Solving linear inverse problems in finite-fields

Saurabh Khanna,
Signal Processing for Communication, ECE, IISc

Outline

- Finite field linear inverse problem
- Reformulation as a binary matrix recovery problem
- Proposed algorithm
- Hadamard transform based regularization approach

Finite field linear inverse problem

- Consider the following system of linear equations:

$$
\mathbf{y}=\boldsymbol{\Phi} \mathbf{x}+\mathbf{w}
$$

```
x}\mathrm{ is the signal of interest, and }\textrm{x}\in\mp@subsup{\mathcal{A}}{}{n}
A}={\mp@subsup{a}{1}{},\mp@subsup{a}{2}{},\ldots,\mp@subsup{a}{L}{}},\mathrm{ a finite alphabet set.
y}\in\mp@subsup{\mathbb{R}}{}{m}\mathrm{ is the observation vector.
\Phi}\in\mp@subsup{\mathbb{R}}{}{m\timesn}\mathrm{ is known meas matrix.
w models the observation noise.
```

The goal is to recover \mathbf{x} from observations \mathbf{y}.

- Discrete valued inverse problems have been studied under various names:
- discrete parameter estimation
- lattice search
- structured signal processing
- learning on manifolds
- finite-field or discrete valued compressive sensing

Discrete valued sparse signal recovery

- Canonical form of discrete valued CS:

$$
D P_{0}: \quad \min _{\mathbf{x} \in \mathcal{A}^{n}}\|\mathbf{y}-\mathbf{\Phi} \mathbf{x}\|_{2}^{2} \quad \text { subject to }\|\mathbf{x}\|_{0}=k
$$

Remark 1: Unlike conventional ℓ_{0} norm minimization problem, $D P_{0}$ has only finitely many but huge number of solutions.

Remark 2: Since the minimum nonzero coefficient is bounded away from zero, we can expect robust performance in presence of noise.

Remark 3: Design of measurement matrices suitable for discrete values CS is an unexplored area to investigate.

Applications

- PAPR reduction in OFDM systems

Peak-to-Average Power Ratio Reduction in OFDM via Sparse Signals: Transmitter-Side Tone Reservation vs. Receiver-Side Compressed Sensing, Robert F.H. Fischer et al., [International OFDM Workshop 2012].

- Digital communication

New decoding strategy for underdetermined MIMO transmission using sparse decomposition, [EUSIPCO, 2013]
New iterative detector of MIMO transmission using sparse decomposition, [IEEE TVT, 2014]
Complex Valued Signal Estimation for Interference Cancellation Schemes. A. Engelhart, W.G. Teich, J. Linder. [Tech. Rep. 1998].

Universal binary semidefinite relaxation for ML signal detection, X. Fan, J. Song, D. P. Palomar, and O. C. Au, [IEEE TCOM., 2013].

- Sensor networks

Exploiting Sparse User Activity in Multiuser Detection. H. Zhu and G.B. Giannakis. IEEE TCOM, 2011

- Quantization/transform coding
- CELP source coding
- CS based cryptography

Prior work - algorithms

- Sparsity-aware sphere decoding: Algorithms and complexity analysis, Somsubhra Barik and Haris Vikalo [arXiV, 2014].
- Closest Point Search in Lattices. E. Agrell, T. Eriksson, A. Vardy, K. Zeger. [IEEE TIT, 2002].
- Detection of Sparse Signals Under Finite-Alphabet Constraints. Z. Tian, G. Leus, V. Lottici. [ICASSP, 2009].
- Sparse Multi-User Detection for CDMA Transmission using Greedy Algorithms. H.F. Schepker, A. Dekorsy. [Int. Symp. on Wireless Com- mun. Systems, 2011]
- Low-complexity and Approximative Sphere Decoding of Sparse Signals. B. Knoop, T. Wiegand, S. Paul. [ASILOMAR. 2012].
- Adapting Compressed Sensing Algorithms to Discrete Sparse Signals. S. Sparrer, R.F.H. Fischer. [Workshop on Smart Antennas, 2014].
- Soft-Feedback OMP for the Recovery of Discrete-Valued Sparse Signals. S. Sparrer, R.F.H. Fischer. [EUSIPCO, Aug. 2015].
- An MMSE-Based Version of OMP for the Recovery of Discrete-Valued Sparse Signals. S. Sparrer, R.F.H. Fischer. [Electronics Letters, Jan. 2016]

A generative model for signals on lattices

Let $\mathcal{A}=\left\{a_{1}, a_{2}, \ldots, a_{L}\right\}$ be an L-sized alphabet set.

Let $\mathbf{x} \in \mathcal{A}^{n}$ reside on a high-dimensional lattice (large n).

Then, \mathbf{x} can be written as

$$
\mathbf{x}=\mathbf{G a}
$$

where $\mathbf{a}=\left[a_{1}, a_{2}, \ldots, a_{L}\right]^{T}$, and $\mathbf{G} \in\{0,1\}^{n \times L}$ is a binary generator(selection) matrix.

For example: Given $\mathcal{A}=\{ \pm 1+ \pm i\}$, and $\mathbf{x}=\left[\begin{array}{lll}(1+i) & (1-i) & (-1-i)\end{array}\right]^{T}$, we can express x as

$$
\mathbf{x}=\underbrace{\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)}_{\mathbf{G}} \underbrace{\left(\begin{array}{c}
1+i \\
1-i \\
-1+i \\
-1-i
\end{array}\right)}_{\mathbf{a}}
$$

Lattice search can be formulated as a binary search in the lifted space.

Structure in selection matrix G

- A sample binary selection matrix G:

$$
\left(\begin{array}{llllllll}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0
\end{array}\right)_{5 \times 8}
$$

- The selection matrix \mathbf{G} is highly structured binary matrix.

P1 G consists of 0's and 1's.
P2 Each row of G contains only single one.
P3 G has orthogonal columns (with non-overlapping supports)
P4 Each row sums to one, i.e. $\mathrm{G} \mathbf{1}_{n}=\mathbf{1}_{n}$.
P5 There are exactly k or n ones in G, i.e. $\mathbf{1}^{T} \mathbf{G} \mathbf{1}=k \backslash n$.

- Let \mathcal{G} be the set of all binary selection matrices satisfying (P1-P5), then
- For $n=m=k,|\mathcal{G}|=L^{n}$
- For $n \geq m \geq k,|\mathcal{G}|=\binom{n}{k} k^{L}$

Designing regularization for G

- To formulate an optimization for learning G, one of the following approaches can be adopted:
- Regularization / penalty based optimization (deterministic)
- Bayesian inference / MAP estimation (probabilistic)
- Maximum entropy model selection (dual of ML)

Proposed solution

- Let $\mathbf{g} \triangleq \operatorname{vec}(\mathbf{G})$.
- Consider the P_{φ} problem:

$$
\begin{aligned}
\left(P_{\varphi}\right): \quad & \underbrace{\operatorname{minimize}}_{\mathbf{g}} \underbrace{\left\|\mathbf{y}-\left(\mathbf{a}^{T} \otimes \mathbf{\Phi}\right) \mathbf{g}\right\|_{2}^{2}}_{h(\mathbf{g})}+\lambda \underbrace{\varphi(\mathbf{g})}_{\text {concave penalty }} \\
& \text { subject to } \quad \mathbf{g} \succeq 0
\end{aligned}
$$

Claim:
For $\lambda>0$ and a concave penalty φ, any solution of P_{φ} is at most m-sparse!

Proposed solution

- Let $\mathrm{g} \triangleq \operatorname{vec}(\mathbf{G})$.
- Consider the P_{φ} problem:

$$
\begin{aligned}
\left(P_{\varphi}\right): \quad & \underset{\mathbf{g}}{\operatorname{minimize}} \underbrace{\left\|\mathbf{y}-\left(\mathbf{a}^{T} \otimes \mathbf{\Phi}\right) \mathbf{g}\right\|_{2}^{2}}_{h(\mathbf{g})}+\lambda \underbrace{\varphi(\mathbf{g})}_{\text {concave penalty }} \\
& \text { subject to } \mathbf{g} \succeq 0
\end{aligned}
$$

Claim:
$\overline{\text { For } \lambda>}>0$ and a concave penalty φ, any solution of P_{φ} is at most m-sparse!

Proof.

Let \mathbf{g}^{*} be one of the solutions of P_{φ}. Let $\mathbf{u} \in \mathbb{R}^{m}$ be such that $\mathbf{u}=\mathbf{y}-\left(\mathbf{a}^{T} \otimes \boldsymbol{\Phi}\right) \mathbf{g}^{*}$. We claim that \mathbf{g}^{*} is also a solution of the below \bar{P}_{φ} problem:

$$
\begin{array}{ll}
\left(\bar{P}_{\varphi}\right): \quad & \operatorname{minimize}^{\mathbf{g}: \mathbf{y}-\left(\mathbf{a}^{T} \otimes \mathbf{\Phi}\right) \mathbf{g}=\mathbf{u}} \\
& \text { subject to } \mathbf{g} \succeq 0
\end{array}
$$

Since \bar{P}_{φ} maximizes a concave function over an affine set $\left\{\mathbf{g}: \mathbf{y}-\left(\mathbf{a}^{T} \otimes \boldsymbol{\Phi}\right) \mathbf{g}=\mathbf{u}\right\}$, and over the positive orthand, all its solutions are basic feasible solutions, and hence at most m sparse.

Design of concave penalty $\varphi(\mathbf{g})$

- We seek to design φ such that it promotes a sparse G as well as $\mathrm{G} 1_{L}=1_{n}$.

At the same time, φ must be concave to ensure at most m-sparse solution.

- Proposed re-weighted penalty:
$\varphi(\mathbf{g}) \triangleq \lambda_{1} \underbrace{\|\mathbf{g}\|_{p}^{p}}_{\text {concave for } p<1}+\lambda_{2} \underbrace{\left(\left(\mathbf{1}_{L} \otimes \mathbf{I}_{n}\right) \mathbf{g}_{k-1}-\mathbf{1}_{N L}\right)^{T}\left(\left(\mathbf{1}_{L} \otimes \mathbf{I}_{n}\right) \mathbf{g}-\mathbf{1}_{N L}\right)^{T}}_{\text {linear in } \mathbf{g}}$

Remark 1: The ℓ_{p} norm in the first term promotes sparsity in g .
Remark 2: The re-weighted second term in φ induces $\mathbf{G} \mathbf{1}_{L}=\mathbf{1}_{n}$.

The concavity of φ and its re-weighted second term together capture the structure of \mathbf{G}.

Proposed algorithm

Finally, \mathbf{G} is estimated by solving the following non-negative constrained optimization:

$$
\begin{aligned}
\left(P_{\varphi}\right): \quad \min _{\mathbf{g}} & \left\|\mathbf{y}-\left(\mathbf{a}^{T} \otimes \mathbf{\Phi}\right) \mathbf{g}\right\|_{2}^{2}+\lambda_{1}\|\mathbf{g}\|_{p}^{p} \\
& +\lambda_{2}\left(\left(\mathbf{1}_{L} \otimes \mathbf{I}_{n}\right) \mathbf{g}_{k-1}-\mathbf{1}_{N L}\right)^{T}\left(\left(\mathbf{1}_{L} \otimes \mathbf{I}_{n}\right) \mathbf{g}-\mathbf{1}_{N L}\right) \\
& \text { subject to } \mathbf{g} \succeq 0
\end{aligned}
$$

Solved via iterative reweighted type algorithm.

Proposed algorithm

- \mathbf{G} is found by solving a non-negative constrained optimization ${ }^{1}$:

$$
\begin{aligned}
&\left(P_{\varphi}\right): \quad \min _{\mathbf{g}}\left\|\mathbf{y}-\left(\mathbf{a}^{T} \otimes \boldsymbol{\Phi}\right) \mathbf{g}\right\|_{2}^{2}+\lambda_{1}\|\mathbf{g}\|_{p}^{p} \\
& \quad+\lambda_{2}\left(\left(\mathbf{1}_{L} \otimes \mathbf{I}_{n}\right) \mathbf{g}_{k-1}-\mathbf{1}_{N L}\right)^{T}\left(\left(\mathbf{1}_{L} \otimes \mathbf{I}_{n}\right) \mathbf{g}-\mathbf{1}_{N L}\right) \\
& \text { subject to } \quad \mathbf{g} \succeq 0
\end{aligned}
$$

- P_{φ} is solved as a series of non-negative quadratic programs.

Initializations: $k \leftarrow 1, \mathbf{g}^{0}=\epsilon_{1} \mathbf{1}_{n L}$.
Inner loop: $r \leftarrow 1, \underline{g}^{r}=\mathbf{g}_{k-1}$

$$
\begin{aligned}
& \mathbf{W}=\left[\operatorname{diag}\left(\mathbf{g}^{k-1}\right)+\epsilon_{2} \mathbf{I}_{n L}\right]^{p-2} \\
& \mathbf{Q}=\left(\Re \mathbf{a}^{T} \otimes \boldsymbol{\Phi}\right)^{T}\left(\Re \mathbf{a}^{T} \otimes \boldsymbol{\Phi}\right)+\left(\Im \mathbf{a}^{T} \otimes \boldsymbol{\Phi}\right)^{T}\left(\Im \mathbf{a}^{T} \otimes \boldsymbol{\Phi}\right)+2 \lambda_{1} \mathbf{W} \\
& \mathbf{h}=\Re \mathbf{y}^{T}\left(\Re \mathbf{a}^{T} \otimes \boldsymbol{\Phi}\right)+\Im \mathbf{y}^{T}\left(\Im \mathbf{a}^{T} \otimes \boldsymbol{\Phi}\right)-\lambda_{2} \mathbf{a}^{T}
\end{aligned}
$$

Repeat until convergence:

$$
\underline{\mathbf{g}}^{r+1}=\underline{\mathbf{g}}^{r}-\operatorname{diag}\left(\frac{\underline{\mathbf{g}}^{r}}{|\mathbf{Q}| \underline{\underline{r}}^{r}+\mathbf{h}^{-}-\delta \mathbf{1}}\right)\left(\mathbf{Q} \underline{\mathbf{g}}^{r}-\mathbf{h}\right)
$$

Outer loop: $\mathbf{g}^{k} \leftarrow \underline{\mathbf{g}}^{*}, \quad k \leftarrow k+1$, check for convergence.

[^0]
New penalty constructs for learning G

- A typical binary selection matrix \mathbf{G} :

$$
\left(\begin{array}{llllllll}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0
\end{array}\right)
$$

- We notice that each row of \mathbf{G} has exactly one entry equal to one, rest are zeros.
- Can we design a concave penalty which exploits this peculiar structure?.

Transform penalty framework:

- Ideal penalty:

$$
\mathbf{G} \quad \longrightarrow \quad \mathbb{I}_{\mathcal{G}}(\mathbf{G})= \begin{cases}0, & \text { if } \mathbf{G} \in \mathcal{G} \\ \infty, & \text { otherwise }\end{cases}
$$

- Relaxed penalty:

$$
\mathbf{G} \quad \longrightarrow \quad \varphi_{1}(\mathbf{G})=\operatorname{distance}(\mathbf{G}, \mathcal{G}) \quad \text { (usually constructed using norms) }
$$

- Linear transform + ideal penalty:

$$
\mathbf{G} \quad \longrightarrow \quad \mathcal{F}: \mathbf{G} \rightarrow \mathcal{X} \quad \longrightarrow \quad \mathbb{I}_{\mathcal{G}}(x)= \begin{cases}0, & \text { if } x \in \mathcal{F}(\mathcal{G}) \\ \infty, & \text { otherwise }\end{cases}
$$

- Linear transform + relaxed penalty:

$$
\mathbf{G} \quad \longrightarrow \mathcal{F}: \mathbf{G} \rightarrow \mathcal{X} \quad \longrightarrow \quad \varphi_{2}(x)=\operatorname{dist}(\mathbf{x}, \mathcal{F}(\mathcal{G}))
$$

- Challenge lies in designing linear transforms \mathcal{F} such that design of φ_{2} is simplified.

Hadamard transform penalty constructs

- We now propose novel hadamard transform based penalty constructs which captures the " only one nonzero" structure in binary vectors.
- Key ideas/observations:

1 Each row of \mathbf{G} is a binary vector with exactly one non-zero entry.
2 Such a binary vector is like a spike signal or a delta function.
3 DFT of a delta function/vector results in a vector of complex exponentials (each entry has unit magntitude).

4 Same is true for Hadamard transform, except that the output vector has entries ± 1.

- From these observations, it can be inferred that for $\mathbf{G} \in \mathcal{G}$, it satisfies

$$
\mathbf{H}_{L} \mathbf{G}^{T}=[\pm 1]_{L \times n} \quad \text { or } \quad \mathbf{G H}_{L}=[\pm 1]_{n \times L}
$$

- Or equivalently,

$$
\mathbf{H G}^{T} \circ \mathbf{H G}^{T}=\mathbf{1}_{L} \mathbf{1}_{n}^{T} \quad \text { (an all ones matrix !). }
$$

Hadamard transform penalty constructs

- We have shown that for $\mathbf{G} \in \mathcal{G}$, it satisfies

$$
\mathbf{H G}^{T} \circ \mathbf{H G}^{T}=\mathbf{1}_{L} \mathbf{1}_{n}^{T}
$$

- In vector form,

$$
\begin{gathered}
\left(\left(\mathbf{H}^{T} \otimes \mathbf{I}_{n}\right) \mathbf{g}\right) \circ\left(\left(\mathbf{H}^{T} \otimes \mathbf{I}_{n}\right) \mathbf{g}\right)=\mathbf{1}_{n L} \\
\Longleftrightarrow\left(\left(\mathbf{H}^{T} \otimes \mathbf{I}_{n}\right) \mathbf{g}-\mathbf{1}_{n L}\right) \circ\left(\left(\mathbf{H}^{T} \otimes \mathbf{I}_{n}\right) \mathbf{g}+\mathbf{1}_{n L}\right)=0_{n L}
\end{gathered}
$$

- Let \mathbf{d}_{i}^{T} be the $i^{\text {th }}$ row of $\mathbf{H}^{T} \otimes \mathbf{I}_{n}$, then we want to enforce

$$
\left(\mathbf{d}_{i}^{T} \mathbf{g}-1\right)\left(\mathbf{d}_{i}^{T} \mathbf{g}+1\right)=0 \forall i \in[n L]
$$

- Thus, we propose the following concave penalty

$$
\varphi(\mathbf{g})=\sum_{i=1}^{n L} \log \left(1-\mathbf{d}_{i}^{T} \mathbf{g}+\epsilon\right)+\log \left(1+\mathbf{d}_{i}^{T} \mathbf{g}+\epsilon\right)
$$

Numerical Experiments

Simulation parameters: $k=n, p=0.75$, max iter $=100$, trials $=256$.

Balanced case: $N=M=10$

Underdetermined case: $N=10, M=12$

[^0]: ${ }^{1}$ Multiplicative Iteration for Nonnegative Quad. Program., X. Xiao \& D. Chen, Numeraỉinear Algebra Appl. $2 @ 14$

