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Motivation

I Natural signals are sparse and have significant structure

Speech

I Exploiting structure may improve recovery performance



Online Computation

I Complete input is not known in advance
I Input arrives incrementally, one piece at a time
I Improvements in

I Memory
I Computational complexity
I Latency

I Disadvantage: Slightly poorer performance than offline
computation



Sparse Signal Recovery Problem

=

y φ x

+

w

m× 1 m×N

N × 1

‖x‖0 < m ≪ N

measurements
noise

I Goal: Recover sparse x from y



Sparse Bayesian Learning∗

I Impose a fictitious sparsity inducing prior on x

x ∼ N (0,Γ)

Γ = diag{γ1, γ2, . . . , γN}
y |x ∼ N (φx , σ2I )

=

y φ x

+

w

m× 1 m×N

N × 1

‖x‖0 < m ≪ N

measurements
noise

E-step: Q(Γ|Γ(r)) = E
x|y;Γ(r) log p(y,x;Γ)

M Step: Γ(r+1) = argmaxΓQ(Γ|Γ(r))

Iterate

x̂ = E(x|y; Γ̂)

Γ̂

∗D. P. Wipf and B. D. Rao, "An empirical Bayesian strategy for solving the simultaneous sparse
approximation problem," TSP 2007



System Model

I Multiple measurement model

=

yk φk xk

+

wk

m× 1 m×N

N × 1

∼ N (0,R)

‖xk‖0 < m < N

x1

=
+

xk xk−1 zkDx2 x4 . . .x3

I Temporally correlated sparse vectors share same support
I Goal: Online recovery the sparse vectors with a maximum

time lag of ∆ between measurement and estimation



SBL: Correlated MMV

I Impose a sparsity inducing prior on

xk ∼ N (0,Γ)

Γ = diag {γ}

Problem: At time k , given y 1:k , estimate xk−∆



Offline SBL Approach†

I Iterating the E and M steps yield the MLE of γ

E-step: Q(Γ|Γ(r)) = Ex1:K |y1:K ;Γ(r) {log [p (y1:K , x1:K )]}
M-step: Γ(r+1) = argmax

Γ
Q(Γ|Γ(r))

I M-step: Computes Γ(r+1) as a closed form function of the
state statistics:

I Mean: x̂ t|K = E {x t |y1:K}
I Autocovariance: Pt|K = cov {x t , x t |y1:K}
I Cross-covariance: Pt,t−1|K = cov {x t , x t−1|y1:K}, t ∈ [K ]

I E-step: Computes state statistics using Γ(r)

†R. Prasad, et al., "Joint approximately sparse channel estimation and data detection in OFDM systems

using sparse Bayesian learning" TSP 2014



Online Version

Approximation:

x̂ t|K → x̂ t|t+∆

P t|K → P t|t+∆

P t,t−1|K → P t,t−1|t+∆

Online Recursions:

γk = γk−1 +
1
k
Diag

{
1(

1− ρ2
i
)T k|k+∆ − Γk−1

}

T t|k : function of x̂ t|K ,Pt|K , and Pt,t−1|K



Implementation of Algorithm

I New state space model:

xk+1 = xk + zk

yk+∆ = Ãkxk + w̃k+∆.

I Modified parameters:
I Ãk = Ak+∆D∆

I w̃k ∼ N
(
0, R̃k

)
I R̃k = Ak+∆

(
I −D2∆

)
ΓAT

k+∆ + Rk

Implementation: Kalman filter for new system



Convergence Analysis: Special Case

I Assumptions:
1. The sparse vectors are uncorrelated: D = 0
2. All measurement matrices are identical: Ak = A,∀k
3. All measurement noise statistics are identical: Rk = R, ∀k

I Simplified Algorithm:

γk = γk−1 +
1
k
Diag

{
P(γk) + x̂(γk)x̂(γk)T − Γk

}
P(γ) = Γ− ΓAT

(
AΓAT + R

)−1
AΓ

x̂(γ) = P(γ)ATR−1yk



Stochastic Approximation Framework

Algorithm as stochastic approximation recursion:

γk = γk−1 +
1
k
f (γk−1) +

1
k
ek

I Mean field function:

f (γ) = E
{
Diag

{
P(γ) + x̂(γ)x̂(γ)T − Γ

}}
I Martingale difference sequence:

ek = Diag
{
P(γk) + x̂(γk)x̂(γk)T − Γk

}
− f (γk−1)



Convergence Results

Algorithm converges to a closed set G if there exists a nonnegative
C1 function V such that
(i) f is continuous and bounded on all compact sets of its domain
(ii) 〈∇γV (γ) , f (γ)〉 < 0, ∀γ /∈ G
(iii) V (G) is a finite set
(iv) γk remains in a compact subset of RN

(v) limk→∞
∑k

t=1
1
t et exists



Our Choices

I Closed Set:

G = {γ ∈ O : f (γ) = 0}
=

I Potential function:

V (γ) = Tr
{(

AΓAT + R
)−1 (

AΓoptAT + R
)}

− log |
(
AΓAT + R

)−1 (
AΓoptAT + R

)
|



Main Theorem

Assumption: The nonzero entries of x are orthogonal
Result: With probability one,

γk → {0} ∪
{
γ ∈ RN

+ : AΓAT = AE
{
xxT

}
AT
}



Corollary

Assumption:
I The nonzero entries of x are orthogonal
I Rank {A� A} = N

Result: With probability one,

γk [i ]→
{
0,Ex [i ]2

}



Summary

I Proposed a stochastic approximation recursion for online
recovery of temporally correlated sparse vectors

I Temporal correlation is modeled using first order AR process
I Algorithm is implemented using Kalman filter


