Interference Alignment for the *K* User Constant MIMO Interference Channel

Parthajit Mohapatra, Nissar K. E., & Chandra Murthy

SPC Lab

Department of ECE, IISc

14 Jan. 2017

(日)

- 2 IA Performance Measures
- Precoder design for IA
- 4 Simulation Results

• (10) • (10)

IA Performance Measures Precoder design for IA Simulation Results Conclusion

Degrees of Freedom (DOF)

K-User interference channel IA for K = 3 user MIMO interference channel Achievable DOF using IA Feasibility of IA

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Preliminaries

- 2 IA Performance Measures
- Precoder design for IA
- 4 Simulation Results
- 5 Conclusion

IA Performance Measures Precoder design for IA Simulation Results Conclusion Degrees of Freedom (DOF) K-User interference channel IA for K = 3 user MIMO interference channel Achievable DOF using IA Feasibility of IA

< 回 > < 回 > < 回 >

Definition: Degrees of Freedom

• If at high SNR, the capacity scales with SNR as

 $C_{\Sigma}(SNR) = d_{\Sigma} \log(SNR) + o(\log(SNR))$

The DOF is defined as

$$d_{\Sigma} riangleq \lim_{\mathsf{SNR} o \infty} rac{\mathcal{C}(\mathsf{SNR})}{\mathsf{log}(\mathsf{SNR})}$$

• Special case: equal DOF per user: symmetric per-user DOF

$$d_{sym} = \lim_{SNR
ightarrow \infty} rac{C_{sym}(SNR)}{\log(SNR)}$$

Note: single user MIMO channel: d is the rank of channel matrix.

IA Performance Measures Precoder design for IA Simulation Results Conclusion Degrees of Freedom (DOF) K-User interference channel IA for K = 3 user MIMO interference channel Achievable DOF using IA Feasibility of IA

K-User interference channel

- $\mathbf{H}_{kj} \in \mathbb{C}^{N \times M}$: channel matrix from Tx *j* to Rx *k*
- Symbol extension: Concatenate S successive Tx/Rx symbols to get the NS × MS block diagonal extended channel matrix with the diagonals containing H_{kj}(t)
- Time varying channel: $\mathbf{H}_{kj}(t)$ are different at each symbol time t
- Constant channel: $\mathbf{H}_{kj}(t) = \mathbf{H}_{kj}$ for *S* symbol transmit durations

IA Performance Measures Precoder design for IA Simulation Results Conclusion Degrees of Freedom (DOF) K-User interference channel IA for K = 3 user MIMO interference channel Achievable DOF using IA Feasibility of IA

IA for K = 3 user MIMO interference channel

- $S_k \in \mathbb{C}^{d \times 1}$: symbols to be transmitted from Tx k
- $V_k \in \mathbb{C}^{M \times d}$: precoding matrix used at Tx k
- The channel output at Rx-1:

$$\mathbf{y}_1 = \mathbf{H}_{11}\mathbf{V}_1\mathbf{s}_1 + \mathbf{H}_{12}\mathbf{V}_2\mathbf{s}_2 + \mathbf{H}_{13}\mathbf{V}_3\mathbf{s}_3 \pm \mathbf{z}_1$$

Degrees of Freedom (DOF) K-User interference channel IA for K = 3 user MIMO interference channel Achievable DOF using IA Feasibility of IA

・ロト ・四ト ・ヨト ・ヨト

크

Necessary & Sufficient Conditions for IA ($M \times M$ Case)

Necessary conditions for IA:

Sufficient conditions for IA:

$$span(\mathbf{V}_1) = span(\mathbf{EV}_1), \quad \mathbf{V}_2 = \mathbf{FV}_1, \quad \mathbf{V}_3 = \mathbf{GV}_1$$

where

$$\begin{split} \textbf{E} &= \textbf{H}_{31}^{-1}\textbf{H}_{32}\textbf{H}_{12}^{-1}\textbf{H}_{13}\textbf{H}_{23}^{-1}\textbf{H}_{21} \\ \textbf{F} &= \textbf{H}_{32}^{-1}\textbf{H}_{31} \text{ and } \textbf{G} = \textbf{H}_{23}^{-1}\textbf{H}_{21} \end{split}$$

Degrees of Freedom (DOF) K-User interference channel IA for K = 3 user MIMO interference channel Achievable DOF using IA Feasibility of IA

A (10) A (10)

Additional Condition: Linear Independence

- Previous conditions only guarantee alignment of interference
- In addition, need signal to be linearly independent of interference, i.e.,

$rank([H_{11}V_1$	$H_{12}V_2]) = M$ at Rx-1
$rank([H_{22}V_2$	$H_{23}V_{3}]) = M$ at Rx-2
$\operatorname{rank}([H_{33}V_3$	$H_{32}V_{2}]) = M$ at Rx-3

- Assumptions:
 - *H_{kj}* drawn from continuous distribution
 - Global channel knowledge at all nodes

Degrees of Freedom (DOF) K-User interference channel IA for K = 3 user MIMO interference channel Achievable DOF using IA Feasibility of IA

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Achievable DOF: Accounting for Dimensionalities

Let the desired DOF per user = d

- Total dimension available at j^{th} receiver = N
- Dimension occupied by the desired signal = d
- Dimension remaining for interference = N d
- Dimension occupied by interference without IA = (K 1)d
- If *n* users are aligned, the dim. of intf. subspace = (K n 1)d

Therefore, to achieve d DOF per user, it is sufficient that

$$(K-n-1)d \leq N-d$$
, i.e., $n \geq K-\frac{N}{d}$

IA Performance Measures Precoder design for IA Simulation Results Conclusion Degrees of Freedom (DOF) K-User interference channel IA for K = 3 user MIMO interference channel Achievable DOF using IA Feasibility of IA

・ロト ・四ト ・ヨト ・ヨト

Feasibility of IA

IA with d DOF per user is feasible if there exist precoding matrices $V_k \in \mathbb{C}^{M \times d}$, and receive filtering matrix $W_k \in \mathbb{C}^{N \times d}$ such that,

$$\begin{split} \mathbf{W}_{k}^{H}\mathbf{H}_{kj}\mathbf{V}_{j} &= \mathbf{0}, \, j = 1, 2, \dots, K, \, j \neq k, \\ \mathrm{rank}\left(\mathbf{W}_{k}^{H}\mathbf{H}_{kk}\mathbf{V}_{k}\right) &= d \end{split}$$

Extension to case with symbol extensions is straightforward.

IA Performance Measures Precoder design for IA Simulation Results Conclusion Degrees of Freedom (DOF) K-User interference channel IA for K = 3 user MIMO interference channel Achievable DOF using IA Feasibility of IA

(日本) (日本) (日本)

Sufficient conditions for IA

- A sufficient condition for IA
- K(K-2)Nd linear equations with *KMd* unknowns.
- There exists a solution with probability one if $M \ge (K 2)N$
- If *n* interfering users are aligned, the achievable DOF per user

$$d = \frac{N}{K - n}$$

Thus, we can construct *linear* IA conditions for n user IA

Preliminaries

- 2 IA Performance Measures
- Precoder design for IA
- 4 Simulation Results
- 5 Conclusion

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

크

Performance Measure – 1

1. Fraction of the interfering signal power in the desired signal subspace, denoted p_k :

$$oldsymbol{v}_k riangleq rac{\sum_{j=1}^{d_k} \lambda_j [oldsymbol{Q}_k]}{ ext{trace} (oldsymbol{Q}_k)},$$

<回と < 回と < 回と

where \mathbf{Q}_k is the interference covariance matrix at receiver *k*, and $\lambda_i[\mathbf{Q}_k]$ is the *j*th smallest eigenvalue of \mathbf{Q}_k .

- When the IA is perfect, $p_k = 0$
- A small value of *p_k* indicates a better IA

Performance Measure – 2

2. Relative power of the weakest desired data stream, denoted q_k :

$$q_{k} \triangleq \frac{\sigma_{d_{k}}^{2} \left[\mathbf{W}_{k}^{H} \mathbf{H}_{kk} \mathbf{V}_{k} \right]}{\sum_{l=1}^{d_{k}} \sigma_{l}^{2} \left[\mathbf{W}_{k}^{H} \mathbf{H}_{kk} \mathbf{V}_{k} \right]}$$

where, σ_l [A] represents the *l*th largest singular value of A.

•
$$0 \leq q_k \leq 1/d_k$$

- A non-zero value of q_k ensures the desired DOF per user is attained
- Loosely speaking, q_k close to 1/d_k results in the same data rate on all the desired data streams

・ロト ・四ト ・ヨト ・ヨト

Eigen Beamforming

Eigen Beamforming with Dimensionality Constraint Eigen beamforming: Constrained Least Squares – 2 Distributed Iterative Algorithm Precoder Design: Distributed Iterative Algorithm Distributed Iterative Algorithm: Convergence

Preliminaries

- 2 IA Performance Measures
- Precoder design for IA
- 4 Simulation Results

5 Conclusion

Eigen Beamforming

Eigen Beamforming with Dimensionality Constraint Eigen beamforming: Constrained Least Squares – 2 Distributed Iterative Algorithm Precoder Design: Distributed Iterative Algorithm Distributed Iterative Algorithm: Convergence

・ロト ・四ト ・ヨト ・ヨト

Eigen Beamforming

A sufficient condition for *one user* IA for the K = 4 user interference channel

$$\begin{split} & \textbf{H}_{41}\textbf{V}_1 = \textbf{H}_{42}\textbf{V}_2 + \textbf{H}_{43}\textbf{V}_3 \\ & \textbf{H}_{32}\textbf{V}_2 = \textbf{H}_{31}\textbf{V}_1 + \textbf{H}_{34}\textbf{V}_4 \\ & \textbf{H}_{23}\textbf{V}_3 = \textbf{H}_{21}\textbf{V}_1 + \textbf{H}_{24}\textbf{V}_4 \\ & \textbf{H}_{14}\textbf{V}_4 = \textbf{H}_{12}\textbf{V}_2 + \textbf{H}_{13}\textbf{V}_3 \end{split}$$

which can be written as

$$\mathbf{\tilde{H}V} = \mathbf{0}$$

Eigen Beamforming

Eigen Beamforming with Dimensionality Constraint Eigen beamforming: Constrained Least Squares – 2 Distributed Iterative Algorithm Precoder Design: Distributed Iterative Algorithm Distributed Iterative Algorithm: Convergence

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Eigen Beamforming Algorithm

•
$$\mathbf{V} \triangleq [\mathbf{V}_1; \mathbf{V}_2; \mathbf{V}_3; \mathbf{V}_4]^T \in \mathbf{C}^{KM \times d}$$
 and

$$\tilde{\mathbf{H}} \triangleq \begin{bmatrix} -\mathbf{H}_{41} & \mathbf{H}_{42} & \mathbf{H}_{43} & \underline{\mathbf{0}} \\ \mathbf{H}_{31} & -\mathbf{H}_{32} & \underline{\mathbf{0}} & \mathbf{H}_{34} \\ \mathbf{H}_{21} & \underline{\mathbf{0}} & -\mathbf{H}_{23} & \mathbf{H}_{24} \\ \underline{\mathbf{0}} & \mathbf{H}_{12} & \mathbf{H}_{13} & -\mathbf{H}_{14} \end{bmatrix}$$

- Instead of exact solution to $\mathbf{\tilde{HV}} = 0$, can look for MMSE
- MMSE solution to V is given by

$$V^o = eig_{min}[\mathbf{Q}]$$

where $Q = \tilde{\mathbf{H}}^H \tilde{\mathbf{H}}$.

Eigen Beamforming

Eigen Beamforming with Dimensionality Constraint Eigen beamforming: Constrained Least Squares – 2 Distributed Iterative Algorithm Precoder Design: Distributed Iterative Algorithm Distributed Iterative Algorithm: Convergence

Eigen Beamforming Algorithm

•
$$\mathbf{V} \triangleq [\mathbf{V}_1; \mathbf{V}_2; \mathbf{V}_3; \mathbf{V}_4]^T \in \mathbf{C}^{KM \times d}$$
 and

$$\tilde{\mathbf{H}} \triangleq \begin{bmatrix} -\mathbf{H}_{41} & \mathbf{H}_{42} & \mathbf{H}_{43} & \underline{\mathbf{0}} \\ \mathbf{H}_{31} & -\mathbf{H}_{32} & \underline{\mathbf{0}} & \mathbf{H}_{34} \\ \mathbf{H}_{21} & \underline{\mathbf{0}} & -\mathbf{H}_{23} & \mathbf{H}_{24} \\ \underline{\mathbf{0}} & \mathbf{H}_{12} & \mathbf{H}_{13} & -\mathbf{H}_{14} \end{bmatrix}$$

- Instead of exact solution to $\tilde{H}V = 0$, can look for MMSE
- MMSE solution to V is given by

$$V^o = eig_{min}[\mathbf{Q}]$$

where $Q = \tilde{\mathbf{H}}^H \tilde{\mathbf{H}}$.

 However, this solution does not guarantee that the dimension of the desired signal is d_S!

Eigen Beamforming Eigen Beamforming with Dimensionality Constraint Eigen beamforming: Constrained Least Squares – 2 Distributed Iterative Algorithm Precoder Design: Distributed Iterative Algorithm Distributed Iterative Algorithm: Convergence

• (10) • (10)

Constrained Least Squares Formulation

 To preserve the desired signal dimension, we solve the constrained optimization problem:

$$\min_{\mathbf{V}} \|\tilde{\mathbf{H}}\mathbf{V}\|_{F}^{2} \text{ sub. to } \operatorname{rank}(\mathbf{H}_{kk}\mathbf{V}_{k}) = d$$

That is,

$$\min_{\mathbf{V}} J(\mathbf{V}) \triangleq \text{trace} \left(\mathbf{V}^{H} \mathbf{Q} \mathbf{V} \right) \text{ sub. to } \mathbf{H} \mathbf{V} = \mathbf{b}, \ k = 1, 2, \dots, K$$
where $\mathbf{b} \triangleq [\mathbf{b}_{1}; \mathbf{b}_{2}; \dots; \mathbf{b}_{K}]^{T}$, with $\mathbf{b}_{k} \in \mathbb{C}^{N \times d}$ being full rank matrices

Eigen Beamforming Eigen Beamforming with Dimensionality Constraint Eigen beamforming: Constrained Least Squares – 2 Distributed Iterative Algorithm Precoder Design: Distributed Iterative Algorithm Distributed Iterative Algorithm: Convergence

(日)

Solution to the Constrained Least Squares Problem

• The matrix $\mathbf{H} \in \mathbb{C}^{KN \times KM}$ is a full rank matrix given by

$$\mathbf{H} = \begin{bmatrix} \mathbf{H}_{11} & 0 & \dots & 0 \\ 0 & \mathbf{H}_{22} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \mathbf{H}_{kk} \end{bmatrix},$$

• The solution to the optimization problem is

$$\mathbf{V}_0 = \mathbf{Q}^{-1} \mathbf{H}^H \mathbf{T}^\dagger \mathbf{b}$$

where $\mathbf{T} \triangleq [\mathbf{H}\mathbf{Q}^{-1}\mathbf{H}^{H}]$

Eigen Beamforming Eigen Beamforming with Dimensionality Constraint Eigen beamforming: Constrained Least Squares – 2 Distributed Iterative Algorithm Precoder Design: Distributed Iterative Algorithm Distributed Iterative Algorithm: Convergence

Proof of the Solution

Suppose the opt. soln. is V_n = V₀ + Δ, such that HV_n = b
The objective function is given by:

$$\begin{split} J(\mathbf{V}_n) &= \text{trace} \left([\mathbf{V}_0 + \Delta]^H \mathbf{Q} [\mathbf{V}_0 + \Delta] \right) \\ &= \text{trace} \left(\mathbf{V}_0^H \mathbf{Q} \mathbf{V}_0 + \Delta^H \mathbf{Q} \Delta + \Delta^H \mathbf{Q} \mathbf{V}_0 + \mathbf{V}_0^H \mathbf{Q} \Delta \right) \end{split}$$

• From the constraint $\mathbf{HV}_n = \mathbf{b}$, clearly, $\mathbf{H}\Delta = \mathbf{0}$, and

$$\Delta^{H} \mathbf{Q} \mathbf{V}_{0} = \Delta^{H} \mathbf{Q} \mathbf{Q}^{-1} \mathbf{H}^{H} \mathbf{T}^{\dagger} \mathbf{b} = \mathbf{0}$$

• Similarly,

$$\mathbf{V}_{0}^{H}\mathbf{Q}\Delta = \mathbf{b}^{H}\mathbf{T}^{\dagger H}\mathbf{H}\mathbf{Q}^{-1}\mathbf{Q}\Delta = \mathbf{0}$$

- Note that trace($\Delta^H \mathbf{Q} \Delta$) ≥ 0 since \mathbf{Q} is positive definite.
- Hence, $J(\mathbf{V}_0) \leq J(\mathbf{V}_n)$ and \mathbf{V}_0 is the optimum solution.

Eigen Beamforming Eigen Beamforming with Dimensionality Constraint Eigen beamforming: Constrained Least Squares – 2 Distributed Iterative Algorithm Precoder Design: Distributed Iterative Algorithm Distributed Iterative Algorithm: Convergence

Constrained Least Squares – 2

- Recall, the constrained optimization problem to be solved $\min_{\mathbf{V}} \|\tilde{\mathbf{H}}\mathbf{V}\|_{F}^{2} \text{ subject to } \mathbf{H}\mathbf{V} = \mathbf{b}.$

$$\begin{split} \tilde{\mathbf{H}} &= \mathbf{U}\mathbf{C}\mathbf{X}^H \\ \mathbf{H} &= \mathbf{G}\mathbf{D}\mathbf{X}^H \end{split}$$

- $\boldsymbol{U},\boldsymbol{G} \in \mathbb{C}^{\textit{KN} \times \textit{KN}}$ are unitary matrices
- $\boldsymbol{X} \in \mathbb{C}^{\textit{KM} \times \textit{KM}}$ is a full rank matrix
- **C** and $\mathbf{D} \in \mathbb{C}^{KN \times KM}$ are diagonal matrices.

Using the unitary transformation, we restate the problem as

 $\min_{\mathbf{V}} \|\mathbf{U}^H \tilde{\mathbf{H}} \mathbf{V}\|_F^2 \text{ subject to } \mathbf{G}^H \mathbf{H} \mathbf{V} = \mathbf{G}^H \mathbf{b}$

Eigen Beamforming Eigen Beamforming with Dimensionality Constraint Eigen beamforming: Constrained Least Squares – 2 Distributed Iterative Algorithm Precoder Design: Distributed Iterative Algorithm Distributed Iterative Algorithm: Convergence

Constrained Least Squares: Solution – 2

From the above, we have

 $\min_{\mathbf{V}} \|\mathbf{C}\mathbf{X}^{H}\mathbf{V}\|_{F}^{2} \text{ subject to } \mathbf{D}\mathbf{X}^{H}\mathbf{V} = \mathbf{G}^{H}\mathbf{b}$

• The GSVD solution from [Golub]

$$\mathbf{V}_{0,j} = \sum_{i=1}^{KMS} rac{\mathbf{G}_i^H \mathbf{b}_j}{\mathbf{D}_{ii}} \mathbf{W}_i, \quad j = 1, 2, \dots, d_S,$$

where \mathbf{A}_i is the *i*th column of \mathbf{A} and $\mathbf{W} \triangleq [\mathbf{X}^H]^{-1}$

- Note: for the proposed Eigen beamforming
 - Global knowledge of all K² links is required, i.e.,
 - Centralized algorithm
 - The iterative algorithm (discussed next) addresses this

Eigen Beamforming Eigen Beamforming with Dimensionality Constraint Eigen beamforming: Constrained Least Squares – 2 Distributed Iterative Algorithm Precoder Design: Distributed Iterative Algorithm Distributed Iterative Algorithm: Convergence

Distributed Iterative Algorithm

• Consider the *K*-user interference channel. The interference + noise term at *Rx*-*k* is

$$\mathsf{IR}_k = \sum_{j=1, j
eq k}^K \mathsf{W}_k{}^H \mathsf{H}_{kj} \mathsf{V}_j \mathsf{s}_j + \mathsf{W}_k{}^H \mathsf{Z}_k$$

• When IA is feasible, we can find a **W**_k. such that

$$\sum_{j=1,j\neq k}^{K} \mathbf{W}_{k}{}^{H}\mathbf{H}_{kj}\mathbf{V}_{j} = 0$$

• With dimensionality constr. rank $(\mathbf{W}_k^H \mathbf{H}_{kk} \mathbf{V}_k) = d_k$, we have

 $\min_{\mathbf{W}_k} J_k \triangleq \operatorname{trace}(\mathbf{W}_k^H \mathbf{Q}_k \mathbf{W}_k) \quad \text{subject to} \quad \mathbf{W}_k^H \mathbf{H}_{kk} \mathbf{V}_k = \alpha \mathbf{I}_{d_k}$

where α is selected to obtain: trace $(\mathbf{W}_{k}^{H}\mathbf{W}_{k}) = \langle \mathbf{I} \otimes \mathbf{v} \otimes \mathbf{I} \otimes \mathbf{v} \otimes \mathbf{V} \rangle$ Parthajit Mohapatra, Nissar K. E., & Chandra Murthy IA for the *K*-User MIMO IC

Eigen Beamforming Eigen Beamforming with Dimensionality Constraint Eigen beamforming: Constrained Least Squares – 2 Distributed Iterative Algorithm Precoder Design: Distributed Iterative Algorithm Distributed Iterative Algorithm: Convergence

Precoder Design: Distributed Iterative Algorithm

 In the above, Q_k is the interference plus noise covariance matrix at receiver k, defined as,

$$\mathbf{Q}_{k} = \sum_{j=1, j \neq k}^{K} [\mathbf{H}_{kj} \mathbf{V}_{j}] [\mathbf{H}_{kj} \mathbf{V}_{j}]^{H} + \mathbf{I}_{N}$$

• The solution that minimizes *J_k* is given by,

$$\mathbf{W}_{k}^{opt} = \alpha \mathbf{Q}_{k}^{-1} \mathbf{U}_{k} [\mathbf{U}_{k}^{H} \mathbf{Q}_{k}^{-1} \mathbf{U}_{k}]^{-1}$$

 $\mathbf{U}_k \triangleq \mathbf{H}_{kk} \mathbf{V}_k$ is the desired signal subspace of the k^{th} user

 $\alpha = \frac{\mathbf{I}}{\sqrt{\operatorname{trace}\left([\mathbf{Q}_{k}^{-1}\mathbf{U}_{k}[\mathbf{U}_{k}^{H}\mathbf{Q}_{k}^{-1}\mathbf{U}_{k}]^{-1}]^{H}[\mathbf{Q}_{k}^{-1}\mathbf{U}_{k}[\mathbf{U}_{k}^{H}\mathbf{Q}_{k}^{-1}\mathbf{U}_{k}]^{-1}]\right)}}$

Eigen Beamforming Eigen Beamforming with Dimensionality Constraint Eigen beamforming: Constrained Least Squares – 2 Distributed Iterative Algorithm Precoder Design: Distributed Iterative Algorithm

(日)

Distributed Iterative Algorithm: Convergence

Iterative Algorithm: Optimum Receive Filter

Lemma

For the constrained optimization problem,

$$\min_{\mathbf{G}} J(\mathbf{G}) \triangleq \operatorname{trace} \left(\mathbf{G}^{H} \mathbf{Q} \mathbf{G} \right) \quad \text{subject to} \quad \mathbf{A} \mathbf{G} = \alpha \mathbf{I}_{\mathbf{d}}$$

 $\mathbf{G} \in \mathbb{C}^{M \times d}$, $\mathbf{Q} \in \mathbb{C}^{M \times M} > 0$ and $\mathbf{A} \in \mathbb{C}^{d \times M}$. The optimum solution is

$$\mathbf{G}_{\mathbf{0}} = \alpha \mathbf{Q}^{-1} \mathbf{A}^{H} [\mathbf{A} \mathbf{Q}^{-1} \mathbf{A}^{H}]^{-1}.$$

Proof: Omitted.

Eigen Beamforming Eigen Beamforming with Dimensionality Constraint Eigen beamforming: Constrained Least Squares – 2 Distributed Iterative Algorithm Precoder Design: Distributed Iterative Algorithm Distributed Iterative Algorithm: Convergence

Iterative Algorithm: Optimum Precoder Matrices

• The interfering signal due to transmitter *k* at the unintended receivers,

$$\mathbf{IT}_{k} = \mathbf{W}_{j}^{H} \mathbf{H}_{jk} \mathbf{V}_{k} \mathbf{s}_{k}, \quad j = 1, 2, \dots, K, j \neq k$$

• Feasibility condition for perfect IA,

$$\mathbf{W}_{j}^{H}\mathbf{H}_{jk}\mathbf{V}_{k}=\mathbf{0}, \quad j=1,2,\ldots,K, j\neq k$$

• The interference power due to transmitter *k* at receiver *j*,

$$\mathbf{LI}_{kj} = \operatorname{trace}\left(\mathbf{V}_{k}^{H}[\mathbf{W}_{j}^{H}\mathbf{H}_{jk}]^{H}[\mathbf{W}_{j}^{H}\mathbf{H}_{jk}]\mathbf{V}_{k}\right)$$

Eigen Beamforming Eigen Beamforming with Dimensionality Constraint Eigen beamforming: Constrained Least Squares – 2 Distributed Iterative Algorithm Precoder Design: Distributed Iterative Algorithm Distributed Iterative Algorithm: Convergence

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Iterative Algorithm: Optimum Precoder Matrices

The optimization problem is given by,

$$\min_{\mathbf{V}_k} L_k = \text{trace} \left(\mathbf{V}_k^H \mathbf{R}_k \mathbf{V}_k \right), \quad \text{subject to} \quad \mathbf{W}_k^H \mathbf{H}_{kk} \mathbf{V}_k = \beta \mathbf{I}_{d_k}$$

where β is selected to obtain trace $(\mathbf{V}_k^H \mathbf{V}_k) = 1$.

$$\mathbf{R}_{k} = \sum_{j=1, j \neq k}^{K} [\mathbf{W}_{j}^{H} \mathbf{H}_{jk}]^{H} [\mathbf{W}_{j}^{H} \mathbf{H}_{jk}] + \mathbf{I}_{d_{k}}$$

The optimum solution for V_k is given by

$$\mathbf{V}_k^{opt} = \beta \mathbf{R}_k^{-1} \mathbf{T}_k^H [\mathbf{T}_k \mathbf{R}_k^{-1} \mathbf{T}_k^H]^{-1}, \quad k = 1, 2, \dots, K,$$

where $\mathbf{T}_{k} \triangleq \mathbf{W}_{k}^{H}\mathbf{H}_{kk}$.

Eigen Beamforming Eigen Beamforming with Dimensionality Constraint Eigen beamforming: Constrained Least Squares – 2 Distributed Iterative Algorithm Precoder Design: Distributed Iterative Algorithm Distributed Iterative Algorithm: Convergence

(日)

Precoder Design: Distributed Iterative Algorithm

Step. No.	Action
1	Initialize $\mathbf{V}_k, k = 1, 2, \dots, K$, arbitrary matrices
2	Compute the matrix \mathbf{Q}_k for $k = 1, 2, \dots, K$
3	Obtain $W_k, k = 1, 2,, K$
4	Compute the matrix \mathbf{R}_k
5	Obtain $V_k, k = 1, 2,, K$
6	Repeat steps 2 – 5 until convergence

Table: The iterative precoder design algorithm

Eigen Beamforming Eigen Beamforming with Dimensionality Constraint Eigen beamforming: Constrained Least Squares – 2 Distributed Iterative Algorithm Precoder Design: Distributed Iterative Algorithm Distributed Iterative Algorithm: Convergence

Distributed Iterative Algorithm: Convergence

The total interference plus noise power across all receivers

$$P_{R} = \operatorname{trace}\left(\sum_{k=1}^{K} \left[\sum_{j=1, j \neq k}^{K} \mathbf{W}_{k}^{H} [\mathbf{H}_{kj} \mathbf{V}_{j}] [\mathbf{H}_{kj} \mathbf{V}_{j}]^{H} \mathbf{W}_{k} + \mathbf{W}_{k}^{H} \mathbf{W}_{k}\right]\right)$$
$$= \operatorname{trace}\left(\sum_{k=1}^{K} \left[\sum_{j=1}^{K} [\mathbf{W}_{k}^{H} \mathbf{H}_{kj} \mathbf{V}_{j}] [\mathbf{W}_{k}^{H} \mathbf{H}_{kj} \mathbf{V}_{j}]^{H}\right]\right) + K^{2} - \alpha K d_{k}$$

Similarly, the total interference power due to all transmitters

$$P_{T} = \operatorname{trace}\left(\sum_{k=1}^{K} \left[\sum_{j=1}^{K} [\mathbf{W}_{j}^{H} \mathbf{H}_{jk} \mathbf{V}_{k}]^{H} [\mathbf{W}_{j}^{H} \mathbf{H}_{jk} \mathbf{V}_{k}]\right]\right) + K^{2} - \beta K d_{k}$$

Eigen Beamforming Eigen Beamforming with Dimensionality Constraint Eigen beamforming: Constrained Least Squares – 2 Distributed Iterative Algorithm Precoder Design: Distributed Iterative Algorithm Distributed Iterative Algorithm: Convergence

Distributed Iterative Algorithm: Convergence

- Thus, P_R and P_T represent the same objective function
- The objective function reduces at each iteration and is bounded below by zero
- Hence the alternate iteration on the two objective functions is guaranteed to converge

Discussion on the distributed iterative algorithm

- Need interference covariance matrix at each Rx
- Need intf. cov. matrix of the *virtual reverse channel* at each Tx
- Distributed algorithm
- IA performace better than existing distributed algos
- Desired signal DOF is ensured by constraining the dimension of desired signal subspace

Preliminaries

- 2 IA Performance Measures
- Precoder design for IA
- 4 Simulation Results

Conclusion

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

크

Simulation Results

- The performance of the IA algorithms are compared with
 - Distributed interference alignment algorithm
 - 2 Alternating minimization algorithm
 - Least squares algorithm
- The sum DOF obtained = $\sum_{k=1}^{K} \operatorname{rank}(\mathbf{H}_{kk}\mathbf{V}_k)$
- The simulation results for both the performance metrics proposed earlier are obtained

・ロト ・四ト ・ヨト ・ヨト

э

Simulation Results – 1

▲□ → ▲ □ → ▲ □ →

æ

Simulation Results – 2

Setup: K = 4, M = 3, N = 6, S = 3, DOF outerbound = 8

æ

Simulation Results-3

Setup: K = 4, M = 4, N = 5, S = 2, DOF outerbound = 8.88

▲□ ▶ ▲ □ ▶ ▲ □ ▶ ...

æ

Simulation Results-4

Setup: *K* = 4, *M* = 4, *N* = 5, *S* = 2, DOF outerbound = 8.88

Summary

- The existence of IA solution and the feasible number of degrees of freedom for a given (*K*, *M*, *N*) system was obtained
- A new outerbound on the DOF was derived, and shown to be tighter than the best existing bounds for certain values of (*K*, *M*, *N*)
- Performance metric that measures the interference suppression and DOF achieved by the algorithm were proposed
- Two numerical algorithms were proposed for designing the interference alignment precoding and receive filtering matrices
- Simulation results confirmed the superior performance of the proposed algorithms compared to existing methods

・ロト ・ 日 ・ ・ 回 ・ ・ 日 ・

Future Work

- Interference alignment design with individual user power constraints
- The performance of interference alignment with imperfect CSIT, or with imperfect IA
- A study of the finite-SNR performance of the IA algorithms
- Characterizing the DOF *region* for *K* user interference channel

・ロト ・ 日 ・ ・ 回 ・ ・ 日 ・

Thank You !

<ロ> <同> <同> < 同> < 同> < 同> <

3