Frame Theory

Part I: Introduction

T. Ganesan

gana@ieee.org

SPC Lab, Dept. of ECE

Nov 5th, 2011

æ

・ロト ・ 個 ト ・ ヨ ト ・ ヨ ト

Outline

- Vector Space Representations
- 2 Frames and Dual Frames
 - Definition
- 3 Applications
 - Signal Expansion
 - Sampling Theory
 - Compressive Sensing

- Vector Space Representations
- 2 Frames and Dual Frames
 - Definition
- 3 Applications
 - Signal Expansion
 - Sampling Theory
 - Compressive Sensing

ヘロト 人間 とくほ とくほとう

Introduction • 0 0 0 0 Vector Space Representations

Finite Dimensional Vector Space

• Any element in a finite dimensional vector space has

representation in terms of its basis vectors.

$$\mathbf{x} = \sum_{i=1}^{N} a_i \mathbf{e}_i$$

where \mathbf{e}_i are the *N* basis vectors.

- The *N* basis vectors may be orthogonal, but they must be independent for unique representation.
- Orthonormal basis vectors ensure norm is preserved as well as representation is unique.
- e.g. $\{e_1, e_2, \ldots, e_N\}$.
- e.g. For $\mathbf{x} \in \mathbb{R}^2$, $\mathbf{e}_1 = \{1, 0\}$, $\mathbf{e}_2 = \frac{1}{\sqrt{2}}\{1, 1\}$

Analysis and Synthesis

• The decomposition of **x** in terms of components of **e**_{*i*}'s is *Analysis*. i.e.,

$\mathbf{a} = \mathbf{T}\mathbf{x}$

- $\mathbf{T} = [\mathbf{e}_1^T \mathbf{e}_2^T \dots \mathbf{e}_N^T]$ denotes the linear transformation from \mathbb{R}^N to \mathbb{R}^N .
- The re-computation of **x** from the coefficients of the representation is *Synthesis*.

$$\mathbf{x} = \mathbf{T}^{-1}\mathbf{a}$$

Э

Introduction 00000 Vector Space Representations Frames and Dual Frames

Applications 00000

Bi-orthonormal Basis

• If a given vector **x** can be represented as

$$\mathbf{x} = <\mathbf{x}, \mathbf{e}_1 > \tilde{\mathbf{e}}_1 + <\mathbf{x}, \mathbf{e}_2 > \tilde{\mathbf{e}}_2$$

then $\{e_1,e_2\},\{\tilde{e}_1,\tilde{e}_2\}$ are called Bi-orthonormal basis vectors.

- The vectors $\{e_1, e_2\}$ are the row vectors of **T**, *Analysis* matrix.
- The vectors {\vec{e}_1, \vec{e}_2} are the column vectors of T⁻¹, Synthesis matrix.
- In the case of orthogonal Analysis matrix, $\mathbf{T}^{-1} = \mathbf{T}^{H}$.

Э

Overcomplete Representations

X.

- If the basis vectors are not independent, the representation is not unique.
 - Number of vectors in the basis is more than the dimension of the vector space.
 - This basis is said to be overcomplete.
- The norm in the representation need not match the norm of the original vector.
 - e.g. Consider repeated basis vectors {e₁, e₁, e₂, e₂, ..., e_N, e_N}.
 The norm in the representation is twice that of the original vector

Э

Introduction 0000 Vector Space Representations Frames and Dual Frames

Applications

Overcomplete Representations : An example

• Consider the following basis vectors for \mathbb{R}^2 ,

$$\mathbf{g}_{1} = [10]^{T}, \mathbf{g}_{2} = [01]^{T}, \mathbf{g}_{3} = [1-1]^{T}.$$

• $\mathbf{c} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & -1 \end{bmatrix} \mathbf{x}$

- Since T has many inverses, there is more than one set of bi-orthogonal basis vectors.
- One of them is

$$\mathbf{x} = <\mathbf{x}, \mathbf{g}_1 > 2\mathbf{g}_1 + <\mathbf{x}, \mathbf{g}_2 > (\mathbf{g}_2 - \mathbf{g}_1) - <\mathbf{x}, \mathbf{g}_3 > \mathbf{g}_1$$

- This redundant set of vectors $\{\mathbf{g}_1, \mathbf{g}_2, \mathbf{g}_3\}$ is called a frame.
- The set $\{\tilde{g}_1, \tilde{g}_2, \tilde{g}_3\}$ is called a dual frame.

Introduction

• Vector Space Representations

Prames and Dual Frames

• Definition

3 Applications

- Signal Expansion
- Sampling Theory
- Compressive Sensing

э

ヘロト 人間 とくほとくほとう

Formal Definition

A set of elements {g_k}, k ∈ K, g_k ∈ H is called a frame for the Hilbert space H if

$$A \|\mathbf{x}\|_2^2 \leq \sum_{k \in \mathcal{K}} |<\mathbf{x}, \mathbf{g}_k > |^2 \leq B \|\mathbf{x}\|^2$$

where $A, B \in \mathbb{R}$ and $0 < A \leq B < \infty$.

- The constants A, B are called frame bounds
- If A = B, then the frame is called a tight frame.
 - Fourier transform is a tight frame

Э

・ロア ・雪 ア ・ 明 ア ・ 明 ア

Examples

- Let {e_k}, k = 1, 2, ..., ∞ be the orthonormal basis for infinite dimensional Hilbert space H.
 - By repeating each element, we get a frame with frame bounds A = B = 2.
- Consider another frame

$$\{\mathbf{g}_k\}_{k=1}^{\infty} = \Big\{\mathbf{e}_1, \frac{1}{\sqrt{2}}\mathbf{e}_2, \frac{1}{\sqrt{2}}\mathbf{e}_2, \frac{1}{\sqrt{3}}\mathbf{e}_3, \frac{1}{\sqrt{3}}\mathbf{e}_3, \frac{1}{\sqrt{3}}\mathbf{e}_3, \dots\Big\}.$$

• This is a tight frame

Э

・ロト ・四ト ・日ト ・日ト

Introduction	Frames and Dual Frames	Applic
00000	00000	0000
Definition		

Frame Bounds

• The condition for a frame can be written as

$$A\|\mathbf{x}\|^2 \le \|\mathbf{T}\mathbf{x}\|^2 \le B\|\mathbf{x}\|^2$$

$$\lambda_{min}(\mathbf{T}^T\mathbf{T})\|\mathbf{x}\|^2 \leq \mathbf{x}^H\mathbf{T}^H\mathbf{T}\mathbf{x} \leq \lambda_{min}(\mathbf{T}^T\mathbf{T})\|\mathbf{x}\|^2$$

where **T** represents the Analysis operator, $\mathbf{T} : \mathcal{H} \to \mathbb{R}^d$.

- By definition, T is linear and left-invertible
- Existence of lower frame bound A guarantees T is left-invertible and {g_k} is complete.
- Existence of upper frame bound *B* guarantees **Tx** is bounded.

Э

Introduction 00000 Definition Frames and Dual Frames

Applications 00000

・ロト ・四ト ・日ト ・日ト

Э

Canonical Dual Frame

- For a finite dimensional vector **x**, **c** = **Tx**.
 - That is, $\mathbf{x} = \mathbf{T}^{\dagger} \mathbf{c}$
 - $\mathbf{x} = (\mathbf{T}^H \mathbf{T})^{-1} \mathbf{T}^H \mathbf{c}$
 - $\mathbf{x} = \sum_k \tilde{\mathbf{g}}_k c_k$
 - $\Rightarrow \tilde{\mathbf{g}}_k = \left(\mathbf{T}^H \mathbf{T}\right)^{-1} \mathbf{g}_k$
- This set $\{\tilde{\mathbf{g}}_k\}$ is called canonical dual of $\{\mathbf{g}_k\}$.

Frame operator

- Let $\{\mathbf{g}_k\}_{k \in \mathcal{K}}$ be a frame for the Hilbert space \mathcal{H} .
- The operator $\mathbb{S} : \mathcal{H} \to \mathcal{H}$ defined as $\mathbb{S} = \mathbf{T}^H \mathbf{T}$

$$\mathbb{S}\mathbf{x} = \sum_{k \in \mathcal{K}} \langle \mathbf{x}, \mathbf{g}_k > \tilde{\mathbf{g}}_k$$

is called a frame operator.

- $\sum_{k \in \mathcal{K}} | \langle \mathbf{x}, \mathbf{g}_k \rangle |^2 = \|\mathbf{T}\mathbf{x}\|^2 = \langle \mathbf{T}\mathbf{x}, \mathbf{T}\mathbf{x} \rangle$
- $\bullet \ < \mathbf{T}\mathbf{x}, \mathbf{T}\mathbf{x} > = < \mathbf{T}^{H}\mathbf{T}\mathbf{x}, \mathbf{x} > = < \mathbb{S}\mathbf{x}, \mathbf{x} >$

• That is, $A \|\mathbf{x}\|^2 \leq < \mathbb{S}\mathbf{x}, \mathbf{x} > \leq B \|\mathbf{x}\|^2$.

Э

・ロア ・雪 ア ・ 明 ア ・ 明 ア

Introduction

- Vector Space Representations
- 2 Frames and Dual Frames
 - Definition
- 3 Applications
 - Signal Expansion
 - Sampling Theory
 - Compressive Sensing

э

ヘロト 人間 とくほとくほとう

Fourier Transform

- A signal x(t) ∈ L₂ can be represented as a sum of complex exponentials, provided if it is band-limited.
- That is, $\mathbf{x} = \mathbf{F}^H \mathbf{F} \mathbf{x}$ where \mathbf{F} forms a frame. In fact, it is a tight frame.
- $x(t) = \sum_{k} \langle x(t), f_{k}(t) \rangle \tilde{f}_{k}(t)$.
- Similarly, all wavelet expansions make a frame.

Э

Nyquist-Shannon Sampling Theorem

- Any bandlimited signal x(t) with signal bandwidth W can be reconstructed from its samples $x[nT_s]$, if $T_s \le \frac{1}{2W}$
- Here, the analysis function \mathbf{g}_k is $Sinc(t kT_s)$ which forms a frame if $T_s \leq \frac{1}{2W}$.
- Interestingly, it is a self-dual frame. That is, bi-orthonormal function of $Sinc(t nT_s)$ is same as the analysis function.
- Note that, $Sinc(t nT_s)$ forms an orthonormal basis, if sampling period condition is satisfied.

Sampling Theorem Continued ...

 $Sinc(t - nT_s)$ forms an orthonormal basis, if sampling period condition is satisfied.

Proof:

- Since X(f) is periodic in 2π , it has a Fourier series expansion. $X(f) = \sum_{n} x(nT_s) e^{-j\frac{2\pi fn}{f_s}}$
- The dual basis set {e^{-j2πΩn}, n = 1, 2, ..., 2W} must be complete, in order to represent X(f) uniquely.
- This is possible, if and only if $T_s < \frac{1}{2W}$.

Compressive Sensing

The measurement kernel Φ used for observations Y = Φx, must satisfy the RIP conditions:

$$(1-\delta) \|\mathbf{x}\|^2 \le \|\Phi \mathbf{x}\|^2 \le (1+\delta) \|\mathbf{x}\|^2$$

- This means, the rows of Φ forms almost a tight frame.
- The condition on the coherence makes sure that, the data can be recovered reliably.
- The non-random Φ can be used to compute the canonical dual frame and use it to reduce the complexity in reconstruction.

э

イロト (雪) (ヨ) (ヨ)

Э

References

- V.I. Morgenshtern and H. Bolcskei,"A Short Course on Frame Theory", Arxiv:1104.4300V1 [cs.IT], 21 Apr 2011.
- J. Kovacevic and A. Chebira,"An Introduction to Frames", Foundations and Trends in Signal Processing, Vol. 2, No. 1, pp. 1-94, NOW, 2008