Summer Term Presentation

Geethu Joseph

Indian Institute of Science, Bangalore

August 10, 2013

< 17 ▶

Overview

- 2 A Few Problems on CS
 - Sparse Signal Recovery: Post-processing Measurements
 - Two Phase Sparse Recovery Algorithm
 - Estimation of Function in Parametric Form
- Spectrum Cartography
 - System Model
 - Literature Survey
 - Project Plan

Compressive Sensing Problem

- Sparse representation of signals
- Solving a system of linear equations

$$y = Ax \tag{1}$$

- Sparsest solution
- Requires only m ~ O(k log(N/k)) measurements for reconstruction

Sparse Signal Recovery: Post-processing Measurements Two Phase Sparse Recovery Algorithm Estimation of Function in Parametric Form

Sparse Signal Recovery: Post-processing Measurements

- A linear transformation on measurements that can improve the performance of a recovery algorithm
- y = Ax is converted to an equivalent Py = PAx.
- (Py, PA) is fed to decoder instead of (y, A)
- How to design such a **P**?
- Which attributes of **A** should be improved?

Sparse Signal Recovery: Post-processing Measurements Two Phase Sparse Recovery Algorithm Estimation of Function in Parametric Form

QR decomposition & OMP

- OMP depends on mutual coherence
- Orthogonalize rows via economic QR decomposition

$$\boldsymbol{A}^{\mathsf{T}} = \boldsymbol{Q}^{\mathsf{T}}\boldsymbol{R} \implies \boldsymbol{R}^{-\mathsf{T}}\boldsymbol{A} = \boldsymbol{Q} \tag{2}$$

•
$$(R^{-\mathsf{T}}y, Q)$$
 instead of (y, A)

- Merits
 - Mutual coherence has improved
 - Requires lesser number of measurements

Sparse Signal Recovery: Post-processing Measurements Two Phase Sparse Recovery Algorithm Estimation of Function in Parametric Form

Mutual Coherence

Figure: Improvement in mutual coherence

Sparse Signal Recovery: Post-processing Measurements Two Phase Sparse Recovery Algorithm Estimation of Function in Parametric Form

OMP Performance

Sparse Signal Recovery: Post-processing Measurements Two Phase Sparse Recovery Algorithm Estimation of Function in Parametric Form

Issues with QR Approach

- Computational complexity for QR decomposition $\sim \mathcal{O}(\textit{Nm}^2)$
- Operations required for $\mathsf{OMP}\sim\mathcal{O}(\mathit{Nmk})$
- With CoSaMP
 - No improvement in number of measurements
 - Lesser number of iterations required for the same stopping criteria
 - Complexity of one iteration $\sim \mathcal{O}(Nm)$

Sparse Signal Recovery: Post-processing Measurements Two Phase Sparse Recovery Algorithm Estimation of Function in Parametric Form

Two Phase Sparse Recovery Algorithm

- Lossless recovery of strictly sparse signals
- Phase I Simple and fast algorithm
- Phase II Sophisticated algorithms for phase II recovery
- Use group testing ideas for phase I recovery
 - Sparse measurement matrix to identify entries of sparse vector
 - Low quality recovery
- Trade-off between accuracy and computational complexity

Sparse Signal Recovery: Post-processing Measurements Two Phase Sparse Recovery Algorithm Estimation of Function in Parametric Form

Recovery using Sparse Matrix

- 'Sudocodes'
- Entries of input corresponding to zero measurement, are all zeros
- If two measurements match, then they corresponds to same set of non-zero entries of input vector
- Entries that corresponds to one measurement and not present the other, are all zeros

Sparse Signal Recovery: Post-processing Measurements Two Phase Sparse Recovery Algorithm Estimation of Function in Parametric Form

A Simple Example - Recovery using Sparse Matrix

Sparse Signal Recovery: Post-processing Measurements Two Phase Sparse Recovery Algorithm Estimation of Function in Parametric Form

A Simple Example - Recovery using Sparse Matrix

Sparse Signal Recovery: Post-processing Measurements Two Phase Sparse Recovery Algorithm Estimation of Function in Parametric Form

A Simple Example - Recovery using Sparse Matrix

Sparse Signal Recovery: Post-processing Measurements Two Phase Sparse Recovery Algorithm Estimation of Function in Parametric Form

A Simple Example - Recovery using Sparse Matrix

A B > A B > A

Some Questions

- Optimal sparsity of sparse matrix?
- Number of measurements are required in each phase?
- Possible recovery techniques in phase II?
- How to handle noisy measurements?

Sparse Signal Recovery: Post-processing Measurements Two Phase Sparse Recovery Algorithm Estimation of Function in Parametric Form

Estimation of Function in Parametric Form

- A continuous and smooth function characterized by an a set of unknown parameters
- Function $f(z; \alpha)$
 - z representing a point in its domain
 - lpha is vector of parameters
- Given function values at *m* points, $\{r_i = f(z_i; \alpha)\}_{i=1}^m$

Sparse Signal Recovery: Post-processing Measurements Two Phase Sparse Recovery Algorithm Estimation of Function in Parametric Form

Compressive Sensing Problem Formulation

• Form an over-complete basis with discretized values of parameters $\{ \alpha_j \}_{j=1}^N$

• Sparse solution gives the estimate of solution

Sparse Signal Recovery: Post-processing Measurements Two Phase Sparse Recovery Algorithm Estimation of Function in Parametric Form

Compressive Sensing Approach

- No exhaustive search
- Approximation of function using linear combination of more than one template functions
- Is it always possible to find a suitable set of candidates?
- Applications in Spectrum Cartography

System Model Literature Survey Project Plan

Spectrum Cartography

- Estimating power distribution in frequency and space
- Applications in Wireless Cognitive Radio (CR) network
- Goals
 - Spatial reuse of frequency
 - Transmit power estimation
 - Tracking activities of primary users

System Model Literature Survey Project Plan

Problem

- Sensors collect periodogram samples of received signal at sampling frequencies
- Sensors co-operate to estimate the PSD map
- Unknowns
 - Transmitter location
 - Transmit power
 - Bandwidth

System Model Literature Survey Project Plan

Sparsity

- Sparsity arises due to
 - Narrow-band nature of transmit-PSD
 - Sparsely located transmitters
- Compressed Sensing Techniques?
- How to form a suitable basis?

System Model Literature Survey Project Plan

System Model

- Basis Expansion Models (BEM)
- N_S transmitting sources
 - Stationary
 - Mutually uncorrelated
- N_r sensors located at $\mathcal{X} = \{x_r\}_{r=1}^{N_r}$
- Bandwidth available B
- Measurements $\phi_r(f_n)$, $r = 1, 2, ..., N_R$ and n = 1, 2, ..., N

Introduction A Few Problems on CS Spectrum Cartography Project Plan

BEM

• Transmit PSD: For $s = 1, 2, ..., N_s$

$$\phi_s(f) = \sum_{\nu=1}^{N_b} \theta_{s\nu} b_{\nu}(f) \tag{4}$$

イロト イポト イヨト イヨト

3

• $\{b_v(f)\}$ is centered at f_v , $v=1,2,...,N_b$

System Model Literature Survey Project Plan

Basis Functions in Frequency Domain

Figure: Basis functions in frequency domain

< 一型

System Model Literature Survey Project Plan

Finding Transmitter Locations

- Assumption : Channel gains in parametric form
 - Simple choice is path loss model
 - $\gamma_{sr} = min\{1, (||\mathbf{x}_s \mathbf{x}_r||_2/d_0)^{-\alpha}\}$
- Choice of basis
 - Over-complete basis functions spanning the bandwidth B
 - Various choices of center frequencies, bandwidth,...etc

A Few Problems on CS Spectrum Cartography Project Plan

• When source locations are known, linear model

$$\phi_r(f_n) = \sum_{s=1}^{N_s} \gamma_{sr} \phi_s(f_n) + \sigma_r^2$$
$$= \boldsymbol{b}_r^{\mathsf{T}}(f_n) \boldsymbol{\theta} + \sigma_r^2$$

• Using matrix notations

$$\mathbf{\Phi}_r = \mathbf{B}_r \boldsymbol{\theta} + \sigma_r^2 \mathbf{1} \tag{5}$$

- heta is common to all sensors
- When source locations are unknown, virtual grid model is considered

System Model Literature Survey Project Plan

Virtual Grid Model

Figure: Virtual network grid with 25 candidate locations, 2 transmitters and 4 sensors

System Model Literature Survey Project Plan

Solution via LASSO

- Basis functions corresponding to all combinations of center frequencies and possible transmitter locations
- LASSO criterion

$$\min_{\boldsymbol{\theta} \ge 0, \sigma_r^2 \ge 0} \sum_{r=1}^{N_r} || \boldsymbol{\Phi}_r - \boldsymbol{B}_r \boldsymbol{\theta} - \sigma_2^r \boldsymbol{1} ||^2 + \lambda \boldsymbol{1}^{\mathsf{T}} \boldsymbol{\theta}$$
(6)

• Sparse solution reveal the location of sources and their bands

System Model Literature Survey Project Plan

Issues with the approach

- Only path-loss model is studied
- Shadowing and mobility are not included in the model
- Generally unknown spatial loss function : $l_s(x)$
 - Frequency flat channel between source s and receiver at \boldsymbol{x}
- PSD model

$$\phi(\mathbf{x}, f) = \sum_{s=1}^{N_s} l_s(\mathbf{x}) \sum_{\nu=1}^{N_b} \theta_{s\nu} b_{\nu}(f)$$
$$= \sum_{\nu=1}^{N_b} g_{\nu}(\mathbf{x}) b_{\nu}(f)$$

• Solved using spline based technique

System Model Literature Survey Project Plan

Spline-Based Cartography

Estimation

$$\{g_{v}\}_{v=1}^{N_{b}} = \arg\min_{g_{v}} \frac{1}{N} \sum_{r=1}^{N_{r}} \sum_{n=1}^{N} \left(\phi_{rn} - \sum_{v=1}^{N_{b}} g_{v}(x_{r}) b_{v}(f_{n}) \right)^{2} + \lambda \sum_{v=1}^{N_{b}} \int_{\mathbb{R}^{2}} ||\nabla^{2} g_{v}(x)||_{F}^{2} dx + \mu \sum_{v=1}^{N_{b}} || \left[g_{v}(x_{1}) \dots g_{v}(x_{N_{r}}) \right]^{\mathsf{T}} ||_{2}$$

(日)、

3 k 3

System Model Literature Survey Project Plan

Spline-Based Cartography

Least Square Term

$$\{g_{v}\}_{v=1}^{N_{b}} = \arg\min_{\{g_{v} \in S\}} \frac{1}{N} \sum_{r=1}^{N_{r}} \sum_{n=1}^{N} \left(\phi_{rn} - \sum_{v=1}^{N_{b}} g_{v}(x_{r}) b_{v}(f_{n}) \right)^{2} \\ + \lambda \sum_{v=1}^{N_{b}} \int_{\mathbb{R}^{2}} ||\nabla^{2} g_{v}(x)||_{F}^{2} dx \\ + \mu \sum_{v=1}^{N_{b}} || \left[g_{v}(x_{1}) \dots g_{v}(x_{N_{r}}) \right]^{\mathsf{T}} ||_{2}$$

System Model Literature Survey Project Plan

Spline-Based Cartography

Roughness Regularization Term

$$\{g_{v}\}_{v=1}^{N_{b}} = \arg\min_{\{g_{v} \in S\}} \frac{1}{N} \sum_{r=1}^{N_{r}} \sum_{n=1}^{N} \left(\phi_{rn} - \sum_{v=1}^{N_{b}} g_{v}(x_{r}) b_{v}(f_{n}) \right)^{2} \\ + \lambda \sum_{v=1}^{N_{b}} \int_{\mathbb{R}^{2}} ||\nabla^{2} g_{v}(x)||_{F}^{2} dx \\ + \mu \sum_{v=1}^{N_{b}} || \left[g_{v}(x_{1}) \dots g_{v}(x_{N_{r}}) \right]^{\mathsf{T}} ||_{2}$$

Image: Image:

System Model Literature Survey Project Plan

Spline-Based Cartography

Sparsity Inducing Term

$$\{g_{v}\}_{v=1}^{N_{b}} = \arg\min_{\{g_{v} \in S\}} \frac{1}{N} \sum_{r=1}^{N_{r}} \sum_{n=1}^{N} \left(\phi_{rn} - \sum_{v=1}^{N_{b}} g_{v}(x_{r}) b_{v}(f_{n}) \right)^{2}$$

$$+ \lambda \sum_{v=1}^{N_{b}} \int_{\mathbb{R}^{2}} ||\nabla^{2} g_{v}(x)||_{F}^{2} dx$$

$$+ \mu \sum_{v=1}^{N_{b}} || \left[g_{v}(x_{1}) \dots g_{v}(x_{N_{r}}) \right]^{\mathsf{T}} ||_{2}$$

< D > < P > < P > < P >

System Model Literature Survey Project Plan

Thin-spline solution

• Closed form expression for thin-plate splines

$$\hat{g}_{\nu}(\boldsymbol{x}) = \sum_{r=1}^{N_r} \beta_{\nu r} \mathcal{K}(||\boldsymbol{x} - \boldsymbol{x}_r||_2) + \boldsymbol{\alpha}_{\nu 1}^{\mathsf{T}} \boldsymbol{x} + \alpha_{\nu 0} \qquad (7)$$

•
$$\mathcal{K}(\rho) = \rho^2 \log(\rho)$$
 and
 $\beta_v = \begin{bmatrix} \beta_{v1} & . & . & \beta_{vN_r} \end{bmatrix}^\mathsf{T} \in \mathcal{B}, v = 1, 2, ..., N_b$
• $\mathcal{B} = \{\beta \in \mathbb{R}^{N_r} : \sum_{r=1}^{N_r} \beta_r = 0, \sum_{r=1}^{N_r} \beta_r \mathbf{x}_r = \mathbf{0} : \mathbf{x}_r \in \mathcal{X}\}$
• Parameters $\boldsymbol{\alpha} = \begin{bmatrix} \alpha_{10} & \alpha_{11}^\mathsf{T} & . & . & \alpha_{N_b0} & \alpha_{N_b1}^\mathsf{T} \end{bmatrix}$ and
 $\boldsymbol{\beta} = \begin{bmatrix} \boldsymbol{\beta}_1^\mathsf{T} & . & . & \boldsymbol{\beta}^\mathsf{T}_{N_b} \end{bmatrix}$ are to be estimated

Image: Image:

. ₹ 🖬 🕨

э

System Model Literature Survey Project Plan

Equivalent Group LASSO

• Equivalent LASSO problem

$$\min_{\boldsymbol{\zeta}} \frac{1}{2} ||\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\zeta}||_{2}^{2} + \mu \sum_{\nu=1}^{N_{b}} ||\boldsymbol{\zeta}_{\nu}||^{2}$$
(8)

• Solution: $\zeta = [\zeta_1 \ ... \ \zeta_{N_b}]^{l}$ • x - function of $\{b_v(f)\}_{v=1}^{N_b}, \{x_r\}_{r=1}^{N_r}$ • y - function of $\{\phi_{rm}\}_{r=1}^{N_r}, m = 1, 2, ..., N$

• Optimal parameters are obtained by change of variables : $\begin{bmatrix} \boldsymbol{\beta}_{\boldsymbol{\nu}}^{\mathsf{T}} & \boldsymbol{\alpha}_{\boldsymbol{\nu}}^{\mathsf{T}} \end{bmatrix}^{\mathsf{T}} = \boldsymbol{\mathcal{T}} \boldsymbol{\zeta}_{\boldsymbol{\nu}}$

System Model Literature Survey Project Plan

Issues & Project Plan

Issues

- Location of sensors
- Accuracy of model
- Candidate set for parameters
- Plans
 - Algorithm, analysis and comparative study with existing literature
 - Reduced Complexity: Distributed Algorithm
 - PSD Tracker

Introduction System Model A Few Problems on CS Literature Survey Spectrum Cartography Project Plan

Summary

- Various problems in Compressed Sensing studied during summer
- Spectrum cartography models
- Compressed Sensing techniques in estimating PSD map

< 口 > < 同 >

System Model Literature Survey Project Plan

Image: Image:

< ∃ >

Equivalent LASSO

• Three matrix are involved in obtaining optimal solution:

3
$$T \in \mathbb{R}^{N_r \times 3}$$
 with r^{th} row $t_r = \begin{bmatrix} 1 & x_r^T \end{bmatrix}$, for $r = 1, 2, ..., N_r$
3 $B \in \mathbb{R}^{N \times N_r}$ with n^{th} row $b_n = \begin{bmatrix} b_1(f_n) & ... & b_{N_b}(f_n) \end{bmatrix}$
3 $K \in \mathbb{R}^{N_r \times N_r}$ with $(i, j)^{\text{th}}$ entry $[K]_{ij} = K(||x_i - x_j||)$

• QR decomposition of
$$\boldsymbol{\mathcal{T}} = \begin{bmatrix} \boldsymbol{Q}_1 & \boldsymbol{Q}_2 \end{bmatrix} \begin{bmatrix} \boldsymbol{R} \\ \boldsymbol{0} \end{bmatrix}$$

System Model Literature Survey Project Plan

Equivalent LASSO

•
$$\mathbf{y} = \frac{1}{\sqrt{N_r N}} [\mathbf{\Phi}^\mathsf{T} \mathbf{0}]^\mathsf{T}$$

• $\mathbf{X} = \frac{1}{\sqrt{N_r N}} \begin{bmatrix} \mathbf{B} \otimes \mathbf{I}_{N_r} \\ \mathbf{I}_{N_b} \otimes \{ \mathsf{bdaig}\{(N_r N \lambda \mathbf{Q}_2^\mathsf{T} \mathbf{K} \mathbf{Q}_2)^{1/2}, \mathbf{0} \} [\mathbf{K} \mathbf{Q}_2 \mathbf{T}]^{-1} \end{bmatrix}$
• Optimal parameters are obtained by change of variables :
 $\begin{bmatrix} \boldsymbol{\beta}_v^\mathsf{T} & \boldsymbol{\alpha}_v^\mathsf{T} \end{bmatrix}^\mathsf{T} = \mathsf{bdaig}\{\mathbf{Q}_2, \mathbf{I}_3\} [\mathbf{K} \mathbf{Q}_2 \mathbf{T}]^{-1} \boldsymbol{\zeta}_v$

◆□ > ◆□ > ◆豆 > ◆豆 >

æ