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Motivation

» Natural signals are sparse and have significant structure

Wireless Channel Biomedical signals

//"E

» Exploiting structure may improve recovery performance



Online Computation

» Complete input is not known in advance
» Input arrives incrementally, one piece at a time
» Improvements in
» Memory
» Computational complexity
» Latency
» Disadvantage: Slightly poorer performance than offline

computation



Sparse Signal Recovery Problem

m x 1 m X N noise
measurements

Ixllo <m < N

N x1

» Goal: Recover sparse x from y



Sparse Bayesian Learning*

» Impose a fictitious sparsity inducing prior on x

x ~ N(0,I)

r = diag{f}/lafy%"'aPYN}
ylx ~ N(¢x,0°)

-step: Q(I‘|I‘(T)) — Ex\y:I‘(") logp(y,x;T)

Iterate
y é X w M Step: T = arg maxp Q(F|I‘(">)
- + r

x = E(xl|y; IA“)

mx 1 mx N noise . ’
measurements
Ix[lo <m < N
N x1

*D. P. Wipf and B. D. Rao, "An empirical Bayesian strategy for solving the simultaneous sparse
approximation problem," TSP 2007



System Model

» Multiple measurement model

Yk Pk Xk Wi X] Xp X3 X4... Xy D Xj1
g : | g
mx 1 mx N ~ N(0,R) B
[[xkl[o <m < N [ ]
[l
Nx1 [T

» Temporally correlated sparse vectors share same support

» Goal: Online recovery the sparse vectors with a maximum
time lag of A between measurement and estimation



SBL: Correlated MMV

» Impose a sparsity inducing prior on

X o~ N(Oar)
r = diag{vy}

Problem: At time k, given y;.;, estimate x,_a I




Offline SBL Approach'

» lterating the E and M steps yield the MLE of ~
E-step: Q(r|rM) = B e rilysper® 108 [P (yY1k, X161}
M-step: T+ = argmaxQ(r|r(")
r

» M-step: Computes I"*1) as a closed form function of the
state statistics:

> Mean: Xk = E{x¢|y1.x}
» Autocovariance: Py = cov{x¢, X¢t|yq1.x}
» Cross-covariance: Py, 1)k = cov{xs, Xt 1]y1.4}, t € [K]

» E-step: Computes state statistics using r)

TR. Prasad, et al., "Joint approximately sparse channel estimation and data detection in OFDM systems

using sparse Bayesian learning" TSP 2014



Online Version

Approximation:

Xtk — Xt|t+A
Pik — Pyin

Pii—1yk — Pri1je4n

Online Recursions:

1 1
Yk = Yk-1 K [ g{(l p?) k| k+A k 1}

T Fi

Tk function of X4k, Pk, and Py y_q 1k



Implementation of Algorithm

» New state space model:
Xkt1 = X + Zg
Yirn = ArXp + Wiga.

» Modified parameters:
» A, = A aD"
> ﬁ/k ~ N (0, i?k)
> Ri=Ain (I - D2A) AT, o + R

Implementation: Kalman filter for new system I




Convergence Analysis: Special Case

> Assumptions:

1. The sparse vectors are uncorrelated: D =0
2. All measurement matrices are identical: Ay = A Vk
3. All measurement noise statistics are identical: Ry = R, Vk

» Simplified Algorithm:

1 e
Yk = Vi1 + 1 Diag {P(’Yk) + XV )R ()" - rk}
~1
P(y) =T —TAT (ATAT +R) Ar

x(v) = P(m)ATR 1y,



Stochastic Approximation Framework

Algorithm as stochastic approximation recursion:

1 1
Vi = Yk—1 T Ef(’)’k—l) + }ek

» Mean field function:
f(v)=E {Diag {P(v) +X(ME)" - F}}

» Martingale difference sequence:

ex = Diag { P(v) + X(vi)&(vi) T = T} = F(vi-1)



Convergence Results

Algorithm converges to a closed set G if there exists a nonnegative
C! function V such that

(i) f is continuous and bounded on all compact sets of its domain
(i) (V4V (7). F(7)) <0,V £ G
(iii) V(G) is a finite set

) Y remains in a compact subset of RV

)

(iv

(v) limg oo Zt 1 Le; exists



Our Choices

» Closed Set:

» Potential function:

V(y)=Tr { (ArAT + R)fl (Al'optAT n R)}

~log| (ArAT + R)_l (Al'optAT + R) |



Main Theorem

Assumption: The nonzero entries of x are orthogonal
Result: With probability one,

v, — {0} U {7 eRY: ATA” = AE {xxT} AT}



Corollary

Assumption:

» The nonzero entries of x are orthogonal
» Rank{A® A} =N

Result: With probability one,

Yili] = {0, Ex[i]*}



Summary

» Proposed a stochastic approximation recursion for online
recovery of temporally correlated sparse vectors

» Temporal correlation is modeled using first order AR process

» Algorithm is implemented using Kalman filter



