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Finite field linear inverse problem

I Consider the following system of linear equations:

y = Φx + w

x is the signal of interest, and x ∈ An.
A = {a1, a2, . . . , aL}, a finite alphabet set.
y ∈ Rm is the observation vector.
Φ ∈ Rm×n is known meas matrix.
w models the observation noise.

The goal is to recover x from observations y.

I Discrete valued inverse problems have been studied under various names:
I discrete parameter estimation
I lattice search
I structured signal processing
I learning on manifolds
I finite-field or discrete valued compressive sensing



Discrete valued sparse signal recovery

I Canonical form of discrete valued CS:

DP0 : min
x∈An

||y −Φx||22 subject to ||x||0 = k.

Remark 1: Unlike conventional `0 norm minimization problem, DP0 has only finitely
many but huge number of solutions.

Remark 2: Since the minimum nonzero coefficient is bounded away from zero, we can
expect robust performance in presence of noise.

Remark 3: Design of measurement matrices suitable for discrete values CS is an
unexplored area to investigate.



Applications
I PAPR reduction in OFDM systems

Peak-to-Average Power Ratio Reduction in OFDM via Sparse Signals: Transmitter-Side Tone

Reservation vs. Receiver-Side Compressed Sensing, Robert F.H. Fischer et al., [International

OFDM Workshop 2012].

I Digital communication

New decoding strategy for underdetermined MIMO transmission using sparse decomposition,
[EUSIPCO, 2013]
New iterative detector of MIMO transmission using sparse decomposition, [IEEE TVT, 2014]

Complex Valued Signal Estimation for Interference Cancellation Schemes. A. Engelhart, W.G.
Teich, J. Linder. [Tech. Rep. 1998].

Universal binary semidefinite relaxation for ML signal detection, X. Fan, J. Song, D. P. Palomar, and

O. C. Au, [IEEE TCOM., 2013].

I Sensor networks

Exploiting Sparse User Activity in Multiuser Detection. H. Zhu and G.B. Giannakis. IEEE TCOM,

2011

I Quantization/transform coding

I CELP source coding

I CS based cryptography



Prior work - algorithms

I Sparsity-aware sphere decoding: Algorithms and complexity analysis,
Somsubhra Barik and Haris Vikalo [arXiV, 2014].

I Closest Point Search in Lattices. E. Agrell, T. Eriksson, A. Vardy, K. Zeger. [IEEE
TIT, 2002].

I Detection of Sparse Signals Under Finite-Alphabet Constraints. Z. Tian, G. Leus,
V. Lottici. [ICASSP, 2009].

I Sparse Multi-User Detection for CDMA Transmission using Greedy Algorithms.
H.F. Schepker, A. Dekorsy. [Int. Symp. on Wireless Com- mun. Systems, 2011]

I Low-complexity and Approximative Sphere Decoding of Sparse Signals. B.
Knoop, T. Wiegand, S. Paul. [ASILOMAR. 2012].

I Adapting Compressed Sensing Algorithms to Discrete Sparse Signals. S.
Sparrer, R.F.H. Fischer. [Workshop on Smart Antennas, 2014].

I Soft-Feedback OMP for the Recovery of Discrete-Valued Sparse Signals. S.
Sparrer, R.F.H. Fischer. [EUSIPCO, Aug. 2015].

I An MMSE-Based Version of OMP for the Recovery of Discrete-Valued Sparse
Signals. S. Sparrer, R.F.H. Fischer. [Electronics Letters, Jan. 2016]



A generative model for signals on lattices

Let A = {a1, a2, . . . , aL} be an L-sized alphabet set.

Let x ∈ An reside on a high-dimensional lattice (large n).

Then, x can be written as
x = Ga

where a = [a1, a2, . . . , aL]T , and G ∈ {0, 1}n×L is a binary
generator(selection) matrix.

For example: Given A = {±1 +±i}, and x = [(1 + i) (1− i) (−1− i)]T , we
can express x as

x =

1 0 0 0
0 1 0 0
0 0 0 1


︸ ︷︷ ︸

G


1 + i
1− i
−1 + i
−1− i


︸ ︷︷ ︸

a

Lattice search can be formulated as a binary search in the lifted space.



Structure in selection matrix G

I A sample binary selection matrix G:


0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0


5×8

I The selection matrix G is highly structured binary matrix.

P1 G consists of 0’s and 1’s.
P2 Each row of G contains only single one.
P3 G has orthogonal columns (with non-overlapping supports)
P4 Each row sums to one, i.e. G1n = 1n.
P5 There are exactly k or n ones in G, i.e. 1TG1 = k\n.

I Let G be the set of all binary selection matrices satisfying (P1-P5), then
I For n = m = k, |G| = Ln

I For n ≥ m ≥ k, |G| =
(n
k

)
kL



Designing regularization for G

I To formulate an optimization for learning G, one of the following approaches can
be adopted:

I Regularization / penalty based optimization (deterministic)

I Bayesian inference / MAP estimation (probabilistic)

I Maximum entropy model selection (dual of ML)



Proposed solution
I Let g , vec(G).

I Consider the Pϕ problem:

(Pϕ) : minimize
g

∣∣∣∣∣∣y − (aT ⊗Φ
)

g
∣∣∣∣∣∣2
2︸ ︷︷ ︸

h(g)

+ λ ϕ(g)︸ ︷︷ ︸
concave penalty

subject to g � 0.

Claim:
For λ > 0 and a concave penalty ϕ, any solution of Pϕ is at most m-sparse !

Proof.
Let g∗ be one of the solutions of Pϕ. Let u ∈ Rm be such that u = y −

(
aT ⊗Φ

)
g∗.

We claim that g∗ is also a solution of the below P̄ϕ problem:

(P̄ϕ) : minimize
g:y−(aT⊗Φ)g=u

ϕ(g)

subject to g � 0.

Since P̄ϕ maximizes a concave function over an affine set
{
g : y −

(
aT ⊗Φ

)
g = u

}
,

and over the positive orthand, all its solutions are basic feasible solutions, and hence at
most m sparse.
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Design of concave penalty ϕ(g)

I We seek to design ϕ such that it promotes a sparse G as well as G1L = 1n.

At the same time, ϕ must be concave to ensure at most m-sparse solution.

I Proposed re-weighted penalty:

ϕ(g) , λ1 ||g||pp︸ ︷︷ ︸
concave for p<1

+ λ2 ((1L ⊗ In)gk−1 − 1NL)T ((1L ⊗ In)g − 1NL)T︸ ︷︷ ︸
linear in g

Remark 1: The `p norm in the first term promotes sparsity in g.

Remark 2: The re-weighted second term in ϕ induces G1L = 1n.

The concavity of ϕ and its re-weighted second term together capture the
structure of G.



Proposed algorithm

Finally, G is estimated by solving the following non-negative constrained
optimization:

(Pϕ) : min
g

∣∣∣∣∣∣y − (aT ⊗Φ
)

g
∣∣∣∣∣∣2
2

+ λ1 ||g||pp

+λ2((1L ⊗ In)gk−1 − 1NL)T ((1L ⊗ In)g − 1NL)

subject to g � 0.

Solved via iterative reweighted type algorithm.



Proposed algorithm
I G is found by solving a non-negative constrained optimization1:

(Pϕ) : min
g

∣∣∣∣∣∣y − (aT ⊗Φ
)

g
∣∣∣∣∣∣2
2

+ λ1 ||g||pp

+λ2((1L ⊗ In)gk−1 − 1NL)T ((1L ⊗ In)g − 1NL)

subject to g � 0.

I Pϕ is solved as a series of non-negative quadratic programs.

Initializations: k ← 1, g0 = ε11nL.

Inner loop: r ← 1, gr = gk−1

W =
[
diag

(
gk−1

)
+ ε2InL

]p−2

Q =
(
<aT ⊗Φ

)T (<aT ⊗Φ
)

+
(
=aT ⊗Φ

)T (=aT ⊗Φ
)

+ 2λ1W

h = <yT
(
<aT ⊗Φ

)
+ =yT

(
=aT ⊗Φ

)
− λ2aT

Repeat until convergence:

gr+1 = gr − diag

(
gr

|Q|gr+h−−δ1

)(
Qgr − h

)
Outer loop: gk ← g∗, k ← k + 1, check for convergence.

1
Multiplicative Iteration for Nonnegative Quad. Program., X. Xiao & D. Chen, Numer. Linear Algebra Appl. 2014



New penalty constructs for learning G

I A typical binary selection matrix G:


0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0



I We notice that each row of G has exactly one entry equal to one, rest are zeros.

I Can we design a concave penalty which exploits this peculiar structure ?.



Transform penalty framework:
I Ideal penalty:

G −→ IG(G) =

{
0, if G ∈ G
∞, otherwise

I Relaxed penalty:

G −→ ϕ1(G) = distance(G,G) (usually constructed using norms)

I Linear transform + ideal penalty:

G −→ F : G→ X −→ IG (x) =

{
0, if x ∈ F(G)

∞, otherwise

I Linear transform + relaxed penalty:

G −→ F : G→ X −→ ϕ2 (x) = dist (x,F(G))

I Challenge lies in designing linear transforms F such that design of ϕ2 is
simplified.



Hadamard transform penalty constructs
I We now propose novel hadamard transform based penalty constructs which

captures the “ only one nonzero” structure in binary vectors.

I Key ideas/observations:

1 Each row of G is a binary vector with exactly one non-zero entry.

2 Such a binary vector is like a spike signal or a delta function.

3 DFT of a delta function/vector results in a vector of complex exponentials
(each entry has unit magntitude).

4 Same is true for Hadamard transform, except that the output vector has
entries ±1.

I From these observations, it can be inferred that for G ∈ G, it satisfies

HLGT = [±1]L×n or GHL = [±1]n×L .

I Or equivalently,

HGT ◦HGT = 1L1Tn (an all ones matrix !).



Hadamard transform penalty constructs
I We have shown that for G ∈ G, it satisfies

HGT ◦HGT = 1L1Tn

I In vector form, ((
HT ⊗ In

)
g
)
◦
((

HT ⊗ In
)

g
)

= 1nL

⇐⇒
((

HT ⊗ In
)

g − 1nL

)
◦
((

HT ⊗ In
)

g + 1nL

)
= 0nL

I Let dTi be the ith row of HT ⊗ In, then we want to enforce(
dTi g − 1

)(
dTi g + 1

)
= 0 ∀i ∈ [nL]

I Thus, we propose the following concave penalty

ϕ(g) =
nL∑
i=1

log
(

1− dTi g + ε
)

+ log
(

1 + dTi g + ε
)



Numerical Experiments

Simulation parameters: k = n, p = 0.75, max iter = 100, trials = 256.
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Balanced case: N = M = 10
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Underdetermined case: N = 10,M = 12


