.$ 

• If  $\mathbf{b}_i^{\text{ext}}(i) = 1$ , update hyperparameter  $\gamma$  as a weighted average:

$$\gamma_{j}^{\mathsf{new}}(i) = \frac{\gamma_{j}(i) + \sum_{j' \in \mathcal{N}_{j}} \mathbf{b}_{j'}(i) \mathbf{g}_{j'}(i)}{1 + \sum_{j' \in \mathcal{N}_{j}} \mathbf{b}_{j'}(i)}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- If  $\mathbf{b}_i^{\text{ext}}(i) = 1$ , shrink hyperparameter  $\gamma_j(i)$ .
- Shrinkage of  $\gamma_i(i)$ :
  - results in a drop in probability of false detection (of zero coefficient at i)
  - also results in a drop in probability of detection (of non zero coefficient at i)
  - must be commensurate with the extrinsic belief in detecting a zero at i<sup>th</sup> index

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- If  $\mathbf{b}_i^{\text{ext}}(i) = 1$ , shrink hyperparameter  $\gamma_j(i)$ .
- Shrinkage of γ<sub>j</sub>(i):
  - results in a drop in probability of false detection (of zero coefficient at i)
  - also results in a drop in probability of detection (of non zero coefficient at i)
  - must be commensurate with the extrinsic belief in detecting a zero at i<sup>th</sup> index
- Extrinsic belief of finding a zero at  $i^{\text{th}}$  index  $\propto \mathbb{P}(\mathbf{b}_i^{\text{ext}}(i) = 1 | \mathcal{H}_0)$

$$\mathbb{P}(\mathbf{b}_{j}^{\text{ext}}(i) = 1|\mathcal{H}_{0}) = \sum_{k=\frac{|\mathcal{N}_{j}|}{2}}^{|\mathcal{N}_{j}|} {\binom{|\mathcal{N}_{j}|}{k}} \alpha^{k} (1-\alpha)^{|\mathcal{N}_{j}-k|}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

**Proposed solution:** Shrink  $\gamma(i)$  such that:

 $P_{FA}(LLRT \text{ at index } i) = P_{FA}(detector \mathcal{Z})$ 

where  $\mathcal{Z} = AND(\mathbf{b}_j(i), \mathbf{b}_j^{ext}(i))$ 

**Proposed solution:** Shrink  $\gamma(i)$  such that:

 $P_{FA}(LLRT \text{ at index } i) = P_{FA}(detector \mathcal{Z})$ 

where  $\mathcal{Z} = AND(\mathbf{b}_{j}(i), \mathbf{b}_{j}^{\text{ext}}(i))$ 

$$\begin{aligned} \mathcal{P}_{\mathsf{FA}}(\mathsf{detector}\mathcal{Z}) &= \mathbb{P}(\mathbf{b}_j(i) = 1, \mathbf{b}_j^{\mathsf{ext}}(i) = 1 | \mathcal{H}_0) \\ &= \mathbb{P}(\mathbf{b}_j(i) = 1 | \mathcal{H}_0) \cdot \mathbb{P}(\mathbf{b}_j^{\mathsf{ext}}(i) = 1 | \mathcal{H}_0) \\ &= \alpha \cdot \mathbb{P}(\mathbf{b}_j^{\mathsf{ext}}(i) = 1 | \mathcal{H}_0) \quad (< \alpha) \end{aligned}$$

**Proposed solution:** Shrink  $\gamma(i)$  such that:

 $P_{FA}(LLRT \text{ at index } i) = P_{FA}(detector \mathcal{Z})$ 

where  $\mathcal{Z} = AND(\mathbf{b}_{j}(i), \mathbf{b}_{j}^{\text{ext}}(i))$ 

$$P_{\mathsf{FA}}(\mathsf{detector}\mathcal{Z}) = \mathbb{P}(\mathbf{b}_j(i) = 1, \mathbf{b}_j^{\mathsf{ext}}(i) = 1 | \mathcal{H}_0)$$
  
=  $\mathbb{P}(\mathbf{b}_j(i) = 1 | \mathcal{H}_0) \cdot \mathbb{P}(\mathbf{b}_j^{\mathsf{ext}}(i) = 1 | \mathcal{H}_0)$   
=  $\alpha \cdot \mathbb{P}(\mathbf{b}_j^{\mathsf{ext}}(i) = 1 | \mathcal{H}_0)$  (<  $\alpha$ )

Backpropagating the new P<sub>FA</sub>(LLRT) to obtain corresponding new threshold θ<sup>new</sup><sub>i,i</sub>

$$\theta_{j,i}^{\text{new}} = \left(\mathcal{Q}^{-1}\left(\frac{P_{\text{FA}}(\text{detector}\mathcal{Z})}{2}\right)\right)^2$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Old and new LLRT thresholds for node j and i<sup>th</sup> index,

$$\begin{split} \theta_{j,i}^{\text{old}} &= \left(\mathcal{Q}^{-1}\left(0.5\alpha\right)\right)^2\\ \theta_{j,i}^{\text{new}} &= \left(\mathcal{Q}^{-1}\left(0.5P_{\text{FA}}(\text{detector}\mathcal{Z})\right)\right)^2 \end{split}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Old and new LLRT thresholds for node j and i<sup>th</sup> index,

$$\begin{split} \theta_{j,i}^{\text{old}} &= \left(\mathcal{Q}^{-1}\left(0.5\alpha\right)\right)^2\\ \theta_{j,i}^{\text{new}} &= \left(\mathcal{Q}^{-1}\left(0.5P_{\text{FA}}(\text{detector}\mathcal{Z})\right)\right)^2 \end{split}$$

Then, we can write

$$\eta \triangleq \left(\frac{\mathcal{Q}^{-1}(0.5P_{\mathsf{FA}}(\mathsf{detector}\mathcal{Z}))}{\mathcal{Q}^{-1}(0.5\alpha)}\right)^2 = \frac{g(\backslash \gamma_j^{k,\mathit{new}}(i)) \cdot \left(\frac{1}{\gamma_j^{k,\mathit{new}}(i)} + \Phi_{j,i}^{\mathsf{T}}\left(\sigma_j^2 \mathbf{I}_m + \Phi_j \tilde{\Gamma}_{j,i}^k \Phi_j^{\mathsf{T}}\right)^{-1} \Phi_{j,i}\right)}{g(\backslash \gamma_j^k(i)) \cdot \left(\frac{1}{\gamma_j^{k}(i)} + \Phi_{j,i}^{\mathsf{T}}\left(\sigma_j^2 \mathbf{I}_m + \Phi_j \tilde{\Gamma}_{j,i}^k \Phi_j^{\mathsf{T}}\right)^{-1} \Phi_{j,i}\right)}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Old and new LLRT thresholds for node j and i<sup>th</sup> index,

$$\begin{split} \theta_{j,i}^{\text{old}} &= \left(\mathcal{Q}^{-1}\left(0.5\alpha\right)\right)^2\\ \theta_{j,i}^{\text{new}} &= \left(\mathcal{Q}^{-1}\left(0.5P_{\text{FA}}(\text{detector}\mathcal{Z})\right)\right)^2 \end{split}$$

Then, we can write

$$\eta \triangleq \left(\frac{\mathcal{Q}^{-1}(0.5P_{\mathsf{FA}}(\mathsf{detector}\mathcal{Z}))}{\mathcal{Q}^{-1}(0.5\alpha)}\right)^2 = \frac{g(\backslash \gamma_j^{k,\mathit{new}}(i)) \cdot \left(\frac{1}{\gamma_j^{k,\mathit{new}}(i)} + \Phi_{j,i}^{\mathsf{T}}\left(\sigma_j^2 \mathbf{I}_m + \Phi_j \tilde{\Gamma}_{j,i}^k \Phi_j^{\mathsf{T}}\right)^{-1} \Phi_{j,i}\right)}{g(\backslash \gamma_j^k(i)) \cdot \left(\frac{1}{\gamma_j^{k}(i)} + \Phi_{j,i}^{\mathsf{T}}\left(\sigma_j^2 \mathbf{I}_m + \Phi_j \tilde{\Gamma}_{j,i}^k \Phi_j^{\mathsf{T}}\right)^{-1} \Phi_{j,i}\right)}$$

to get the update rule

$$\gamma_{\boldsymbol{j}}^{\mathsf{new}}(i) = \frac{\gamma_{\boldsymbol{j}}^{k}(i)}{\eta + (\eta - 1)\gamma_{\boldsymbol{j}}^{k}(i)(\phi_{\boldsymbol{j},i}^{T}(\sigma_{\boldsymbol{j}}^{2}\mathbf{I}_{\boldsymbol{m}} + \boldsymbol{\Phi}_{\boldsymbol{j}}\tilde{\boldsymbol{\Gamma}}^{k}\boldsymbol{\Phi}_{\boldsymbol{j}}^{T})^{-1}\phi_{\boldsymbol{j},i})}$$

where 
$$\Phi_j \tilde{\Gamma}_j \Phi_j^T = \sum_{k \neq i} \gamma_j(k) \phi_{j,k} \phi_{j,k}^T$$

## **MSE performance (Rademacher source)**



• n = 50, m = 15, 10% sparsity, L = 10 nodes, trials = 200,  $\alpha = 10^{-4}$ 

### MSE performance (Gaussian source)



• n = 50, m = 15, 10% sparsity, L = 10 nodes, trials = 200,  $\alpha = 10^{-4}$ 

## Support recovery



n = 50, 10% sparsity, L = 10 nodes, SNR = 15 dB, trials = 400, α = 10<sup>-4</sup>

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ●臣 = の々で

#### Phase transition characteristics



• n = 50, 10% sparsity, L = 10 nodes, SNR = 15 dB, trials = 400,  $\alpha = 10^{-4}$ 

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

#### **Communication cost**



n = 50, k = 5, m = 10, SNR = 20 dB, trials = 100, α = 10<sup>-4</sup>

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - 釣��

#### Number of iterations



n = 50, k = 5, m = 10, SNR = 20 dB, trials = 100, α = 10<sup>-4</sup>

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □