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 Goal: Recover x from y 

  In general, solution non-unique 

  But when x is sparse, can find a unique 
solution, under certain conditions, 
using M << N measurements 

y 

M × 1 �
measurements�

x 

N × 1 �
sparse signal�

k nonzero 
entries, �
k << N �

v Ф 

M × N � M × 1 �
noise �

  Signal representation (Mallat, Coifman, 
Wickerhauser, Donoho,…) 

  EEG/MEG (Leahy, Gordonitsky, Ioannides,…) 

  Functional Approx. (Chen,Nagarajan,Cun,Hassibi,…) 

  Spectral estmn (Papoulis, Lee, Cabrera, Parks,…) 

  Speech coding (Ozawa, Ono, Kroon, Atal,…) 

  MRI (Lustig,…) 

  Sparse channel estimation (Fevrier, Greenstein, 
Proakis, Prasad and Murthy!…) 
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  Noiseless case: Given y and     , solve 

  Noisy case: solve 

  l-0 norm minimization 
  Unique soln. with high probability, if M ≥ k+1 

[Bresler; Wakin etc] 
  Combinatorial complexity  
  Not robust to noise 

Ф 

  l-1 minimization instead of l-0 minimization 

  Same solution as l-0 minimization! 
  If the measurement matrix is random 
  Use slightly larger number of measurements 
  Robust to measurement noise 

  Solution methods 
  Basis pursuit [Chen, Donoho, Sanders 1998] 
  Linear programming 
  Augmented Lagrangian method [Bertsekas 03] 

  See [Donoho; Candes, Romberg, Tao etc] 
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  Sequential recovery methods: Sequentially 
identify columns of     most aligned with 
the residual 
  Matching pursuit [Mallat, Zhang; Cotter, Rao] 
  Orthogonal matching pursuit 
  CoSAMP [Needell, Tropp] 

  Joint recovery methods: Use a cost 
function that encourages sparse solutions 
  Basis pursuit (l-p, with p=1) [Chen et al.] 
  FOCUSS (l-p, with p < 1) [Gordonitsky et al.] 
  Lasso (BPDN) [Tibshirani] 
  Dantzig selector [Candes, Tao] 

Ф 

  Mutual coherence. Let 

  Result (noiseless case): If 
  [Tropp 04] OMP converges x after k 

iterations, where k = num. nonzeros in x 
  [Donoho, Elad 03] The sparse vector x0 that 

generated y is the unique soln to 

  Similar guarantees in the noisy case & in 
terms of restricted isometry constant etc. 
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  Perf. of BP and OMP depend on the form of the 
dictionary 
  Poor performance when condns. violated 
  Hard to relate estimation error (e.g., 

covariance) to  

  BP: perf. indep. of nonzero coeffs [Malioutov et 
al. 2004] 
  Perf. does not improve when situation  is 

favorable 

  OMP: perf. highly sensitive to magnitudes of 
nonzero coeffs 
  Perf. poor with unit magnitudes 

Ф 

Ф 

  Scaling/shrinkage:  
  Noiseless: l0 <-> l1 <-> L2. Shrinking 

large coeffs can reduce variance, but at 
the cost of sparsity  

  Noisy: The τ in lasso that minimizes the 
MSE could result in a much larger 
number of nonzero coeffs   

 Correlated dictionary: disrupts l0-l1 
equivalence 

  Estimating embedded params (e.g., in  )     Ф 
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A time and place for nonconvex methods? 

  MAP estimation using a sparse linear model 

  Can be viewed as a regression problem with 
sparsity promoting penalties (e.g., lp-norm) 
  l1-min (BP/LASSO) is a special case 

  Can overcome some of the previous limitations 

  Theory hard to come by, but results promising 

  Algorithms: 
  Iterative reweighted l2 
  EM-based SBL [Tipping, 2001], [Wipf, Rao 2007] 
  [Chartrand and Yin, 2008] 
  AMP [Schniter 2008], [Rangan 2011] 
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  For sparse solutions, g(|xi|) should be a 
concave, nondecreasing function 
  Example: g(|xi|) = |xi|p, p ≤ 1 
  When g(|xi|) = |xi|, get Lasso as a special case   

  Any local min. of the MAP estmn problem 
has at most M nonzeros [Rao et al., 03]   

 Min |x1|p + |x2|p subject to ϕ1x1 + ϕ2x2 = y 

[Courtesy: Wipf, Rao] �
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  Many local minima O(NCM) 
  May get stuck at a local minimum 

  MAP only guarantees max p(x = x0|y) 
  Probability mass, rather than mode, may be 

more relevant for continuous random vars 
  Perhaps posterior mean E(x|y)? 

  Even with the true prior, MAP estimators do 
not minimize MSE: so MSE may be high! 
  In fact, using “true” statistics often does not 

lead to the lowest MSE! 

 Consider a general parameterized prior 

  If know γi, estimating x from y is easy 
  MAP estimate: just the conditional mean 

 ML estimate of γi from the data: 
maximize: 
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  Just maximize the integrand. Leads to 

  Alternating minimization: 
  Initialize Γ = I 
  Compute  
  Compute  
  Repeat steps 2 and 3 

 Will call this “Approximate MAP” or A-
MAP estimation 

  E-step: posterior distribution given Γ(t): 

  The posterior distribution is 

 M-step: maximize Q(Γ|Γ(t)) given 
posteriors gathered in the E-step: 
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  Initialize Γ = I  

 Compute 

  Update 

 Repeat steps 2 and 3   

  Lower bound on L: 

Jensen’s inequality 



12/20/13	
  

11	
  

  E-Step:  

 M-Step: 

  E-step solution: 

  Proof: 

 Convergence guaranteed from any 
initialization (property of EM) 

 The global min of L occurs at the 
sparsest solution in the noiseless case 
[Wipf et al. 04] 

 Convergence to a sparse local optimum 
guaranteed in the noisy case [Wipf et 
al. 04]  
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  Generate random 
50 x 100 matrix A  

  Generate sparse 
vector x0 

  Compute y = Ax0 

  Solve for x0, average 
over 1000 trials 

  Repeat for different 
sparsity values 
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 Wireless channels exhibit multipath 
  Naturally sparse in the lag-domain 

 Channel equalization & data detection 
  Need to estimate both support & channel 

τ3�τ1 �

τ2�
time�

Am
pl

itu
de
�

τ1 � τ2� τ3�

  Block fading channel:  

Channel constant for the duration of a 
block (say, K symbols), changes i.i.d. 
from block-to-block 

 Time-varying channel: 

Channel varies from symbol-to-symbol 
  Want to exploit temporal correlation 

(group-sparse estimation) 
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1. Block fading case:  
1. Known channel support: Joint channel 

estimation & data detection 
2. Unknown channel support: Channel and 

support estimation using pilot symbols 
3. Unknown data & support: Joint support, 

channel estimation & data detection 

2. Time-varying case:  
1. AR model: Kalman-EM algo for joint 

support, channel estimation & data detn 
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 Received signal model y = X F h + v 

 Goal: Given y, jointly estimate X & h  

Diagonal data matrix; N x N �
N: number of subcarriers�

N x L DFT matrix, containing �
first L cols of N x N DFT matrix�
L: max channel delay spread �

L x 1 channel vec�

Noise�

  E-Step: 

 M-Step: 
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  h sparse in time (lag) domain 

  Hierarchical prior: 
γi deterministic, unknown hyperparams 

  γi represent the sparsity profile 
  If γi = 0, then h(i) = 0 

 Goal:  
Given y, X, estimate h & sparsity profile   

  E-Step:  

 M-Step: 

  Upon convergence, many of the γi -> 0 
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  OFDM system  

  N=256 subcarriers,  

  max delay spread  
L=64 

  K=7 symbols/slot 

  PedB PDP:  
6 nonzero taps  

  44 pilot subcarriers 

  Data: rate ½ turbo  
code, QPSK  
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 Channel correlated from symbol-to-
symbol 

  AR model: 

 The factor ρ depends on the 
normalized doppler freq, which in turn 
depends on the speed of the mobile  

  SBL framework can be extended to 
incorporate the temporal correlation 
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 Complexity O(KL3) smaller 
than block-based methods 
O(K3L3) [Zhang et al. 10]  
  (K = num. OFDM symbols 

used in joint estimation) 

  In the block-fading case, 
get recursive, more 
computationally efficient 
versions of our algos  

  fdTs = 0.001 (slowly time-varying) 
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  Used the SBL algorithm for OFDM 
channel estimation 

  Block-fading case: proposed J-SBL and 
low-complexity recursive J-SBL for joint 
channel estmn & data detn 

 Time-varying case: low-complexity K-SBL 
and JK-SBL proposed 
  Algos fully exploit channel correlation 

  In practice, algos work even if channel 
is only approximately sparse 

  Bayesian methods can address some 
limitations in BP/OMP type algos 
  E.g., when Φ has embedded parameters 

such as unknown data symbols 

  Simple updates, promising performance 
in practical applications 

 Many opportunities for new theoretical 
developments & novel applications 

  Did not cover: approximate inference 
methods (e.g., AMP [Schniter 08]) 
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  R. Prasad and M., Bayesian Learning for Joint 
Sparse OFDM Channel Estimation and Data 
Detection, Proc. Globecom, 2010 

  R. Prasad and M., Cramér-Rao–Type Bounds for 
Sparse Bayesian Learning, IEEE Trans. Sig. Proc., 
Mar. 2013 

  R. Prasad, M. and B. Rao, Joint Approximately 
Sparse Channel Estimation and Data Detection 
in OFDM Systems using Sparse Bayesian Learning, 
Submitted, IEEE Trans. Sig. Proc., Nov. 2012 

  CS methods 
  Yall1: [www.caam.rice.edu/̃optimization/L1/YALL1] 
  SpaRSA: [Wright et al., TSP 2009]  

http://www.lx.it.pt/~mtf/SpaRSA/ 
  l1_ls: [Kim et al., JSTSP Dec. 2007] 
  OMP: [Tropp, Gilbert, TIT Dec. 2007] 
  FOCUSS: [Gordonitsky et al., 1997] 
  IRLS: [Chartrand and Yin, 2008] 
  SparseLab: [http://sparselab.stanford.edu/] 

  Bayesian methods: 
  SBL: [Tipping, 2001] 
  AMP: [Schniter, 2008], [Rangan, 2011] 
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  Prof. Bhaskar Rao, UC San Diego 

  Dr. David Wipf, Microsoft Research 
Beijing 


