Outline	Preliminaries	Outer bound	Inner bound	Results	Conclusion

Generalized Degrees of Freedom of *K* user Symmetric Gaussian MIMO Interference Channel

Parthajit Mohapatra

Dept. of ECE, Indian Institute of Science

Outline •	Preliminaries	Outer bound	Inner bound	Results	Conclusion o
Outline					

- Preliminaries
- Outer bound
- Inner bound
- Results
- Conclusion

Outline	Preliminaries	Outer bound	Inner bound	Results	Conclusion
	00000				

Interference in wireless networks

- Shannon provides the basis for modern day communication system
- In point-to-point communication system noise is the primary concern
- Wireless networks are interference limited rather than noise limited

Outline	Preliminaries	Outer bound	Inner bound	Results	Conclusion
	00000				

Where interference occurs?

- Cellular networks: inter cell interference, interference between macro, pico and femto cell
- Ad-hoc networks: interference from simultaneous transmissions
- Wireless LANs: interference from adjacent networks
- Cognitive networks: between primary and secondary and among secondary users

Generalized degrees of freedom (GDOF)

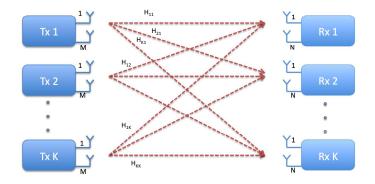
- GDOF is a measure of the high SNR capacity obtainable from a given channel
- For the symmetric case, it is defined as $d_{sym}(\alpha) = \lim_{\rho \to \infty} \frac{1}{K} \frac{C_{\sum}(\rho, \alpha)}{\log \rho}$, where $\alpha = \frac{\log \gamma}{\log \rho}$
- Roughly measures interference free dimension accessible in a network

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

 When SNR(ρ) = INR(γ), degrees of freedom (DOF) is obtained as a special case of GDOF

Outline	Preliminaries	Outer bound	Inner bound	Results	Conclusion
	000000				

Interference Channel (IC)



- H_{ij}: channel from jth transmitter to ith receiver
- M and N: antenna at transmitter and receiver respectively

Outline	Preliminaries	Outer bound	Inner bound	Results	Conclusion
	000000				

Problem statement

 Multiple antennas help to mitigate the effect of interference e.g: When N ≥ KM, ZF - receiving is sufficient to achieve the interference free GDOF

- When *N* < *KM*, trivial techniques are found to be sub-optimal
- Focus of this work: To characterize GDOF of *K* user symmetric MIMO Gaussian IC

Outline o	Preliminaries ○○○○●	Outer bound	Inner bound	Results	Conclusion ○
Contrik	outions				

- A new outer bound is derived for the MIMO-IC
 - Cooperation
 - Providing noisy side information
- Inner bound is derived for the symmetric MIMO-IC as a combination of
 - Han-Kobayashi (HK) scheme
 - Interference Alignment (IA)
 - Treating interference as noise
 - Zero Forcing receiving
- HK scheme is extended to multiuser MIMO scenario
- Interplay between the HK and IA schemes is explored

Outline	Preliminaries	Outer bound	Inner bound	Results	Conclusion
		•00000000000000000000000000000000000000			

Outer bound

Fano's Inequality:

For any estimator \hat{X} such that $X \to Y \to \hat{X}$, with $P_e = \Pr\{X \neq \hat{X}\}$, we have:

$$H(X|Y) \leq H(X|\hat{X}) \leq H(P_e) + P_e \log |X|$$

Weaker Form:

$$H(X|Y) \leq 1 + P_e \log |X|$$

How to use:

 $nR_1 = H(W_1)$ = $I(W_1; Y_1^n) + H(W_1|Y_1^n)$ $\leq I(W_1; Y_1^n) + n\epsilon_n$ (Fano's inequality) $\leq I(X_1^n; Y_1^n) + n\epsilon_n$ (Data processing inequality)

Outline	Preliminaries	Outer bound	Inner bound	Results	Conclusion
		000000000000000000000000000000000000000			

Outer bound based on cooperation

- Cooperation does not hurt capacity
- Outer bound is derived for a modified system
- Different possible ways of cooperation is taken in to account

Outline	Preliminaries	Outer bound	Inner bound	Results	Conclusion
		000000000000000000000000000000000000000			

Outer bound: cooperation

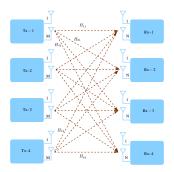
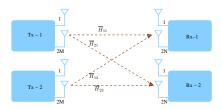
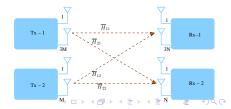


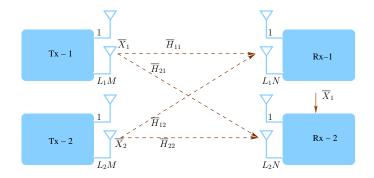
Figure: Four user Gaussian IC





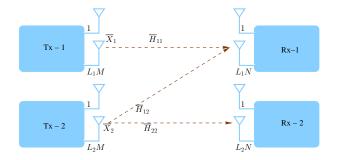
Outline	Preliminaries	Outer bound	Inner bound	Results	Conclusion
		000000000000000000000000000000000000000			

Outer bound: cooperation



L₁ and L₂: number of users in group - 1 and group -2
 H
_{ij} ∈ C^{L_iN×L_jM}, X
₁ and X
₂: two set of messages

Outer bound: cooperation



Equivalent to a two user MIMO Z - interference channel

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Outline	Preliminaries	Outer bound	Inner bound	Results	Conclusion
		000000000000000000000000000000000000000			

Outer bound: cooperation

• System model:

$$\begin{split} \overline{\boldsymbol{Y}}_1 &= \overline{\boldsymbol{H}}_{11} \overline{\boldsymbol{X}}_1 + \overline{\boldsymbol{H}}_{12} \overline{\boldsymbol{X}}_2 + \overline{\boldsymbol{Z}}_1, \\ \overline{\boldsymbol{Y}}_2 &= \overline{\boldsymbol{H}}_{22} \overline{\boldsymbol{X}}_2 + \overline{\boldsymbol{Z}}_2, \end{split}$$

where

$$\begin{split} \overline{\mathbf{Y}}_{1} &\triangleq \left[\begin{array}{c} \mathbf{Y}_{1}, \cdots, \mathbf{Y}_{L_{1}} \end{array} \right]^{T}, \overline{\mathbf{Y}}_{2} \triangleq \left[\begin{array}{c} \mathbf{Y}_{L_{1}+1}, \cdots, \mathbf{Y}_{L} \end{array} \right]^{T}, \\ \overline{\mathbf{X}}_{1} &\triangleq \left[\begin{array}{c} \mathbf{X}_{1}, \cdots, \mathbf{X}_{L_{1}} \end{array} \right]^{T}, \overline{\mathbf{X}}_{2} \triangleq \left[\begin{array}{c} \mathbf{X}_{L_{1}+1}, \cdots, \mathbf{X}_{L} \end{array} \right]^{T}, \\ \overline{\mathbf{Z}}_{1} &\triangleq \left[\begin{array}{c} \mathbf{Z}_{1}, \cdots, \mathbf{Z}_{L_{1}} \end{array} \right]^{T} \text{ and } \overline{\mathbf{Z}}_{2} \triangleq \left[\begin{array}{c} \mathbf{Z}_{L_{1}+1}, \cdots, \mathbf{Z}_{L} \end{array} \right]^{T}. \\ \overline{\mathbf{H}}_{11} &= \text{blkdiag} \left(\mathbf{H}_{11} \mathbf{H}_{22} \ldots \mathbf{H}_{L_{1},L_{1}} \right) \\ \overline{\mathbf{H}}_{22} &= \text{blkdiag} \left(\mathbf{H}_{L_{1}+1,L_{1}+1} \mathbf{H}_{L_{1}+2,L_{1}+2} \cdots \mathbf{H}_{L,L} \right) \\ \overline{\mathbf{H}}_{12} &= \begin{bmatrix} \begin{array}{c} \mathbf{H}_{1,L_{1}+1} & \mathbf{H}_{1,L_{1}+2} & \cdots & \mathbf{H}_{1,L} \\ \mathbf{H}_{2,L_{1}+1} & \mathbf{H}_{2,L_{1}+2} & \cdots & \mathbf{H}_{2,L} \\ \vdots & \vdots \\ \mathbf{H}_{L_{1},L_{1}+1} & \mathbf{H}_{L_{1},L_{1}+2} & \cdots & \mathbf{H}_{L,L} \\ \end{array} \right], \ L_{1} + L_{2} \leq K \end{split}$$

) Q (

Outline	Preliminaries	Outer bound	Inner bound	Results	Conclusion
		000000000000000000000000000000000000000			

Outer bound: cooperation

Theorem - 1:

The sum rate of the *K*-user Gaussian MIMO interference channel is upper bounded as follows:

$$\begin{split} \sum_{i=1}^{L} R_{i} &\leq \log \left| \mathbf{I}_{L_{1}N} + \overline{\mathbf{H}}_{11} \overline{\mathbf{P}}_{1} \overline{\mathbf{H}}_{11}^{H} + \overline{\mathbf{H}}_{12} \overline{\mathbf{P}}_{2} \overline{\mathbf{H}}_{12}^{H} \right| + \\ &\log \left| \mathbf{I}_{L_{2}N} + \overline{\mathbf{H}}_{22} \overline{\mathbf{P}}_{2}^{1/2} \left\{ \mathbf{I}_{L_{2}M} + \overline{\mathbf{P}}_{2}^{1/2} \overline{\mathbf{H}}_{12}^{H} \overline{\mathbf{H}}_{12} \overline{\mathbf{P}}_{2}^{1/2} \right\}^{-1} \overline{\mathbf{P}}_{2}^{1/2} \overline{\mathbf{H}}_{22}^{H} \right| + \epsilon_{n} \\ &\text{where } L_{1} + L_{2} = L \leq K, \ 0 \leq L_{1} \leq K, \ 0 \leq L_{2} \leq K, \\ &\mathbf{I}_{L} : L \times L \text{ identity matrix} \end{split}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のへの

Outline	Preliminaries	Outer bound	Inner bound	Results	Conclusion
		000000000000000000000000000000000000000			

Proof outline: cooperation

By using Fano's inequality, the sum rate of the modified system is upper bounded as given below:

$$\begin{split} & n \sum_{i=1}^{L} R_{i} - n\epsilon_{n} \\ & \leq I\left(\overline{\mathbf{X}}_{1}^{n}, \overline{\mathbf{Y}}_{1}^{n}\right) + I\left(\overline{\mathbf{X}}_{2}^{n}; \overline{\mathbf{Y}}_{2}^{n}\right), \\ & \leq I\left(\overline{\mathbf{X}}_{1}^{n}, \overline{\mathbf{Y}}_{1}^{n}\right) + I\left(\overline{\mathbf{X}}_{2}^{n}; \overline{\mathbf{Y}}_{2}^{n}, \overline{\mathbf{S}}^{n}\right), \text{ where } \overline{\mathbf{S}} = \overline{\mathbf{H}}_{12}\overline{\mathbf{X}}_{2} + \overline{\mathbf{Z}}_{1}, \\ & = h\left(\overline{\mathbf{Y}}_{1}^{n}\right) - h\left(\overline{\mathbf{S}}^{n}\right) + h\left(\overline{\mathbf{S}}^{n}\right) - h\left(\overline{\mathbf{Z}}_{1}^{n}\right) + h\left(\overline{\mathbf{Y}}_{2}^{n}|\overline{\mathbf{S}}^{n}\right) - h\left(\overline{\mathbf{Z}}_{2}^{n}\right), \end{split}$$

Outline	Preliminaries	Outer bound	Inner bound	Results	Conclusion
		000000000000000000000000000000000000000			

Proof outline: cooperation

Lemma

Let $\mathbf{x}^n = {\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n}$ and $\mathbf{y}^n = {\mathbf{y}_1, \mathbf{y}_2, ..., \mathbf{y}_n}$ be two sequences of random vectors and let $\mathbf{x}^*, \mathbf{y}^*, \mathbf{\hat{x}}$ and $\mathbf{\hat{y}}$ be Gaussian vectors with covariance matrices satisfying

$$Cov\begin{bmatrix} \hat{\mathbf{x}}\\ \hat{\mathbf{y}}\end{bmatrix} = \frac{1}{n}\sum_{i=1}^{n}Cov\begin{bmatrix} \mathbf{x}_i\\ \mathbf{y}_i\end{bmatrix} \preceq Cov\begin{bmatrix} \mathbf{x}^*\\ \mathbf{y}^*\end{bmatrix}.$$

then we get the following bound

$$\begin{split} h(\mathbf{x}^n) &\leq nh(\mathbf{\hat{x}}) \leq nh(\mathbf{x}^*), \\ h(\mathbf{y}^n | \mathbf{x}^n) &\leq nh(\mathbf{\hat{y}} | \mathbf{\hat{x}}) \leq nh(\mathbf{y}^* | \mathbf{x}^*). \end{split}$$

Out	ine Prel	iminaries	Duter bound	Inner bound	Results	Conclusion
			000000000000000000000000000000000000000			

Proof outline: cooperation

Sum rate is bounded as:

$$\sum_{i=1}^{L} R_{i} - \epsilon_{n} \leq h\left(\overline{\mathbf{Y}}_{1}^{*}\right) - h\left(\overline{\mathbf{Z}}_{1}\right) + h\left(\overline{\mathbf{Y}}_{2}^{*}|\overline{\mathbf{S}}^{*}\right) - h\left(\overline{\mathbf{Z}}_{2}\right)$$

It can be shown that:

$$\begin{split} h\left(\overline{\mathbf{Y}}_{1}^{*}\right) &= \log\left|\pi e\left[\mathbf{I}_{L_{1}N} + \overline{\mathbf{H}}_{11}\overline{\mathbf{P}}_{1}\overline{\mathbf{H}}_{11}^{H} + \overline{\mathbf{H}}_{12}\overline{\mathbf{P}}_{2}\overline{\mathbf{H}}_{12}^{H}\right]\right| \\ h\left(\overline{\mathbf{Y}}_{2}^{*}|\overline{\mathbf{S}}^{*}\right) &= \log\left|\pi e\left[\mathbf{I}_{L_{2}N} + \overline{\mathbf{H}}_{22}\overline{\mathbf{P}}_{2}^{1/2}\left\{\mathbf{I}_{L_{2}M} + \overline{\mathbf{P}}_{2}^{1/2}\overline{\mathbf{H}}_{12}^{H}\overline{\mathbf{H}}_{12}\overline{\mathbf{P}}_{2}^{1/2}\right\}^{-1} \\ \overline{\mathbf{P}}_{2}^{1/2}\overline{\mathbf{H}}_{22}^{H}\right]\right|. \end{split}$$

- Need to minimize sum rate over all possible values of L₁ and L₂.
- Difficult task !

Outline	Preliminaries	Outer bound	Inner bound	Results	Conclusion
		000000000000000000000000000000000000000			

Outer bound: cooperation

Lemma

In the symmetric case, the GDOF of the K user Gaussian MIMO-IC $M \le N$ is upper bounded as follows:

When 0
$$\leq \alpha \leq$$
 1:

$$d_{i}(\alpha) \leq \min_{L_{1},L_{2}} \frac{1}{L} \left[L_{1}M + \min \left\{ r, L_{1}(N-M) \right\} \alpha + (L_{2}M-r)^{+} + \min \left\{ r, L_{2}N - (L_{2}M-r)^{+} \right\} (1-\alpha) \right],$$

When
$$\alpha > 1$$
:

$$d_i(\alpha) \leq \min_{L_1,L_2} \frac{1}{L} \left[r\alpha + \min \left\{ L_1 M, L_1 N - r \right\} + (L_2 M - r)^+ \right],$$

where $r = \min \{L_2 M, L_1 N\}$.

Outline	Preliminaries	Outer bound	Inner bound	Results	Conclusion
		000000000000000000000000000000000000000			

- Noisy side information is provided
- Define the following quantity:

$$\mathbf{S}_{j,\mathbf{B}} = \sum_{i \in \mathbf{B}} \mathbf{H}_{ji} \mathbf{X}_i + \mathbf{Z}_j$$

where $\mathbf{B} \subseteq \{1, 2, \dots, K\}$ is the set of users.

• Consider first and third user:

$$\begin{split} & nR_{1} + nR_{3} - n\epsilon_{n} \\ & \leq I(\mathbf{X}_{1}^{n}; \mathbf{Y}_{1}^{n}) + I(\mathbf{X}_{3}^{n}; \mathbf{Y}_{3}^{n}) \\ & \leq I(\mathbf{X}_{1}^{n}; \mathbf{Y}_{1}^{n}, \mathbf{S}_{2,1}^{n}) + I(\mathbf{X}_{3}^{n}; \mathbf{Y}_{3}^{n}, \mathbf{S}_{4,3}^{n}) \\ & = h(\mathbf{Y}_{1}^{n} | \mathbf{S}_{2,1}^{n}) + h(\mathbf{Y}_{3}^{n} | \mathbf{S}_{4,3}^{n}) + \underbrace{h(\mathbf{S}_{2,1}^{n}) + h(\mathbf{S}_{4,3}^{n})}_{\text{unwanted terms}} \\ & - \underbrace{h(\mathbf{S}_{1,\{2,3,4\}}^{n}) - h(\mathbf{S}_{3,\{1,2,4\}}^{n})}_{\text{unwanted terms}} - h(\mathbf{Z}_{1}^{n}) - h(\mathbf{Z}_{3}^{n}) \end{split}$$

Outline	Preliminaries	Outer bound	Inner bound	Results	Conclusion
		000000000000000000000000000000000000000			

• Consider 2nd and 4th user:

$$\begin{split} nR_{2} + nR_{4} - n\epsilon_{n} \\ &\leq I\left(\mathbf{X}_{2}^{n}; \mathbf{Y}_{2}^{n}, \mathbf{S}_{1,2}^{n}\right) + I\left(\mathbf{X}_{4}^{n}; \mathbf{Y}_{4}^{n}, \mathbf{S}_{3,4}^{n}\right) \\ &= h(\mathbf{Y}_{2}^{n}|\mathbf{S}_{1,2}^{n}) + h(\mathbf{Y}_{4}^{n}|\mathbf{S}_{3,4}^{n}) + \underbrace{h(\mathbf{S}_{1,2}^{n}) + h(\mathbf{S}_{3,4}^{n})}_{\text{unwanted terms}} \\ &- \underbrace{h(\mathbf{S}_{2,\{1,3,4\}}^{n}) - h(\mathbf{S}_{4,\{1,2,3\}}^{n})}_{\text{unwanted terms}} - h(\mathbf{Z}_{2}^{n}) - h(\mathbf{Z}_{4}^{n}) \end{split}$$

• Summing and by conditioning further:

$$\begin{split} \sum_{i=1}^{4} R_i &\leq h(\mathbf{Y}_1^n | \mathbf{S}_{2,1}^n) + h(\mathbf{Y}_3^n | \mathbf{S}_{4,3}^n) + h(\mathbf{Y}_2^n | \mathbf{S}_{1,2}^n) + h(\mathbf{Y}_4^n | \mathbf{S}_{3,4}^n) \\ &+ \sum_{i=1}^{4} h(\mathbf{Z}_i^n) + n\epsilon_n \end{split}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のへの

Outline	Preliminaries	Outer bound	Inner bound	Results	Conclusion
		000000000000000000000000000000000000000			

Theorem

The sum rate of the K user Gaussian MIMO-IC is upper bounded as follows:

When K is even:

$$\begin{split} \sum_{i=1}^{K} R_{i} &\leq \sum_{i \text{ odd}} \log |\mathbf{I}_{N_{i}} + \sum_{j=1, j \neq i}^{K} \mathbf{H}_{ij} \mathbf{P}_{j} \mathbf{H}_{ij}^{H} + \mathbf{H}_{ii} \mathbf{P}_{i}^{1/2} \{ \mathbf{I}_{M_{i}} + \mathbf{P}_{i}^{1/2} \mathbf{H}_{i+1,i}^{H} \mathbf{H}_{i+1,i} \mathbf{P}_{i}^{1/2} \}^{-1} \mathbf{P}_{i}^{1/2} \mathbf{H}_{ii}^{H} | + \\ \sum_{i \text{ even}} \log |\mathbf{I}_{N_{i}} + \sum_{j=1, j \neq i}^{K} \mathbf{H}_{ij} \mathbf{P}_{j} \mathbf{H}_{ij}^{H} + \mathbf{H}_{ii} \mathbf{P}_{i}^{1/2} \{ \mathbf{I}_{M_{i}} + \mathbf{P}_{i}^{1/2} \mathbf{H}_{i-1,i}^{H} \mathbf{H}_{i-1,i} \mathbf{P}_{i}^{1/2} \}^{-1} \mathbf{P}_{i}^{1/2} \mathbf{H}_{ii}^{H} | + \epsilon_{n} \end{split}$$

$$\text{When K is odd:} \\ R_{1} + 2 \sum_{i=2}^{K-1} R_{i} + R_{K} \\ \leq \sum_{i=1}^{K-1} \log |\mathbf{I}_{N_{i}} + \sum_{j=1, j \neq i}^{K} \mathbf{H}_{ij} \mathbf{P}_{j} \mathbf{H}_{ij}^{H} + \mathbf{H}_{ii} \mathbf{P}_{i}^{1/2} \left(\mathbf{I}_{M_{i}} + \mathbf{P}_{i}^{1/2} \mathbf{H}_{i+1,i}^{H} \mathbf{H}_{i+1,i} \mathbf{P}_{i}^{1/2} \right)^{-1} \mathbf{P}_{i}^{1/2} \mathbf{H}_{ii}^{H} | + \\ \sum_{i=2}^{K} \log |\mathbf{I}_{N_{i}} + \sum_{j=1, j \neq i}^{K} \mathbf{H}_{ij} \mathbf{P}_{j} \mathbf{H}_{ij}^{H} + \mathbf{H}_{ii} \mathbf{P}_{i}^{1/2} \left(\mathbf{I}_{M_{i}} + \mathbf{P}_{i}^{1/2} \mathbf{H}_{i-1,i}^{H} \mathbf{H}_{i-1,i} \mathbf{P}_{i}^{1/2} \right)^{-1} \mathbf{P}_{i}^{1/2} \mathbf{H}_{ij}^{H} | + \epsilon_{n}$$

Outline	Preliminaries	Outer bound	Inner bound	Results	Conclusion
		000000000000000000000000000000000000000			

Lemma

The GDOF of the K user MIMO-IC in the symmetric case is upper bounded as follows:

$$d_{j}(\alpha) \leq \begin{cases} M(1-\alpha) + \min\{\min(N, (K-1)M), N-M\}\alpha & \text{if } 0 \leq \alpha \leq \frac{1}{2} \\ \min(N, (K-1)M)\alpha + \min\{M, N-\min(N, (K-1)M)\}(1-\alpha) & \text{if } \frac{1}{2} \leq \alpha \leq 1 \\ \min\{N, (K-1)M\} & \text{if } \alpha \geq 1 \end{cases}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

when $M \leq N$.

Outline	Preliminaries	Outer bound	Inner bound	Results	Conclusion
		000000000000000000000000000000000000000			

Theorem

The sum rate of the K user Gaussian MIMO-IC is upper bounded as follows:

$$\begin{split} \mathcal{R}_{1} + \sum_{i=2}^{K-1} \mathcal{R}_{i} + \mathcal{R}_{K} &\leq \log \left| \mathbf{I}_{N_{1}} + \sum_{j=2}^{K} \mathbf{H}_{1j} \mathbf{P}_{j} \mathbf{H}_{1j}^{H} + \mathbf{H}_{11} \mathbf{P}_{1}^{1/2} \left\{ \mathbf{I}_{M_{1}} + \mathbf{P}_{1}^{1/2} \mathbf{H}_{K1}^{H} \mathbf{H}_{K1} \mathbf{P}_{1}^{1/2} \right\}^{-1} \mathbf{P}_{1}^{1/2} \mathbf{H}_{11}^{H} + \\ &\sum_{i=2}^{K-1} \log \left| \mathbf{I}_{N_{i}} + \mathbf{\overline{H}}_{i1} \mathbf{\overline{P}}_{i1}^{1/2} \left\{ \mathbf{I}_{M_{f_{i}}} + \mathbf{\overline{P}}_{i1}^{1/2} \mathbf{\overline{H}}_{Ki}^{H} \mathbf{\overline{H}}_{Ki} \mathbf{\overline{P}}_{i1}^{1/2} \right\}^{-1} \mathbf{\overline{P}}_{i1}^{1/2} \mathbf{\overline{H}}_{i1}^{H} + \\ &\mathbf{\overline{H}}_{i,i+1} \mathbf{\overline{P}}_{i2}^{1/2} \left\{ \mathbf{I}_{M_{S_{i}}} + \mathbf{\overline{P}}_{i2}^{1/2} \mathbf{\overline{H}}_{1,i+1}^{H} \mathbf{\overline{H}}_{1,i+1} \mathbf{\overline{P}}_{i2}^{1/2} \right\}^{-1} \mathbf{\overline{P}}_{i2}^{1/2} \mathbf{\overline{H}}_{i,i+1}^{H} \right| + \\ &\sum_{i=2}^{K-1} \log \left| \mathbf{I}_{N_{i}} + \mathbf{\overline{H}}_{iK} \mathbf{\overline{P}}_{i3}^{1/2} \left\{ \mathbf{I}_{M_{f_{i}}} + \mathbf{\overline{P}}_{i3}^{1/2} \mathbf{\overline{H}}_{1i}^{H} \mathbf{\overline{H}}_{i} \mathbf{\overline{P}}_{i3}^{1/2} \right\}^{-1} \mathbf{\overline{P}}_{i2}^{1/2} \mathbf{\overline{H}}_{i,k+1}^{H} \right| + \\ &\sum_{i=2}^{K-1} \log \left| \mathbf{I}_{N_{i}} + \mathbf{\overline{H}}_{iK} \mathbf{\overline{P}}_{i3}^{1/2} \left\{ \mathbf{I}_{M_{f_{i}}} + \mathbf{\overline{P}}_{i3}^{1/2} \mathbf{\overline{H}}_{1i}^{H} \mathbf{\overline{H}}_{i} \mathbf{\overline{P}}_{i3}^{1/2} \right\}^{-1} \mathbf{\overline{P}}_{i3}^{1/2} \mathbf{\overline{H}}_{i,k+1}^{H} \\ &\mathbf{H}_{i,K-1} \mathbf{\overline{P}}_{i4}^{1/2} \left\{ \mathbf{I}_{M_{S_{i}}} + \mathbf{\overline{P}}_{i4}^{1/2} \mathbf{\overline{H}}_{K,i+1}^{H} \mathbf{\overline{H}}_{i,i+1} \mathbf{\overline{P}}_{i3}^{1/2} \right\}^{-1} \mathbf{\overline{P}}_{i4}^{1/2} \mathbf{\overline{H}}_{i,K-1}^{H} \right| + \\ &\log \left| \mathbf{I}_{N_{K}} + \sum_{j=1}^{K-1} \mathbf{H}_{Kj} \mathbf{P}_{j} \mathbf{H}_{Kj}^{H} + \mathbf{H}_{KK} \mathbf{\overline{P}}_{K}^{1/2} \left\{ \mathbf{I}_{M_{K}} + \mathbf{P}_{K}^{1/2} \mathbf{H}_{i,K}^{H} \mathbf{H}_{i,K} \mathbf{P}_{i,K}^{1/2} \right\}^{-1} \mathbf{P}_{i,K}^{1/2} \mathbf{H}_{KK}^{H} \right| + \epsilon_{n} \\ & \text{where } M_{f_{i}} = \sum_{j=1}^{i} M_{j} \text{ and } M_{S_{j}} = \sum_{j=i+1}^{K} M_{j} \end{aligned}$$

Outline	Preliminaries	Outer bound	Inner bound	Results	Conclusion
		000000000000000000000000000000000000000	0000000000000		

Variables are defined as follows:

$$\overline{\mathbf{H}}_{i1} = \begin{bmatrix} \mathbf{H}_{i1} & \mathbf{H}_{i2} & \dots & \mathbf{H}_{ii} \end{bmatrix}, \quad \overline{\mathbf{H}}_{i,i+1} = \begin{bmatrix} \mathbf{H}_{i,i+1} & \mathbf{H}_{i,i+2} & \dots & \mathbf{H}_{iK} \end{bmatrix}, \\ \overline{\mathbf{H}}_{Ki} = \begin{bmatrix} \mathbf{H}_{K1} & \mathbf{H}_{K2} & \dots & \mathbf{H}_{Ki} \end{bmatrix}, \quad \overline{\mathbf{H}}_{1,i+1} = \begin{bmatrix} \mathbf{H}_{1,i+1} & \mathbf{H}_{1,i+2} & \dots & \mathbf{H}_{1K} \end{bmatrix} \\ \overline{\mathbf{H}}_{1i} = \begin{bmatrix} \mathbf{H}_{1K} & \mathbf{H}_{12} & \dots & \mathbf{H}_{1i} \end{bmatrix}, \quad \overline{\mathbf{H}}_{K,i+1} = \begin{bmatrix} \mathbf{H}_{K1} & \mathbf{H}_{K,i+1} & \dots & \mathbf{H}_{K,K-1} \end{bmatrix}, \\ \overline{\mathbf{H}}_{iK} = \begin{bmatrix} \mathbf{H}_{iK} & \mathbf{H}_{i2} & \dots & \mathbf{H}_{ii} \end{bmatrix}, \quad \overline{\mathbf{H}}_{i,K-1} = \begin{bmatrix} \mathbf{H}_{i1} & \mathbf{H}_{i,i+1} & \dots & \mathbf{H}_{i,K-1} \end{bmatrix}$$

$$\begin{split} \overline{\mathbf{P}}_{i1} &= \mathsf{blockdiag}\left(\mathbf{P}_{1} \ \mathbf{P}_{2} \ \dots \ \mathbf{P}_{i}\right), \ \overline{\mathbf{P}}_{i2} = \mathsf{blockdiag}\left(\mathbf{P}_{i+2} \ \mathbf{P}_{i+3} \ \dots \ \mathbf{P}_{K}\right) \\ \overline{\mathbf{P}}_{i3} &= \mathsf{blockdiag}\left(\mathbf{P}_{K} \ \mathbf{P}_{2} \ \dots \ \mathbf{P}_{i}\right) \text{ and } \overline{\mathbf{P}}_{i4} = \mathsf{blockdiag}\left(\mathbf{P}_{1} \ \mathbf{P}_{i+1} \ \dots \ \mathbf{P}_{K-1}\right). \end{split}$$

Extension of SIMO-IC outer bound to MIMO-IC

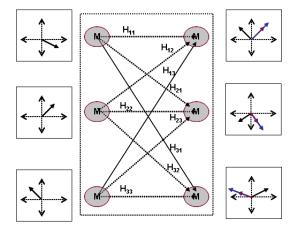
Outline o	Preliminaries	Outer bound	Inner bound ○○○○ ●○○○○○○○○○	Results	Conclusion O

Inner bound

- Inner bound is derived for the symmetric MIMO interference channel as a combination of
 - Han-Kobayashi (HK) scheme
 - Interference Alignment (IA)
 - Treating interference as noise
 - Zero Forcing receiving
- Interplay between the HK and IA schemes is explored

Outline	Preliminaries	Outer bound	Inner bound	Results	Conclusion
			000000000000000000000000000000000000000		

Interference alignment(IA)



▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

Outline	Preliminaries	Outer bound	Inner bound	Results	Conclusion
			000000000000000000000000000000000000000		

- Idea of IA for IC originated in the seminal work by Cadembe
- For MIMO IC, DOF achieved by IA:

$$d_j = \frac{MN}{M+N}, \ KM > N \tag{2}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- Requires global channel knowledge
- Relative strength between signal and interference does not matter

Outline	Preliminaries	Outer bound	Inner bound	Results	Conclusion
			000000000000000000000000000000000000000		

Han-Kobayashi (HK) scheme

- Based on the idea of splitting message in to two parts:
 - Private part
 - Public part
- A simple HK scheme proposed by ETW: achieves capacity with in 1 bit (two user IC)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

• Different variants of HK - scheme has been proposed

Outline	Preliminaries	Outer bound	Inner bound	Results	Conclusion
			000000000000000000000000000000000000000		

Extension of HK - scheme

HK scheme is extended to K user MIMO IC for symmetric case

- Following interference regime are considered:
 - Strong interference case ($\alpha > 1$)
 - 2 Moderate interference case $(\frac{1}{2} \le \alpha \le 1)$
 - Solution Weak interference case $(0 \le \alpha \le \frac{1}{2})$

Outline	Preliminaries	Outer bound	Inner bound	Results	Conclusion
			00000000000000000		

HK Scheme: Strong interference case

- Every receiver tries to decode the unintended messages along with the intended one
- There is no private part
- K user MAC channel is formed at every receiver
- Achievable rate region: intersection of K MAC regions

Outline	Preliminaries	Outer bound	Inner bound	Results	Conclusion
			0 0000000000000000000000000000000000000		

HK Scheme: Strong interference case

Theorem

The following GDOD is achievable in case of K user Gaussian MIMO-IC:

When
$$\frac{N}{M} < K \le \frac{N}{M} + 1$$
:
 $d_j(\alpha) = \min\left\{M, \frac{1}{K}\left[(K-1)M\alpha + N - (K-1)M\right]\right\}$

When $K > \frac{N}{M} + 1$:
 $d_j(\alpha) = \min\left\{M, \frac{\alpha N}{K}\right\}$

▲□▶▲□▶▲□▶▲□▶ □ の�?

Outline	Preliminaries	Outer bound	Inner bound	Results	Conclusion
		000000000000000000000000000000000000000	000000000000000000000000000000000000000		

Proof outline: Strong interference case

- It is sufficient to consider any particular user due to symmetry of the problem
- For $S \subseteq \{1, 2, \dots, K\}$ a MAC channel is formed
- The rate that can be achieved at user i:

$$\sum_{j \in S} R_j = \log \left| \mathbf{I} + \rho \mathbf{H}_{11} \mathbf{H}_{11}^H + \rho^{\alpha} \sum_{j \neq 1} \mathbf{H}_{1j} \mathbf{H}_{1j}^H \right|$$
$$= \alpha \min \{ (K - 1)M, N \} \log \rho + \min \{ M, N - \min \{ (K - 1)M, N \} \} \log \rho + \mathcal{O}(1)$$

• Simplified based on the value of K, M and N

Outline	Preliminaries	Outer bound	Inner bound	Results	Conclusion
		000000000000000000000000000000000000000	000000000000000		

HK scheme: moderate interference case

- Message is split in to private and public part
- Private power is set such that it is received at the noise floor of the unintended receiver
- Both messages are encoded using Gaussian code book
- Decoding order:
 - While decoding the common message all private messages are treated as noise
 - Private message is decoded last: treat other user's private message as noise

(日) (日) (日) (日) (日) (日) (日) (日)

• Rate achieved: $R_j = R_{p,j} + R_{c,j}$

Outline	Preliminaries	Outer bound	Inner bound	Results	Conclusion
			0 000000000000000		

HK scheme: moderate interference case

Theorem

In case of K user Gaussian MIMO-IC, following GDOF are achievable under the following conditions.

a C

Outline	Preliminaries	Outer bound	Inner bound	Results	Conclusion
			0 0000000000000000000000000000000000000		

HK scheme: weak interference case

Theorem

In case of Gaussian MIMO-IC, following GDOF is achievable:

$$d_j(\alpha) = M(1-\alpha) + \frac{1}{K-1}(N-M)$$

Treating interference as noise and ZF - receiving

Trivial techniques to mitigate the effect of interference

$$d_j^{ZF} = \min\left\{M, \frac{N}{K}\right\}$$

Theorem

The following GDOF is achievable in case of Gaussian MIMO-IC

$$When \frac{N}{M} < K \le \frac{N}{M} + 1$$

$$d_j(\alpha) = M + \alpha(N - KM)$$

2 When
$$K > \frac{N}{M} + 1$$
:

 $d_j(\alpha) = M(1-\alpha)$

Outline	Preliminaries	Outer bound	Inner bound	Results	Conclusion
			000000000000000		

Comparison of different schemes

Kill it (suppression, orthogonalization)

Ignore it (live with interference)

Be friends (decode interference)

Let them fight with each other (interference alignment)

Outline	Preliminaries	Outer bound	Inner bound	Results	Conclusion
				•0	

Results

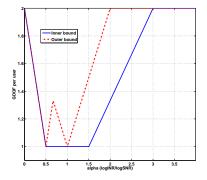
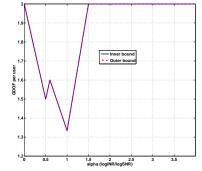


Figure: K = 3 user IC with M = N = 2

Figure: K = 3 user IC with M = 2 and N = 4



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣・のへで

Outline o	Preliminaries	Outer bound	Inner bound	Results ○●	Conclusion O
Some	insights				

- Treating interference as noise is GDOF optimal when *M* = *N* in weak interference case
- When M < N, splitting message into private and public part helps in weak interference regime
- When $K > \frac{N}{M} + 1$, a combination of IA and HK scheme performs better
- When $\frac{N}{M} < K \leq \frac{N}{M} + 1$, HK scheme is GDOF optimal
- Unlike two user IC, ZF receiving is found to be GDOF optimal at $\alpha = 1$ when $\frac{N}{M} < K \leq \frac{N}{M} + 1$

Outline o	Preliminaries	Outer bound	Inner bound	Results	Conclusion ●
Conclu	sion				

- Derived outer bound based on the notion of cooperation and providing noisy side information
- Derived achievable GDOF using a combination of HK scheme, IA, treating interference as noise and ZF receiving
- Explored the interplay between HK and IA

Future Work

- Proposing a scheme which combines IA and HK : deterministic model
- Relaxing the assumption of the same *SNR* and *INR* on the direct link and cross link, respectively