Iterative Matrix Decomposition Aided Block Diagonalization for mm-Wave Multiuser MIMO Systems
 IEEE TWC, Vol. 16, No. 3, March 2017

Sai Subramanyam Thoota
SPC Lab, Department of ECE Indian Institute of Science

April 1, 2017

Table of contents

(1) Introduction
(2) System Model
(3) Iterative Matrix Decomposition (IMD) for HBF
(4) Block Diagonalization with Unconstrained Beamforming
(5) Block Diagonalization with Constrained Beamforming
(6) Simulation Results

Introduction

- Motivation
- Significant interest in beamforming aided mm-wave systems due to the dearth of spectrum in the congested microwave band.
- Contributions
- Iterative matrix decomposition based hybrid beamforming (IMD-HBF) scheme for a single-user scenario, which accurately approximates the unconstrained beamforming solution.
- Novel subspace projection based AoD aided block diagonalization (SP-AoD-BD), which requires the knowledge of only the AoDs of the various channel paths.
- SP-AoD-BD in the HBF architecture named SP-BD-HBF.

System Model

- Channel model

$$
\begin{equation*}
\mathbf{H}_{j}=\sqrt{N_{t} N_{r}} \sum_{i=1}^{L_{j}} \beta_{i}^{(j)} \mathbf{e}_{r}\left(\theta_{i}^{(j)}\right) \mathbf{e}_{t}^{H}\left(\phi_{i}^{(j)}\right), 1 \leq j \leq K . \tag{1}
\end{equation*}
$$

where

- \mathbf{L}_{j} - number of channel paths between the BS and the $j^{\text {th }}$ user.
- $\beta_{i}^{(j)}-C N(0,1)$ is the gain of the $i^{\text {th }}$ path of the $j^{\text {th }}$ user's channel.
- $\theta_{i}^{(j)}, \phi_{i}^{(j)}-\mathrm{AoD}$ and AoA of the $i^{\text {th }}$ path of the $j^{\text {th }}$ user.
- $\mathbf{e}_{r}, \mathbf{e}_{t}$ - spatial receive and transmit signatures of a ULA, respectively.

$$
\begin{align*}
& \mathbf{e}_{r}(\theta)=\frac{1}{\sqrt{N_{r}}}\left[1, e^{j \frac{2 \pi}{\lambda} d \cos \theta}, \ldots, e^{j \frac{2 \pi}{\lambda} d\left(N_{r}-1\right) \cos \theta}\right]^{T} \tag{2}\\
& \mathbf{e}_{t}(\phi)=\frac{1}{\sqrt{N_{t}}}\left[1, e^{j \frac{2 \pi}{\lambda} d \cos \phi}, \ldots, e^{j \frac{2 \pi}{\lambda} d\left(N_{t}-1\right) \cos \phi}\right]^{T} \tag{3}
\end{align*}
$$

where

- d-separation between the antenna elements.
- λ-carrier's wavelength.

System Model contd.

- Channel can be expressed as

$$
\begin{equation*}
\mathbf{H}_{j}=\mathbf{E}_{r}^{(j)} \mathbf{D}^{(j)} \mathbf{E}_{t}^{(j)}, \tag{4}
\end{equation*}
$$

where

$$
\begin{align*}
& \mathbf{E}_{r}^{(j)}=\left[\mathbf{e}_{r}\left(\theta_{1}^{(j)}\right), \mathbf{e}_{r}\left(\theta_{2}^{(j)}\right), \ldots, \mathbf{e}_{r}\left(\theta_{L}^{(j)}\right)\right] \tag{5}\\
& \mathbf{E}_{t}^{(j)}=\left[\mathbf{e}_{t}\left(\phi_{1}^{(j)}\right), \mathbf{e}_{t}\left(\phi_{2}^{(j)}\right), \ldots, \mathbf{e}_{t}\left(\phi_{L}^{(j)}\right)\right] \tag{6}
\end{align*}
$$

- $\mathbf{D}^{(j)}$ is a diagonal matrix of the channel gains.
- Unconstrained system:

$$
\begin{equation*}
\mathbf{y}_{j}=\mathbf{W}_{j}^{H} \mathbf{H}_{j} \mathbf{F x}+\mathbf{W}_{j}^{H} \mathbf{n}_{j} \in \mathbb{C}^{N_{s}} . \tag{7}
\end{equation*}
$$

- Constrained FAS system (Hybrid beamforming structure):

$$
\begin{equation*}
\mathbf{y}_{j}=\mathbf{G}_{j}^{H} \phi_{j}^{H} \mathbf{H}_{j} \Theta \mathbf{C} \mathbf{x}+\mathbf{G}_{j}^{H} \phi_{j}^{H} \mathbf{n}_{j} \in \mathbb{C}^{N_{s}} . \tag{8}
\end{equation*}
$$

Iterative Matrix Decomposition for HBF

- For a single user scenario $(j=1)$, the optimal precoding and combining matrices for the unconstrained system are the right and left singular vectors associated with the N_{s} dominant singular values of the channel.
- IMD algorithm to obtain the analog and digital precoding/combining matrices.

```
Algorithm 1 Proposed IMD Algorithm for HBF
Require: \(k=0, \mathbf{H}=\mathbf{U} \Sigma \mathbf{V}^{H}\), max_iterations,
    \(\mathbf{W}=\mathbf{U}\left(:,\left[1: M_{r}\right]\right), \mathbf{F}=\mathbf{V}\left(:,\left[1: M_{t}\right]\right)\),
    \(\mathbf{W}_{t m p}=\mathbf{W}, \mathbf{F}_{t m p}=\mathbf{F}\),
    while \(k<\) max_iterations do
        1. \(\Phi=\measuredangle \mathbf{W}_{t m p}, \Theta=\measuredangle \mathbf{F}_{t m p}\),
        \(\Phi \leftarrow \frac{\Phi}{\sqrt{N_{r}}}, \Theta \leftarrow \frac{\Theta}{\sqrt{N_{t}}}\),
        2. \(\mathbf{G}=\left(\Phi^{H} \Phi\right)^{-1} \Phi^{H} \mathbf{W}, \mathbf{C}=\left(\Theta^{H} \Theta\right)^{-1} \Theta^{H} \mathbf{F}\),
        3. \(\mathbf{W}_{t m p}=\mathbf{W} \mathbf{G}^{-1}, \mathbf{F}_{t m p}=\mathbf{F} \mathbf{C}^{-1}\),
        4. \(\mathbf{W}^{\prime}=\Phi \mathbf{G}, \mathbf{F}^{\prime}=\Theta \mathbf{C}\),
        \(\mathbf{W}^{\prime} \leftarrow \frac{\mathbf{W}^{\prime}}{\left\|\mathbf{W}^{\prime}\right\|} \sqrt{M_{r}}, \mathbf{F}^{\prime} \leftarrow \frac{\mathbf{F}^{\prime}}{\left\|\mathbf{F}^{\prime}\right\|} \sqrt{M_{t}}\)
    end while
```


Iterative Matrix Decomposition for HBF contd.

- Convergence of IMD-HBF:

Definition

Let \mathbf{A} and \mathbf{B} selected from $\mathbb{C}^{m \times n}$, with $m \gg n$. The subspaces $\operatorname{span}(\mathbf{A})$ and span(B) are said to be non-intersecting or parallel, if $\mathbf{C}=[\mathbf{A ~ B}]$ has rank of $2 n$. In other words, $\operatorname{span}(\mathbf{A}) \cap \operatorname{span}(\mathbf{B})=\phi$.

- The residual error during the k-th iteration is

$$
\begin{align*}
\mathbf{F}-\mathbf{F}_{k}^{\prime} & =\mathbf{F}-\Theta_{k} \mathbf{C}_{k}=\Delta_{k} \tag{9}\\
\mathbf{W}-\mathbf{W}_{k}^{\prime} & =\mathbf{W}-\boldsymbol{\Phi}_{k} \mathbf{G}_{k}=\Gamma_{k} \tag{10}
\end{align*}
$$

- The matrices $\mathbf{F}_{t m p}$ and $\mathbf{W}_{\text {tmp }}$ used in the next iteration are given by

$$
\begin{align*}
\mathbf{F C}_{k}^{-1} & =\Theta_{k}+\Delta_{k} \mathbf{C}_{k}^{-1} \tag{11}\\
\mathbf{W G}_{k}^{-1} & =\Phi_{k}+\Gamma_{k} \mathbf{G}_{k}^{-1} \tag{12}
\end{align*}
$$

- It can be easily verified that $\Theta_{k}^{H} \Delta_{k}$ and $\Phi_{k}^{H} \Gamma_{k}$ are $\mathbf{0}$.

Iterative Matrix Decomposition for HBF contd.

- In the next iteration, $\Theta_{k+1}=\angle\left(\mathbf{F C}_{k}^{-1}\right) / \sqrt{N_{t}}$ and $\Phi_{k+1}=\angle\left(\mathbf{W G}_{k}^{-1}\right) / \sqrt{N_{r}}$, which satisfy

$$
\begin{align*}
\Theta_{k+1} & =\underset{|\Theta(i, j)|=1 / \sqrt{N_{t}}}{\operatorname{argmin}}\left\|\mathbf{F C}_{k}^{-1}-\Theta\right\|^{2} \tag{13}\\
\Phi_{k+1} & =\underset{|\Phi(i, j)|=1 / \sqrt{N_{r}}}{\operatorname{argmin}}\left\|\mathbf{W G}_{k}^{-1}-\Phi\right\|^{2} \tag{14}
\end{align*}
$$

- Proof for (13): See Appendix A in the paper.
- From (13) and (14), we have

$$
\begin{align*}
\left\|\mathbf{F C}_{k}^{-1}-\Theta_{k}\right\|^{2} & >\left\|\mathbf{F C}_{k}^{-1}-\Theta_{k+1}\right\|^{2} \tag{15}\\
\left\|\mathbf{W G}_{k}^{-1}-\Phi_{k}\right\|^{2} & >\left\|\mathbf{W G}_{k}^{-1}-\Phi_{k+1}\right\|^{2} \tag{16}
\end{align*}
$$

- \mathbf{F}, Θ_{k} and Θ_{k+1} form a set of mutually non-intersecting subspaces (more details about this in the paper but omitted here for brevity).

Iterative Matrix Decomposition for HBF contd.

- From (15), it is reasonable to expect $\left\|\mathbf{F}-\Theta_{k} \mathbf{C}_{k}\right\|^{2}>\left\|\mathbf{F}-\Theta_{k+1} \mathbf{C}_{k}\right\|^{2}$.

Proposition

Let $\mathbf{F}, \mathbf{C}_{k}, \Theta_{k}$, and Θ_{k+1} be defined as above. Let $\mathbf{A}=\mathbf{C}_{k} \mathbf{C}_{k}^{H}$ and

$$
\begin{align*}
\mathbf{B}= & \left(\mathbf{F C}_{k}^{-1}-\Theta_{k}\right)^{H}\left(\mathbf{F} \mathbf{C}_{k}^{-1}-\Theta_{k}\right) \\
& -\left(\mathbf{F C}_{k}^{-1}-\Theta_{k+1}\right)^{H}\left(\mathbf{F C}_{k}^{-1}-\Theta_{k+1}\right) \tag{17}
\end{align*}
$$

Then, we have

$$
\begin{align*}
\| \mathbf{F} & -\Theta_{k} \mathbf{C}_{k}\left\|^{2}-\right\| \mathbf{F}-\Theta_{k+1} \mathbf{C}_{k} \|^{2} \\
& \geq \underbrace{\lambda_{\min }(\mathbf{A})}_{\geq 0} \underbrace{\operatorname{tr}(\mathbf{B})}_{>0}+\lambda_{\min }(\mathbf{B})\left[\operatorname{tr}(\mathbf{A})-M_{t} \lambda_{\min }(\mathbf{A})\right] \tag{18}
\end{align*}
$$

Proof.

See Appendix B in paper.

Iterative Matrix Decomposition for HBF contd.

- Furthermore,

$$
\begin{equation*}
\left\|\mathbf{F}-\Theta_{k+1} \mathbf{C}_{k}\right\|^{2}>\left\|\mathbf{F}-\Theta_{k+1} \mathbf{C}_{k+1}\right\|^{2} \tag{19}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathbf{C}_{k+1}=\underset{\mathbf{C}}{\operatorname{argmin}}\left\|\mathbf{F}-\Theta_{k+1} \mathbf{C}\right\|^{2} \tag{20}
\end{equation*}
$$

Thus $\left\|\Delta_{k}\right\|^{2}>\left\|\Delta_{k+1}\right\|^{2}$.

Block Diagonalization with Unconstrained Beamforming

- AoD of various signal paths sufficient for block-diagonalizing the mm-wave MU-MIMO channel.
- Sufficient CSI for BD:
- Composite user channel \& precoding matrix:

$$
\begin{align*}
& \mathbf{H}_{\text {comp }} \triangleq\left[\mathbf{H}_{1}^{T}, \mathbf{H}_{2}^{T}, \ldots, \mathbf{H}_{K}^{T}\right]^{T} \in \mathbb{C}^{K N_{r} \times N_{t}} \tag{21}\\
& \mathbf{F} \quad \triangleq\left[\mathbf{F}_{1}, \mathbf{F}_{2}, \ldots, \mathbf{F}_{K}\right] \in \mathbb{C}^{N_{t} \times K N_{s}} \tag{22}
\end{align*}
$$

Definition

A precoding matrix \mathbf{F} is said to block-diagonalize the composite user channel $\mathbf{H}_{\text {comp }}$, if $\mathbf{H}_{i} \mathbf{F}_{j}=\mathbf{0}_{N_{r} \times N_{s}}$, for $1 \leq i \neq j \leq K$.

Block Diagonalization with Unconstrained Beamforming contd.

Proposition

Given a composite user channel $\mathbf{H}_{\text {comp }}$, the knowledge of the AoDs of various users given by $\left\{\mathbf{E}_{t}^{(1)}, \mathbf{E}_{t}^{(2)}, \ldots, \mathbf{E}_{t}^{(K)}\right\}$ is sufficient for obtaining a block-diagonalizing precoder \mathbf{F}.

Proof.

The composite user channel can be written as

$$
\mathbf{H}_{\text {comp }}=\left[\begin{array}{c}
\mathbf{E}_{r}^{(1)} \mathbf{D}^{(1)} \mathbf{E}_{t}^{(1)^{H}} \tag{23}\\
\mathbf{E}_{r}^{(2)} \mathbf{D}^{(2)} \mathbf{E}_{t}^{(2)^{H}} \\
\vdots \\
\mathbf{E}_{r}^{(K)} \mathbf{D}^{(K)} \mathbf{E}_{t}^{(K)^{H}}
\end{array}\right]=\overline{\mathbf{H}}_{r} \mathbf{E}_{\text {tcomp }},
$$

where

Block Diagonalization with Unconstrained Beamforming contd.

Proof.

$$
\overline{\mathbf{H}}_{r}=\left[\begin{array}{cccc}
\mathbf{E}_{r}^{(1)} \mathbf{D}^{(1)} & \mathbf{0} & \cdots & \mathbf{0} \tag{24}\\
\mathbf{0} & \mathbf{E}_{r}^{(2)} \mathbf{D}^{(2)} & \cdots & \mathbf{0} \\
\vdots & \vdots & \ddots & \mathbf{E}_{r}^{(K)} \mathbf{D}^{(K)}
\end{array}\right]
$$

and $\mathbf{E}_{\text {tcomp }}=\left[\mathbf{E}_{t}^{(1)}, \ldots, \mathbf{E}_{t}^{(K)}\right]^{H}$. Let $\mathbf{Q}_{j}=\left[\mathbf{E}_{t}^{(1)}, \ldots, \mathbf{E}_{t}^{(j-1)}, \mathbf{E}_{t}^{(j+1)}, \ldots, \mathbf{E}_{t}^{(K)}\right]^{H}=\mathbf{U}_{j} \boldsymbol{\Sigma}_{j} \mathbf{V}_{j}^{H}$ for $1 \leq j \leq K$. Assuming $N_{t} \geq K L$ and $L=N_{s}$, we opt

$$
\begin{equation*}
\mathbf{F}_{j}=\mathbf{V}_{j}\left(:,\left[N_{t}-L+1: N_{t}\right]\right) \in \mathbb{C}^{N_{t} \times L} \tag{25}
\end{equation*}
$$

which is a subset of the nullspace basis of \mathbf{Q}_{j}. Thus

$$
\begin{equation*}
\mathbf{Q}_{j} \mathbf{F}_{j}=\mathbf{0}_{(K-1) L \times L}, \forall j, \tag{26}
\end{equation*}
$$

Hence

$$
\begin{align*}
\mathbf{H}_{i} \mathbf{F}_{j} & =\mathbf{E}_{r}^{(i)} \mathbf{D}^{(i)} \mathbf{E}_{t}^{(i)^{H}} \mathbf{F}_{j}, \tag{27}\\
& =\mathbf{0}_{N_{r} \times L} . \tag{28}
\end{align*}
$$

Block Diagonalization with Unconstrained contd.

- Subspace Projection based AoD aided BD (SP-AoD-BD)
- Conventional BD discussed in the previous section block-diagonalizes the composite user channel, but is not aligned with the user's signal.
- Let $\mathbf{F}_{j}^{(\text {int_nul })} \triangleq \mathbf{V}_{j}\left(:,\left[(K-1) L+1: N_{t}\right]\right), \mathbf{E}_{t}^{(j)^{H}}=\tilde{\mathbf{U}}_{j} \tilde{\Sigma}_{j} \tilde{\mathbf{V}}_{j}^{H}$, and

$$
\mathbf{F}_{j}^{(s i g)}=\tilde{\mathbf{V}}_{j}(:,[1: L])
$$

- Let the projection matrices associated with $\mathbf{F}_{j}^{(\text {int_null) })}, \mathbf{F}_{j}^{(\text {sig })}$ be $\mathbf{P}_{j}^{(\text {int_null) })}, \mathbf{P}_{j}^{(\text {sig })}$, respectively.
- $\mathbf{P}_{j}^{(e f f)}=\mathbf{P}_{j}^{(\text {sig })} \mathbf{P}_{j}^{(\text {int_null) })}=\overline{\mathbf{U}}_{j} \bar{\Sigma}_{j} \overline{\mathbf{V}}_{j}^{H}$,
- Precoder is given by

$$
\begin{equation*}
\mathbf{F}_{j}=\overline{\mathbf{V}}_{j}(:,[1: L]) \in \mathbb{C}^{N_{t} \times L} \tag{29}
\end{equation*}
$$

Proposition

Given a composite user channel $\mathbf{H}_{\text {comp }}$, the precoder proposed in (29) satisfies $\mathbf{H}_{i} \mathbf{F}_{j}=\mathbf{0}_{N_{r} \times L}$ for $1 \leq i \neq j \leq K$.

Block Diagonalization with Unconstrained Beamforming contd.

Proof.

- Sufficient to show that the columns of \mathbf{F}_{j} are in the $\operatorname{span}\left(\mathbf{F}_{j}^{(\text {int_null })}\right)$ for $1 \leq j \leq K$.

$$
\begin{equation*}
\mathbf{P}_{j}^{(e f f)^{H}} \mathbf{P}_{j}^{(e f f)}=\mathbf{F}_{j}^{(\text {int_null })} \mathbf{Z}_{j} \mathbf{F}_{j}^{(\text {int_null })^{H}} \in \mathbb{C}^{N_{t} \times N_{t}} \tag{30}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathbf{Z}_{j}=\mathbf{F}_{j}^{(\text {int_null })^{H}} \mathbf{F}_{j}^{(\text {sig })} \mathbf{F}_{j}^{(\text {sig })^{H}} \mathbf{F}_{j}^{(\text {int_null })} \in \mathbb{C}^{L \times L} \tag{31}
\end{equation*}
$$

- Eigenvalue decomposition of $\mathbf{Z}_{j}=\mathbf{A}_{j} \wedge_{j} \mathbf{A}_{j}^{H}$. Substituting this into (30),

$$
\begin{align*}
& \mathbf{P}_{j}^{(\text {eff })^{H}} \mathbf{P}_{j}^{(e f f)}=\mathbf{F}_{j}^{(\text {int_null })} \mathbf{A}_{j} \Lambda_{j} \mathbf{A}_{j}^{H} \mathbf{F}_{j}^{(\text {int_null })}{ }^{H} \tag{32}\\
\Rightarrow & \mathbf{P}_{j}^{(\text {eff })^{H}} \mathbf{P}_{j}^{(e f f)} \mathbf{F}_{j}^{(\text {int_null })} \mathbf{A}_{j}=\mathbf{F}_{j}^{(\text {int_null })} \mathbf{A}_{j} \Lambda_{j} . \tag{33}
\end{align*}
$$

- From (33), we can see that the eigenvectors of $\mathbf{P}_{j}^{(\text {eff })^{H}} \mathbf{P}_{j}^{(\text {eff })}$ are in the $\operatorname{span}\left(\mathbf{F}_{j}^{(\text {int_null) })}\right)$.

Block Diagonalization with Constrained Beamforming

- Subspace Projection Based AoD aided BD combined with HBF (SP-BD-HBF):
- Given SP-AoD-BD precoder in (29) for the $j^{\text {th }}$ user, Θ_{j} and \mathbf{C}_{j} are obtained by using IMD based HBF, i.e., $\overline{\mathbf{V}}_{j}(:,[1: L]) \approx \Theta_{j} \mathbf{C}_{j}$.
- Due to the residual errors in the approximation, $\mathbf{H}_{i} \Theta_{j} \mathbf{C}_{j} \neq \mathbf{0}_{N_{r} \times L}$.
- Let the baseband composite user channel be defined as

$$
\mathbf{K}_{\text {comp }}=\left[\begin{array}{c}
\mathbf{K}_{1} \tag{34}\\
\mathbf{K}_{2} \\
\vdots \\
\mathbf{K}_{K}
\end{array}\right] \in \mathbb{C}^{K L \times K L}
$$

where $\mathbf{K}_{i} \triangleq\left[\mathbf{E}_{t}^{(i)^{H}} \Theta_{1} \mathbf{C}_{1}, \mathbf{E}_{t}^{(i)^{H}} \Theta_{2} \mathbf{C}_{2}, \ldots, \mathbf{E}_{t}^{(i)^{H}} \Theta_{K} \mathbf{C}_{K}\right], \forall i$.

- $\mathbf{R}_{j}=\left[\mathbf{K}_{1}^{T}, \ldots, \mathbf{K}_{j-1}^{T}, \mathbf{K}_{j+1}^{T}, \ldots, \mathbf{K}_{K}^{T}\right]^{T}=\breve{\mathbf{U}}_{j} \breve{\Sigma}_{j} \breve{\mathbf{V}}_{j}^{H}$ and
$\mathbf{J}_{j}=\breve{\mathbf{V}}_{j}(:,[(K-1) L+1: K L]) \in \mathbb{C}^{K L \times L} \forall j$.
- Effective preprocessing for achieving BD at the BS is given by

$$
\left[\Theta_{1}, \ldots, \Theta_{K}\right]\left[\begin{array}{cccc}
\mathbf{C}_{1} & \mathbf{0} & \ldots & \mathbf{0} \tag{35}\\
\mathbf{0} & \mathbf{C}_{2} & \ldots & \mathbf{0} \\
\vdots & \vdots & \ddots & \vdots \\
\mathbf{0} & \mathbf{0} & \ldots & \mathbf{C}_{K}
\end{array}\right]\left[\mathbf{J}_{1}, \ldots, \mathbf{J}_{K}\right]
$$

Block Diagonalization with Constrained Beamforming contd.

- The effective channel as seen by the $j^{\text {th }}$ user becomes

$$
\begin{equation*}
\mathbf{H}_{j}^{(e f f)}=\mathbf{E}_{r}^{(j)} \mathbf{D}^{(j)} \mathbf{K}_{j} \mathbf{J}_{j} \in \mathbb{C}^{N_{r} \times L} \tag{36}
\end{equation*}
$$

- The optimal combining and precoding matrix conditioned for the $j^{\text {th }}$ user corresponds to the left and right singular vectors associated with dominant singular values of $\mathbf{H}_{j}^{(e f f)}$, respectively.
- $\mathbf{H}_{j}^{(e f f)}=\breve{\mathbf{U}}_{j} \breve{\Sigma}_{j} \breve{\mathbf{V}}_{j}^{H}$, then the unconstrained combining matrix is given by $\breve{\mathbf{U}}_{j}(:,[1: L])$.
- IMD used to get the analog and digital combining matrices.
- UE estimates $\breve{\mathbf{V}}_{j}$ and feeds it back to the BS which does the preprocessing for BD and user channel diagonalization as

$$
\begin{equation*}
\left[\Theta_{1} \mathbf{C}_{1}, \ldots, \Theta_{K} \mathbf{C}_{K}\right]\left[\mathbf{J}_{1} \breve{\mathbf{V}}_{1}, \ldots, \mathbf{J}_{K} \breve{\mathbf{V}}_{K}\right] \tag{37}
\end{equation*}
$$

Block Diagonalization with Constrained Beamforming contd.

Summary of the steps to establish a reliable downlink

- BS acquires the $A o D$ knowledge of the channel paths of each user by uplink channel sounding.
- BS obtains the effective preprocessing matrix given by (35) that allows to establish an interference free channel to each of the users.
- With the aid of DL channel training over interference free channels, each user acquires the knowledge of $\mathbf{H}_{j}^{(e f f)}$ and obtains the precoding and combining matrices. UE feeds back the precoding matrix to the BS.
- BS uses the preprocessing matrix of (37) for DL data transmission.

Simulation Results

- Sum rate comparison of unconstrained and constrained beamforming algorithms. Nearly zero loss in the achievable rates with IMD.
- Comparison of the achievable sum rate as a function of the number of users.
- Comparison of the achievable sum rate in the conventional BD and the proposed SP-AoD-BD with unconstrained beamforming.
- Future work: Design of mm-wave communication systems with the aid of partial CSI.

