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 Goal: Recover x from y 

  In general, solution non-unique 

  But when x is sparse, can find a unique 
solution, under certain conditions, 
using M << N measurements 

y 

M × 1 �
measurements�

x 

N × 1 �
sparse signal�

k nonzero 
entries, �
k << N �

v Ф 

M × N � M × 1 �
noise �

  Signal representation (Mallat, Coifman, 
Wickerhauser, Donoho,…) 

  EEG/MEG (Leahy, Gordonitsky, Ioannides,…) 

  Functional Approx. (Chen,Nagarajan,Cun,Hassibi,…) 

  Spectral estmn (Papoulis, Lee, Cabrera, Parks,…) 

  Speech coding (Ozawa, Ono, Kroon, Atal,…) 

  MRI (Lustig,…) 

  Sparse channel estimation (Fevrier, Greenstein, 
Proakis, Prasad and Murthy!…) 
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  Noiseless case: Given y and     , solve 

  Noisy case: solve 

  l-0 norm minimization 
  Unique soln. with high probability, if M ≥ k+1 

[Bresler; Wakin etc] 
  Combinatorial complexity  
  Not robust to noise 

Ф 

  l-1 minimization instead of l-0 minimization 

  Same solution as l-0 minimization! 
  If the measurement matrix is random 
  Use slightly larger number of measurements 
  Robust to measurement noise 

  Solution methods 
  Basis pursuit [Chen, Donoho, Sanders 1998] 
  Linear programming 
  Augmented Lagrangian method [Bertsekas 03] 

  See [Donoho; Candes, Romberg, Tao etc] 



12/20/13	  

4	  

  Sequential recovery methods: Sequentially 
identify columns of     most aligned with 
the residual 
  Matching pursuit [Mallat, Zhang; Cotter, Rao] 
  Orthogonal matching pursuit 
  CoSAMP [Needell, Tropp] 

  Joint recovery methods: Use a cost 
function that encourages sparse solutions 
  Basis pursuit (l-p, with p=1) [Chen et al.] 
  FOCUSS (l-p, with p < 1) [Gordonitsky et al.] 
  Lasso (BPDN) [Tibshirani] 
  Dantzig selector [Candes, Tao] 

Ф 

  Mutual coherence. Let 

  Result (noiseless case): If 
  [Tropp 04] OMP converges x after k 

iterations, where k = num. nonzeros in x 
  [Donoho, Elad 03] The sparse vector x0 that 

generated y is the unique soln to 

  Similar guarantees in the noisy case & in 
terms of restricted isometry constant etc. 
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  Perf. of BP and OMP depend on the form of the 
dictionary 
  Poor performance when condns. violated 
  Hard to relate estimation error (e.g., 

covariance) to  

  BP: perf. indep. of nonzero coeffs [Malioutov et 
al. 2004] 
  Perf. does not improve when situation  is 

favorable 

  OMP: perf. highly sensitive to magnitudes of 
nonzero coeffs 
  Perf. poor with unit magnitudes 

Ф 

Ф 

  Scaling/shrinkage:  
  Noiseless: l0 <-> l1 <-> L2. Shrinking 

large coeffs can reduce variance, but at 
the cost of sparsity  

  Noisy: The τ in lasso that minimizes the 
MSE could result in a much larger 
number of nonzero coeffs   

 Correlated dictionary: disrupts l0-l1 
equivalence 

  Estimating embedded params (e.g., in  )     Ф 
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A time and place for nonconvex methods? 

  MAP estimation using a sparse linear model 

  Can be viewed as a regression problem with 
sparsity promoting penalties (e.g., lp-norm) 
  l1-min (BP/LASSO) is a special case 

  Can overcome some of the previous limitations 

  Theory hard to come by, but results promising 

  Algorithms: 
  Iterative reweighted l2 
  EM-based SBL [Tipping, 2001], [Wipf, Rao 2007] 
  [Chartrand and Yin, 2008] 
  AMP [Schniter 2008], [Rangan 2011] 
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  For sparse solutions, g(|xi|) should be a 
concave, nondecreasing function 
  Example: g(|xi|) = |xi|p, p ≤ 1 
  When g(|xi|) = |xi|, get Lasso as a special case   

  Any local min. of the MAP estmn problem 
has at most M nonzeros [Rao et al., 03]   

 Min |x1|p + |x2|p subject to ϕ1x1 + ϕ2x2 = y 

[Courtesy: Wipf, Rao] �
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  Many local minima O(NCM) 
  May get stuck at a local minimum 

  MAP only guarantees max p(x = x0|y) 
  Probability mass, rather than mode, may be 

more relevant for continuous random vars 
  Perhaps posterior mean E(x|y)? 

  Even with the true prior, MAP estimators do 
not minimize MSE: so MSE may be high! 
  In fact, using “true” statistics often does not 

lead to the lowest MSE! 

 Consider a general parameterized prior 

  If know γi, estimating x from y is easy 
  MAP estimate: just the conditional mean 

 ML estimate of γi from the data: 
maximize: 
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  Just maximize the integrand. Leads to 

  Alternating minimization: 
  Initialize Γ = I 
  Compute  
  Compute  
  Repeat steps 2 and 3 

 Will call this “Approximate MAP” or A-
MAP estimation 

  E-step: posterior distribution given Γ(t): 

  The posterior distribution is 

 M-step: maximize Q(Γ|Γ(t)) given 
posteriors gathered in the E-step: 
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  Initialize Γ = I  

 Compute 

  Update 

 Repeat steps 2 and 3   

  Lower bound on L: 

Jensen’s inequality 
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  E-Step:  

 M-Step: 

  E-step solution: 

  Proof: 

 Convergence guaranteed from any 
initialization (property of EM) 

 The global min of L occurs at the 
sparsest solution in the noiseless case 
[Wipf et al. 04] 

 Convergence to a sparse local optimum 
guaranteed in the noisy case [Wipf et 
al. 04]  
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  Generate random 
50 x 100 matrix A  

  Generate sparse 
vector x0 

  Compute y = Ax0 

  Solve for x0, average 
over 1000 trials 

  Repeat for different 
sparsity values 
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 Wireless channels exhibit multipath 
  Naturally sparse in the lag-domain 

 Channel equalization & data detection 
  Need to estimate both support & channel 

τ3�τ1 �

τ2�
time�
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itu
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�

τ1 � τ2� τ3�

  Block fading channel:  

Channel constant for the duration of a 
block (say, K symbols), changes i.i.d. 
from block-to-block 

 Time-varying channel: 

Channel varies from symbol-to-symbol 
  Want to exploit temporal correlation 

(group-sparse estimation) 
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1. Block fading case:  
1. Known channel support: Joint channel 

estimation & data detection 
2. Unknown channel support: Channel and 

support estimation using pilot symbols 
3. Unknown data & support: Joint support, 

channel estimation & data detection 

2. Time-varying case:  
1. AR model: Kalman-EM algo for joint 

support, channel estimation & data detn 
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 Received signal model y = X F h + v 

 Goal: Given y, jointly estimate X & h  

Diagonal data matrix; N x N �
N: number of subcarriers�

N x L DFT matrix, containing �
first L cols of N x N DFT matrix�
L: max channel delay spread �

L x 1 channel vec�

Noise�

  E-Step: 

 M-Step: 
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  h sparse in time (lag) domain 

  Hierarchical prior: 
γi deterministic, unknown hyperparams 

  γi represent the sparsity profile 
  If γi = 0, then h(i) = 0 

 Goal:  
Given y, X, estimate h & sparsity profile   

  E-Step:  

 M-Step: 

  Upon convergence, many of the γi -> 0 
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  OFDM system  

  N=256 subcarriers,  

  max delay spread  
L=64 

  K=7 symbols/slot 

  PedB PDP:  
6 nonzero taps  

  44 pilot subcarriers 

  Data: rate ½ turbo  
code, QPSK  
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 Channel correlated from symbol-to-
symbol 

  AR model: 

 The factor ρ depends on the 
normalized doppler freq, which in turn 
depends on the speed of the mobile  

  SBL framework can be extended to 
incorporate the temporal correlation 
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 Complexity O(KL3) smaller 
than block-based methods 
O(K3L3) [Zhang et al. 10]  
  (K = num. OFDM symbols 

used in joint estimation) 

  In the block-fading case, 
get recursive, more 
computationally efficient 
versions of our algos  

  fdTs = 0.001 (slowly time-varying) 
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  Used the SBL algorithm for OFDM 
channel estimation 

  Block-fading case: proposed J-SBL and 
low-complexity recursive J-SBL for joint 
channel estmn & data detn 

 Time-varying case: low-complexity K-SBL 
and JK-SBL proposed 
  Algos fully exploit channel correlation 

  In practice, algos work even if channel 
is only approximately sparse 

  Bayesian methods can address some 
limitations in BP/OMP type algos 
  E.g., when Φ has embedded parameters 

such as unknown data symbols 

  Simple updates, promising performance 
in practical applications 

 Many opportunities for new theoretical 
developments & novel applications 

  Did not cover: approximate inference 
methods (e.g., AMP [Schniter 08]) 
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  R. Prasad and M., Bayesian Learning for Joint 
Sparse OFDM Channel Estimation and Data 
Detection, Proc. Globecom, 2010 

  R. Prasad and M., Cramér-Rao–Type Bounds for 
Sparse Bayesian Learning, IEEE Trans. Sig. Proc., 
Mar. 2013 

  R. Prasad, M. and B. Rao, Joint Approximately 
Sparse Channel Estimation and Data Detection 
in OFDM Systems using Sparse Bayesian Learning, 
Submitted, IEEE Trans. Sig. Proc., Nov. 2012 

  CS methods 
  Yall1: [www.caam.rice.edu/̃optimization/L1/YALL1] 
  SpaRSA: [Wright et al., TSP 2009]  

http://www.lx.it.pt/~mtf/SpaRSA/ 
  l1_ls: [Kim et al., JSTSP Dec. 2007] 
  OMP: [Tropp, Gilbert, TIT Dec. 2007] 
  FOCUSS: [Gordonitsky et al., 1997] 
  IRLS: [Chartrand and Yin, 2008] 
  SparseLab: [http://sparselab.stanford.edu/] 

  Bayesian methods: 
  SBL: [Tipping, 2001] 
  AMP: [Schniter, 2008], [Rangan, 2011] 
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