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> Finite field linear inverse problem
> Reformulation as a binary matrix recovery problem
> Proposed algorithm

» Hadamard transform based regularization approach



Finite field linear inverse problem

> Consider the following system of linear equations:

y=®x+w

x is the signal of interest, and x € A™.

A ={a1,a2,...,ar}, afinite alphabet set.
y € R™ is the observation vector.

P € R™*™ is known meas matrix.

w models the observation noise.

The goal is to recover x from observations y.

> Discrete valued inverse problems have been studied under various names:

| 4

vV vYyy

discrete parameter estimation
lattice search

structured signal processing
learning on manifolds

finite-field or discrete valued compressive sensing



Discrete valued sparse signal recovery

» Canonical form of discrete valued CS:

DPy: min |ly — ®x||3 subjectto ||x]|o = k.
xe A"

Remark 1: Unlike conventional £y norm minimization problem, D Py has only finitely
many but huge number of solutions.

Remark 2: Since the minimum nonzero coefficient is bounded away from zero, we can
expect robust performance in presence of noise.

Remark 3: Design of measurement matrices suitable for discrete values CS is an
unexplored area to investigate.



Applications

» PAPR reduction in OFDM systems

Peak-to-Average Power Ratio Reduction in OFDM via Sparse Signals: Transmitter-Side Tone
Reservation vs. Receiver-Side Compressed Sensing, Robert F.H. Fischer et al., [International

OFDM Workshop 2012].

> Digital communication

New decoding strategy for underdetermined MIMO transmission using sparse decomposition,
[EUSIPCO, 2013]
New iterative detector of MIMO transmission using sparse decomposition, [[EEE TVT, 2014]

Complex Valued Signal Estimation for Interference Cancellation Schemes. A. Engelhart, W.G.
Teich, J. Linder. [Tech. Rep. 1998].

Universal binary semidefinite relaxation for ML signal detection, X. Fan, J. Song, D. P. Palomar, and

0. C. Au, [IEEE TCOM., 2013].

» Sensor networks

Exploiting Sparse User Activity in Multiuser Detection. H. Zhu and G.B. Giannakis. |IEEE TCOM,
2011
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Quantization/transform coding
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CELP source coding
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CS based cryptography



Prior work - algorithms

>
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TIT, 2002].

Detection of Sparse Signals Under Finite-Alphabet Constraints. Z. Tian, G. Leus,
V. Lottici. [[CASSP, 2009].

Sparse Multi-User Detection for CDMA Transmission using Greedy Algorithms.
H.F. Schepker, A. Dekorsy. [Int. Symp. on Wireless Com- mun. Systems, 2011]

Low-complexity and Approximative Sphere Decoding of Sparse Signals. B.
Knoop, T. Wiegand, S. Paul. [ASILOMAR. 2012].

Adapting Compressed Sensing Algorithms to Discrete Sparse Signals. S.
Sparrer, R.F.H. Fischer. [Workshop on Smart Antennas, 2014].

Soft-Feedback OMP for the Recovery of Discrete-Valued Sparse Signals. S.
Sparrer, R.F.H. Fischer. [EUSIPCO, Aug. 2015].

An MMSE-Based Version of OMP for the Recovery of Discrete-Valued Sparse
Signals. S. Sparrer, R.F.H. Fischer. [Electronics Letters, Jan. 2016]



A generative model for signals on lattices

Let A = {a1,az2,...,ar} be an L-sized alphabet set.
Let x € A" reside on a high-dimensional lattice (large n).
Then, x can be written as
x = Ga
where a = [a1, a2, ...,ar]T, and G € {0,1}"*L is a binary

generator(selection) matrix.

For example: Given A = {1+ +i},andx = [(1 +4) (1 —i) (—1—14)]T, we

can express x as
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Lattice search can be formulated as a binary search in the lifted space.



Structure in selection matrix G

»> A sample binary selection matrix G:
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> The selection matrix G is highly structured binary matrix.

P1 G consists of 0’'s and 1's.

P2 Each row of G contains only single one.

P3 G has orthogonal columns (with non-overlapping supports)
P4 Each row sums to one, i.e. G1,, = 1,,.

P5 There are exactly k or n ones in G, i.e. 17G1 = k\n.

> Let G be the set of all binary selection matrices satisfying (P1-P5), then
» Forn=m=k, |G| =L"
» Forn>m >k, |G| = (Z)kL



Designing regularization for G

> To formulate an optimization for learning G, one of the following approaches can
be adopted:

» Regularization / penalty based optimization (deterministic)
» Bayesian inference / MAP estimation (probabilistic)

» Maximum entropy model selection (dual of ML)



Proposed solution
> Letg = vec(G).

> Consider the P, problem:

2
(P,) : minimize Hy -(a"ee) gH )
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h(g) concave penalty

subjectto g > 0.

Claim:
For A > 0 and a concave penalty ¢, any solution of P, is at most m-sparse !




Proposed solution
> Letg = vec(G).

> Consider the P, problem:

2
(P,) : minimize Hy -(a"ee) gH )
g 2 N~
h(g) concave penalty

subjectto g > 0.

Claim:
For A > 0 and a concave penalty ¢, any solution of P, is at most m-sparse !

Proof.

Let g* be one of the solutions of P,. Letu € R™ be such thatu =y — (a7 ® &) g*.
We claim that g* is also a solution of the below P,, problem:

(Py) : minimize »(g)
g:y—(aT®<I>)g:u
subjectto g > 0.
Since P, maximizes a concave function over an affine set {g : y — (a7 ® ®) g = u},

and over the positive orthand, all its solutions are basic feasible solutions, and hence at
most m sparse. O



Design of concave penalty ¢(g)

> We seek to design ¢ such that it promotes a sparse G as wellas G1; = 1,,.

At the same time, ¢ must be concave to ensure at most m-sparse solution.

> Proposed re-weighted penalty:

o) £ M llglh 4+ A ((1r@l)gr1 — i) (A ®@In)g —1np)”

concave for p<1 linear in g

Remark 1: The ¢, norm in the first term promotes sparsity in g.

Remark 2: The re-weighted second term in ¢ induces G1;, = 1,,.

The concavity of ¢ and its re-weighted second term together capture the
structure of G.



Proposed algorithm

Finally, G is estimated by solving the following non-negative constrained
optimization:

2
. : _ T 4
(P): min |ly—(a"@®)g| + el
+x2((1r @L)gr1 — 1nvp) (A @ In)g — 1n1)

subjectto g > 0.

Solved via iterative reweighted type algorithm.



Proposed algorithm

» G is found by solving a non-negative constrained optimization!:

2
. i _ T D
(P): min |ly—(a"@®)g|| +rllell
+A2((1z @ T)gr—1 — 1ne)" (1L ®In)g — 1nL)

subjectto g > 0.

> P, is solved as a series of non-negative quadratic programs.
Initializations: k+ 1, g° =e11,1.
Innerloop: r <1, g" =gr_1
W = [diag(gF~!) + eal,r]? >
Q= (RaT @ ®)" (Ra” @ ®) + (Sal @ ®)" (Sa” ® B) + 2 W
h=RyT (Ra” ® ®) + Sy” (Sal @ ) — A2aT
Repeat until convergence:

r4+1 _ S _ 5 gT ro_
g =g dlag(|Q|§T+h__51) (Qg h)

Outer loop: gk « g*, k<« k+1, checkforconvergence.

1 Multiplicative Iteration for Nonnegative Quad. Program., X. Xiao & D. ChengNumersLinear Algebra?ppl. 2814



New penalty constructs for learning G

> A typical binary selection matrix G:
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> We notice that each row of G has exactly one entry equal to one, rest are zeros.

» Can we design a concave penalty which exploits this peculiar structure ?.



Transform penalty framework:

> |deal penalty:
0, ifGeg

G — Ig(G)=
9(G) {oo, otherwise

> Relaxed penalty:

G — ¢1(G) =distance(G,G) (usually constructed using norms)

> Linear transform + ideal penalty:

0, ifze F(Q)

G — F:G—-oX — 1 = .
g (z) {oo, otherwise

> Linear transform + relaxed penalty:

G — F:GoX — () =dist(x,F(9))

» Challenge lies in designing linear transforms F such that design of ¢3 is
simplified.



Hadamard transform penalty constructs

> We now propose novel hadamard transform based penalty constructs which
captures the “ only one nonzero” structure in binary vectors.
> Key ideas/observations:

1 Each row of G is a binary vector with exactly one non-zero entry.
2 Such a binary vector is like a spike signal or a delta function.

3 DFT of a delta function/vector results in a vector of complex exponentials
(each entry has unit magntitude).

4 Same is true for Hadamard transform, except that the output vector has

entries +1.

» From these observations, it can be inferred that for G € G, it satisfies
H GT =[+1];,, o GHp=[+1],,;.

» Or equivalently,

HGT cHGT =117 (an all ones matrix !).



Hadamard transform penalty constructs

» We have shown that for G € G, it satisfies

HGT oHGT =117

» In vector form,

(7 1)) (17 1)) =1

o (o1 e 1) (0751 £ 410r) <

> Letd! be the i row of HT ® I,,, then we want to enforce

<diTg - 1) (diTg + 1) =0 Vie[nL]

» Thus, we propose the following concave penalty

p(g) = ilog (1 —dTg+ e) + log (1 +diTg+e>

=1



Numerical Experiments

Simulation parameters: k = n, p = 0.75, max iter = 100, trials = 256.
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